コード例 #1
0
BSplineSurfaceFit<Real>::BSplineSurfaceFit (int iDegree0,
    int iControlQuantity0, int iSampleQuantity0, int iDegree1,
    int iControlQuantity1, int iSampleQuantity1,
    Vector3<Real>** aakSamplePoint)
{
    assert(1 <= iDegree0 && iDegree0 < iControlQuantity0);
    assert(iControlQuantity0 <= iSampleQuantity0);
    assert(1 <= iDegree1 && iDegree1 < iControlQuantity1);
    assert(iControlQuantity1 <= iSampleQuantity1);

    m_aiDegree[0] = iDegree0;
    m_aiSampleQuantity[0] = iSampleQuantity0;
    m_aiControlQuantity[0] = iControlQuantity0;
    m_aiDegree[1] = iDegree1;
    m_aiSampleQuantity[1] = iSampleQuantity1;
    m_aiControlQuantity[1] = iControlQuantity1;
    m_aakSamplePoint = aakSamplePoint;
    Allocate(iControlQuantity0,iControlQuantity1,m_aakControlPoint);

    // The double-precision basis functions are used to help with the
    // numerical round-off errors.
    BSplineFitBasisd* apkDBasis[2];
    double adTMultiplier[2];
    int iDim;
    for (iDim = 0; iDim < 2; iDim++)
    {
        m_apkBasis[iDim] = WM4_NEW BSplineFitBasis<Real>(
            m_aiControlQuantity[iDim],m_aiDegree[iDim]);

        apkDBasis[iDim] = WM4_NEW BSplineFitBasisd(
            m_aiControlQuantity[iDim],m_aiDegree[iDim]);

        adTMultiplier[iDim] = 1.0/(double)(m_aiSampleQuantity[iDim] - 1);
    }

    // Fit the data points with a B-spline surface using a least-squares error
    // metric.  The problem is of the form A0^T*A0*Q*A1^T*A1 = A0^T*P*A1, where
    // A0^T*A0 and A1^T*A1 are banded matrices, P contains the sample data, and
    // Q is the unknown matrix of control points.

    double dT;
    int i0, i1, i2, iMin, iMax;

    // Construct the matrices A0^T*A0 and A1^T*A1.
    BandedMatrixd* apkATAMat[2];
    for (iDim = 0; iDim < 2; iDim++)
    {
        apkATAMat[iDim] = WM4_NEW BandedMatrixd(m_aiControlQuantity[iDim],
            m_aiDegree[iDim]+1,m_aiDegree[iDim]+1);

        for (i0 = 0; i0 < m_aiControlQuantity[iDim]; i0++)
        {
            for (i1 = 0; i1 < i0; i1++)
            {
                (*apkATAMat[iDim])(i0,i1) = (*apkATAMat[iDim])(i1,i0);
            }

            int i1Max = i0 + m_aiDegree[iDim];
            if (i1Max >= m_aiControlQuantity[iDim])
            {
                i1Max = m_aiControlQuantity[iDim] - 1;
            }

            for (i1 = i0; i1 <= i1Max; i1++)
            {
                double dValue = 0.0;
                for (i2 = 0; i2 < m_aiSampleQuantity[iDim]; i2++)
                {
                    dT = adTMultiplier[iDim]*(double)i2;
                    apkDBasis[iDim]->Compute(dT,iMin,iMax);
                    if (iMin <= i0 && i0 <= iMax && iMin <= i1 && i1 <= iMax)
                    {
                        double dB0 = apkDBasis[iDim]->GetValue(i0 - iMin);
                        double dB1 = apkDBasis[iDim]->GetValue(i1 - iMin);
                        dValue += dB0*dB1;
                    }
                }
                (*apkATAMat[iDim])(i0,i1) = dValue;
            }
        }
    }

    // Construct the matrices A0^T and A1^T.
    double** aaadATMat[2];
    for (iDim = 0; iDim < 2; iDim++)
    {
        Allocate(m_aiSampleQuantity[iDim],m_aiControlQuantity[iDim],
            aaadATMat[iDim]);
        memset(aaadATMat[iDim][0],0,m_aiControlQuantity[iDim]
            *m_aiSampleQuantity[iDim]*sizeof(double));
        for (i0 = 0; i0 < m_aiControlQuantity[iDim]; i0++)
        {
            for (i1 = 0; i1 < m_aiSampleQuantity[iDim]; i1++)
            {
                dT = adTMultiplier[iDim]*(double)i1;
                apkDBasis[iDim]->Compute(dT,iMin,iMax);
                if (iMin <= i0 && i0 <= iMax)
                {
                    aaadATMat[iDim][i0][i1] =
                        apkDBasis[iDim]->GetValue(i0 - iMin);
                }
            }
        }
    }

    // Compute X0 = (A0^T*A0)^{-1}*A0^T and X1 = (A1^T*A1)^{-1}*A1^T by
    // solving the linear systems A0^T*A0*X0 = A0^T and A1^T*A1*X1 = A1^T.
    for (iDim = 0; iDim < 2; iDim++)
    {
        bool bSolved = apkATAMat[iDim]->SolveSystem(aaadATMat[iDim],
            m_aiSampleQuantity[iDim]);
        assert(bSolved);
        (void)bSolved;  // Avoid warning in release build.
    }

    // The control points for the fitted surface are stored in the matrix
    // Q = X0*P*X1^T, where P is the matrix of sample data.
    for (i0 = 0; i0 < m_aiControlQuantity[0]; i0++)
    {
        for (i1 = 0; i1 < m_aiControlQuantity[1]; i1++)
        {
            Vector3<Real> kSum = Vector3<Real>::ZERO;
            for (int j0 = 0; j0 < m_aiSampleQuantity[0]; j0++)
            {
                Real fX0Value = (Real)aaadATMat[0][i0][j0];
                for (int j1 = 0; j1 < m_aiSampleQuantity[1]; j1++)
                {
                    Real fX1Value = (Real)aaadATMat[1][i1][j1];
                    kSum += (fX0Value*fX1Value)*m_aakSamplePoint[j0][j1];
                }
            }
            m_aakControlPoint[i0][i1] = kSum;
        }
    }

    for (iDim = 0; iDim < 2; iDim++)
    {
        WM4_DELETE apkDBasis[iDim];
        WM4_DELETE apkATAMat[iDim];
        Deallocate(aaadATMat[iDim]);
    }
}
コード例 #2
0
BSplineCurveFit<Real>::BSplineCurveFit (int dimension, int numSamples,
    const Real* sampleData, int degree, int numControls)
    :
    mBasis(numControls, degree)
{
    assertion(dimension >= 1, "Invalid input\n");
    assertion(1 <= degree && degree < numControls, "Invalid input\n");
    assertion(numControls <= numSamples, "Invalid input\n");

    mDimension = dimension;
    mNumSamples = numSamples;
    mSampleData = sampleData;
    mDegree = degree;
    mNumControls = numControls;
    mControlData = new1<Real>(mDimension*numControls);

    // The double-precision basis functions are used to help with the
    // numerical round-off errors.
    BSplineFitBasisd dBasis(mNumControls,mDegree);
    double tMultiplier = 1.0/(double)(mNumSamples - 1);

    // Fit the data points with a B-spline curve using a least-squares error
    // metric.  The problem is of the form A^T*A*Q = A^T*P, where A^T*A is a
    // banded matrix, P contains the sample data, and Q is the unknown vector
    // of control points.

    double t;
    int i0, i1, i2, imin, imax, j;

    // Construct the matrix A^T*A.
    BandedMatrixd* ATAMat = new0 BandedMatrixd(mNumControls,
        mDegree + 1, mDegree + 1);

    for (i0 = 0; i0 < mNumControls; ++i0)
    {
        for (i1 = 0; i1 < i0; ++i1)
        {
            (*ATAMat)(i0, i1) = (*ATAMat)(i1, i0);
        }

        int i1Max = i0 + mDegree;
        if (i1Max >= mNumControls)
        {
            i1Max = mNumControls - 1;
        }

        for (i1 = i0; i1 <= i1Max; ++i1)
        {
            double value = 0.0;
            for (i2 = 0; i2 < mNumSamples; ++i2)
            {
                t = tMultiplier*(double)i2;
                dBasis.Compute(t, imin, imax);
                if (imin <= i0 && i0 <= imax && imin <= i1 && i1 <= imax)
                {
                    double dB0 = dBasis.GetValue(i0 - imin);
                    double dB1 = dBasis.GetValue(i1 - imin);
                    value += dB0*dB1;
                }
            }
            (*ATAMat)(i0, i1) = value;
        }
    }

    // Construct the matrix A^T.
    double** ATMat = new2<double>(mNumSamples, mNumControls);
    memset(ATMat[0], 0, mNumControls*mNumSamples*sizeof(double));
    for (i0 = 0; i0 < mNumControls; ++i0)
    {
        for (i1 = 0; i1 < mNumSamples; ++i1)
        {
            t = tMultiplier*(double)i1;
            dBasis.Compute(t, imin, imax);
            if (imin <= i0 && i0 <= imax)
            {
                ATMat[i0][i1] = dBasis.GetValue(i0 - imin);
            }
        }
    }

    // Compute X0 = (A^T*A)^{-1}*A^T by solving the linear system
    // A^T*A*X = A^T.
    bool solved = ATAMat->SolveSystem(ATMat,mNumSamples);
    assertion(solved, "Failed to solve linear system\n");
    WM5_UNUSED(solved);

    // The control points for the fitted curve are stored in the vector
    // Q = X0*P, where P is the vector of sample data.
    memset(mControlData, 0, mNumControls*mDimension*sizeof(Real));
    for (i0 = 0; i0 < mNumControls; ++i0)
    {
        Real* Q = mControlData + i0*mDimension;
        for (i1 = 0; i1 < mNumSamples; ++i1)
        {
            const Real* P = mSampleData + i1*mDimension;
            Real xValue = (Real)ATMat[i0][i1];
            for (j = 0; j < mDimension; j++)
            {
                Q[j] += xValue*P[j];
            }
        }
    }

    // Set the first and last output control points to match the first and
    // last input samples.  This supports the application of fitting keyframe
    // data with B-spline curves.  The user expects that the curve passes
    // through the first and last positions in order to support matching two
    // consecutive keyframe sequences.
    Real* cEnd0 = mControlData;
    const Real* sEnd0 = mSampleData;
    Real* cEnd1 = &mControlData[mDimension*(mNumControls-1)];
    const Real* sEnd1 = &mSampleData[mDimension*(mNumSamples-1)];
    for (j = 0; j < mDimension; j++)
    {
        *cEnd0++ = *sEnd0++;
        *cEnd1++ = *sEnd1++;
    }

    delete2(ATMat);
    delete0(ATAMat);
}
コード例 #3
0
BSplineSurfaceFit<Real>::BSplineSurfaceFit (int degree0, int numControls0,
    int numSamples0, int degree1, int numControls1, int numSamples1,
    Vector3<Real>** samples)
{
    assertion(1 <= degree0 && degree0 + 1 < numControls0, "Invalid input\n");
    assertion(numControls0 <= numSamples0, "Invalid input\n");
    assertion(1 <= degree1 && degree1 + 1 < numControls1, "Invalid input\n");
    assertion(numControls1 <= numSamples1, "Invalid input\n");

    mDegree[0] = degree0;
    mNumSamples[0] = numSamples0;
    mNumControls[0] = numControls0;
    mDegree[1] = degree1;
    mNumSamples[1] = numSamples1;
    mNumControls[1] = numControls1;
    mSamples = samples;
    mControls = new2<Vector3<Real> >(numControls0, numControls1);

    // The double-precision basis functions are used to help with the
    // numerical round-off errors.
    BSplineFitBasisd* dBasis[2];
    double tMultiplier[2];
    int dim;
    for (dim = 0; dim < 2; ++dim)
    {
        mBasis[dim] = new0 BSplineFitBasis<Real>(mNumControls[dim],
            mDegree[dim]);

        dBasis[dim] = new0 BSplineFitBasisd(mNumControls[dim],
            mDegree[dim]);

        tMultiplier[dim] = 1.0/(double)(mNumSamples[dim] - 1);
    }

    // Fit the data points with a B-spline surface using a least-squares error
    // metric.  The problem is of the form A0^T*A0*Q*A1^T*A1 = A0^T*P*A1, where
    // A0^T*A0 and A1^T*A1 are banded matrices, P contains the sample data, and
    // Q is the unknown matrix of control points.

    double t;
    int i0, i1, i2, imin, imax;

    // Construct the matrices A0^T*A0 and A1^T*A1.
    BandedMatrixd* ATAMat[2];
    for (dim = 0; dim < 2; ++dim)
    {
        ATAMat[dim] = new0 BandedMatrixd(mNumControls[dim],
            mDegree[dim] + 1, mDegree[dim] + 1);

        for (i0 = 0; i0 < mNumControls[dim]; ++i0)
        {
            for (i1 = 0; i1 < i0; ++i1)
            {
                (*ATAMat[dim])(i0, i1) = (*ATAMat[dim])(i1, i0);
            }

            int i1Max = i0 + mDegree[dim];
            if (i1Max >= mNumControls[dim])
            {
                i1Max = mNumControls[dim] - 1;
            }

            for (i1 = i0; i1 <= i1Max; ++i1)
            {
                double value = 0.0;
                for (i2 = 0; i2 < mNumSamples[dim]; ++i2)
                {
                    t = tMultiplier[dim]*(double)i2;
                    dBasis[dim]->Compute(t, imin, imax);
                    if (imin <= i0 && i0 <= imax && imin <= i1 && i1 <= imax)
                    {
                        double b0 = dBasis[dim]->GetValue(i0 - imin);
                        double b1 = dBasis[dim]->GetValue(i1 - imin);
                        value += b0*b1;
                    }
                }
                (*ATAMat[dim])(i0, i1) = value;
            }
        }
    }

    // Construct the matrices A0^T and A1^T.  A[d]^T has mNumControls[d]
    // rows and mNumSamples[d] columns.
    double** ATMat[2];
    for (dim = 0; dim < 2; dim++)
    {
        ATMat[dim] = new2<double>(mNumSamples[dim], mNumControls[dim]);
        memset(ATMat[dim][0], 0,
            mNumControls[dim]*mNumSamples[dim]*sizeof(double));

        for (i0 = 0; i0 < mNumControls[dim]; ++i0)
        {
            for (i1 = 0; i1 < mNumSamples[dim]; ++i1)
            {
                t = tMultiplier[dim]*(double)i1;
                dBasis[dim]->Compute(t, imin, imax);
                if (imin <= i0 && i0 <= imax)
                {
                    ATMat[dim][i0][i1] = dBasis[dim]->GetValue(i0 - imin);
                }
            }
        }
    }

    // Compute X0 = (A0^T*A0)^{-1}*A0^T and X1 = (A1^T*A1)^{-1}*A1^T by
    // solving the linear systems A0^T*A0*X0 = A0^T and A1^T*A1*X1 = A1^T.
    for (dim = 0; dim < 2; ++dim)
    {
        bool solved = ATAMat[dim]->SolveSystem(ATMat[dim], mNumSamples[dim]);
        assertion(solved, "Failed to solve linear system\n");
        WM5_UNUSED(solved);
    }

    // The control points for the fitted surface are stored in the matrix
    // Q = X0*P*X1^T, where P is the matrix of sample data.
    for (i1 = 0; i1 < mNumControls[1]; ++i1)
    {
        for (i0 = 0; i0 < mNumControls[0]; ++i0)
        {
            Vector3<Real> sum = Vector3<Real>::ZERO;
            for (int j1 = 0; j1 < mNumSamples[1]; ++j1)
            {
                Real x1Value = (Real)ATMat[1][i1][j1];
                for (int j0 = 0; j0 < mNumSamples[0]; ++j0)
                {
                    Real x0Value = (Real)ATMat[0][i0][j0];
                    sum += (x0Value*x1Value)*mSamples[j1][j0];
                }
            }
            mControls[i1][i0] = sum;
        }
    }

    for (dim = 0; dim < 2; ++dim)
    {
        delete0(dBasis[dim]);
        delete0(ATAMat[dim]);
        delete2(ATMat[dim]);
    }
}