コード例 #1
1
ファイル: main.c プロジェクト: nachiram/dsp-deeplearn
void main()
{
	int i,img_width=IMG_WIDTH,img_height=IMG_HEIGHT;

	core_id = DNUM;

	CSL_tscEnable();

	CACHE_setL2Size (CACHE_0KCACHE);
	CACHE_setL1DSize(CACHE_L1_32KCACHE);
	CACHE_disableCaching (128);

	maps_info_ptr = (maps_info*)MAPS_INFO_PTR;

	if(DNUM==MASTER_CORE_ID)
	{
		CSL_semAcquireDirect(INIT_DONE_SEM);
		memset((void*)MSMC_REG_BASE,0x0,MSMC_SRAM_SIZE);
		memset((void*)MAPS_INFO_PTR,0x0,0x100);
		do_power_gating();
		compute_num_maps();
	}

	memset((void*)L2_HEAP_BASE,0x0,L2_HEAP_SIZE);

	for(i=0;i<ITERATIONS;i++)
	{
		startVal = _itoll(TSCH,TSCL);
		deeplearn(img_width, img_height);
		endVal = _itoll(TSCH,TSCL);
		cumulative += ((endVal-startVal)/DSP_FREQ_IN_MHZ);
	}
	if(DNUM==MASTER_CORE_ID)
	{
		printf("TimeTaken %lfus\n",(cumulative/ITERATIONS));
	}
	cumulative=0;
}
コード例 #2
0
ファイル: main.c プロジェクト: nachiram/dsp-deeplearn
void main()
{
	int i,img_width=32,img_height=32;

	core_id = DNUM;

	CSL_tscEnable();

	CACHE_setL2Size (CACHE_0KCACHE);
	CACHE_setL1DSize(CACHE_L1_32KCACHE);
	CACHE_disableCaching (128);

	maps_info_ptr = (maps_info*)MAPS_INFO_PTR;

	if(DNUM==MASTER_CORE_ID)
	{
		CSL_semAcquireDirect(INIT_DONE_SEM);
		memset((void*)MSMC_REG_BASE,0x0,MSMC_SRAM_SIZE);
		memset((void*)MAPS_INFO_PTR,0x0,0x100);
		do_power_gating();
		compute_num_maps();
	}

	memset((void*)L2_HEAP_BASE,0x0,L2_HEAP_SIZE);

	for(i=0;i<ITERATIONS;i++)
	{
		startVal = _itoll(TSCH,TSCL);
		deeplearn(in_img, img_width, img_height);
		endVal = _itoll(TSCH,TSCL);
		cumulative += ((endVal-startVal)/DSP_FREQ_IN_MHZ);
	}
	if(DNUM==MASTER_CORE_ID)
	{
#ifdef FUNCTION_PROFILE
		printf("%lf %lf %lf \n",(layer1/ITERATIONS),(layer2/ITERATIONS),(layer3/ITERATIONS));
		printf("%lf %lf %lf %lf \n",(pad1/ITERATIONS),(conv1/ITERATIONS),(rect1/ITERATIONS),(pool1/ITERATIONS));
		printf("%lf %lf %lf %lf %lf \n",(add1/ITERATIONS),(pad2/ITERATIONS),(conv2/ITERATIONS),(rect2/ITERATIONS),(pool2/ITERATIONS));
		printf("%lf %lf %lf %lf %lf \n",(add2/ITERATIONS),(pad3/ITERATIONS),(conv3/ITERATIONS),(rect3/ITERATIONS),(pool3/ITERATIONS));
#else
		printf("%lf us",(cumulative/ITERATIONS));
#endif
	}
	cumulative=0;
}
コード例 #3
0
ファイル: firMain.c プロジェクト: Deepaksen/keystone-workshop
void main()
{
	int nn;
	long t1, t2, t_dif;
	t1 = clock();
	t2 = clock();
	t_dif = t2 - t1;

	CACHE_setL1DSize(CACHE_L1_32KCACHE);
//	CACHE_setL2Size(CACHE_L2_128KCACHE);


	generateData( (float *) inputComplex, 2*NUMBER_OF_ELEMENTS);

    nn  = NUMBER_OF_ELEMENTS;

//	for (nn=512; nn <= NUMBER_OF_ELEMENTS; nn = nn * 2)
	{
	   t1 = clock();
	   naturalC_filters(inputComplex, nn, outputEnergy1 );
	   t2 = clock();

	   printf("natural C code size   %d  time %d \n",nn,  t2 - t1 - t_dif);
	}
//	printPower(outputEnergy1, NUMBER_OF_FILTERS  );

//	for (nn=512; nn <= NUMBER_OF_ELEMENTS; nn = nn * 2)
	{
	   t1 = clock();
	   intrinsicC_filters(inputComplex, nn, outputEnergy2 );
	   t2 = clock();

	   printf("intrinsic C code size   %d  time %d \n",nn,  t2 - t1 - t_dif);


	}

	compareValues(outputEnergy1, outputEnergy2,NUMBER_OF_FILTERS );
	printf("   \n\n    DONE    \n\n" );



}
コード例 #4
0
void disableCaches()
{
    CACHE_setL2Size(CACHE_0KCACHE)  ;
    CACHE_setL1DSize(CACHE_L1_0KCACHE)  ;
}
コード例 #5
0
ファイル: main.c プロジェクト: yukke-fj/shamrock
extern void __interrupt _c_int00()
{
    /*-------------------------------------------------------------------------
    * After a reset, the device should have invalidated caches.  The caches will
    * still be configured as they were prior to the reset.  Since this code was 
    * loaded into L2, we will ensure that L2 is configured as all sram.  
    *------------------------------------------------------------------------*/
    CACHE_setL2Size (CACHE_0KCACHE);
    CACHE_setL1DSize(CACHE_L1_32KCACHE);
    CACHE_setL1PSize(CACHE_L1_32KCACHE);

    /*-------------------------------------------------------------------------
    * Set up the stack pointer in b15.
    * The stack pointer points 1 word past the top of the stack, so subtract
    * 1 word from the size. also the sp must be aligned on an 8-byte boundary
    *------------------------------------------------------------------------*/
    __asm("\t   MVKL\t\t   __TI_STACK_END - 4, SP");
    __asm("\t   MVKH\t\t   __TI_STACK_END - 4, SP");
    __asm("\t   AND\t\t   ~7,SP,SP");               

    /*-------------------------------------------------------------------------
    * Set up the global data page pointer in b14.
    *------------------------------------------------------------------------*/
    __asm("\t   MVKL\t\t   __TI_STATIC_BASE,DP");
    __asm("\t   MVKH\t\t   __TI_STATIC_BASE,DP");

    /*-------------------------------------------------------------------------
    * disable cache for all addrs over 0x1000:0000
    *------------------------------------------------------------------------*/
    memset((void*)0x01848040, 0, 960);

    /*-------------------------------------------------------------------------
    * disable mpax registers 3 and above
    *------------------------------------------------------------------------*/
    memset((void*)0x08000018, 0, 104);

    /*-------------------------------------------------------------------------
    * disable msmc ses mpax registers  except for the first one at each pri lev
    *------------------------------------------------------------------------*/
    if (DNUM == 0) 
    {
        int i;
        for (i=0; i < 16; i++)
            memset((void*)(0x0bc00600 + (i * 0x40) + 8), 0, 0x38);
    }

    /*-------------------------------------------------------------------------
    * Set up floating point registers
    *------------------------------------------------------------------------*/
    FADCR = 0; FMCR  = 0;

    /*-------------------------------------------------------------------------
    * Setup platform specifics, i.e. uarts, ethernet, etc.
    *------------------------------------------------------------------------*/
    if (DNUM == 0)
    {
        /*---------------------------------------------------------------------
        * Check if Boot time init configuration is loaded
        *
        * This code is reading l2 memory written by the host.  The values were
        * written before this code began running, so the cache invalidate at 
        * reset should ensure that when we read these values we will miss l1 and
        * read directly from l2.
        *--------------------------------------------------------------------*/
        platform_init_config config;
        config.pllm  = 0; // Original configuraion : default 0 -> 1 GHz 
        if (init_config.magic_number == 0xBABEFACE)
            config.pllm = init_config.dsp_pll_multiplier;

        /* Platform initialization */
        platform_init_flags flags;
        flags.pll  = 0x1;
        flags.ddr  = 0x1;
        flags.tcsl = 0x1;
        flags.phy  = 0x0;
        flags.ecc  = 0x1;

        platform_init(&flags, &config);
        platform_uart_init();
        platform_uart_set_baudrate(DEF_INIT_CONFIG_UART_BAUDRATE);

        memset((void*)&flags, 0 , sizeof(platform_init_flags));
        memset((void*)&config, 0, sizeof(platform_init_config));

        flags.pll = 0;
        flags.ddr = 0;
        flags.tcsl = 1;
        flags.phy = 1;
        flags.ecc = 0;
        platform_init(&flags, &config);

        Init_MAC(0);
        Init_MAC(1);

        Init_Switch(1506);
    }

    /*-------------------------------------------------------------------------
    * Once we write 0 to the boot magic addr, the host can proceed with the 
    * loading of another program that will subsequently run. We should ensure
    * that the caches are written back and clean at this point so that a 
    * subsequent writeback opertation will not clobber the program loaded 
    * from the host.  It is also clearly important that the loaded program 
    * did not write over the L2 area containing the remainder of this code.
    *------------------------------------------------------------------------*/
    BOOT_MAGIC_CONTENTS = 0;
    CACHE_wbInvL1d((void*)(BOOT_MAGIC_ADDR & ~0x3f), 64, CACHE_WAIT);

    wait_for_interrupt();

    /*-------------------------------------------------------------------------
    * We will now wait until an external entity writes the address to which we 
    * should jump 
    *------------------------------------------------------------------------*/
    while (1)
    {
        /*---------------------------------------------------------------------
        * invalidate the address so that we pick up the actual memory written by
        * the external entity.
        *--------------------------------------------------------------------*/
        CACHE_invL1d((void*)(BOOT_MAGIC_ADDR & ~0x3f), 64, CACHE_WAIT);
        void (*entry)() = (void (*)())(BOOT_MAGIC_CONTENTS);

        /*---------------------------------------------------------------------
        * If we have a non null pointer then we will branch to it. This 
        * essentially marks the end of this routine and the start of another,
        * so we should ensure that the caches are written back and clean at 
        * this point so that the following program starts with a clean cache 
        * system.
        *
        * It is also clearly important that the loaded program did not write 
        * over the L2 area containing this reset code. Since this reset code 
        * is entirely resident in the last 1/4 of L2, this area should not 
        * contain initialized data or code in the following program.
        *--------------------------------------------------------------------*/
        if (entry) 
        {
            flushCache();
            (*entry)();
        }
    }
}