コード例 #1
0
      /**
       * Return an instance of the bmrminnersolver based on user's argument in the 
       * configuration file.
       *
       */
      static CBMRMInnerSolver* GetBMRMInnerSolver(CModel &model, double lambda)
      {
         CBMRMInnerSolver* innerSolver = 0;
         Configuration &config = Configuration::GetInstance();
         std::string innerSolverType = "";
         
         if(config.IsSet("BMRM.innerSolverType"))
            innerSolverType = config.GetString("BMRM.innerSolverType");
         else
            throw CBMRMException("No BMRM inner solver specified", "CBMRMInnerSolverFactory::GetBMRMInnerSolver()");
         
         // select the innersolver specified by user (in configuration file)
         if(innerSolverType == "L2N2_DaiFletcherPGM")
         {
            innerSolver = new CL2N2_DaiFletcherPGM(lambda);
         }
         else if(innerSolverType == "L2N2_prLOQO")
         {
            innerSolver = new CL2N2_prLOQO(lambda);
         }
         else if(innerSolverType == "L2N2_LineSearch")
         {
            innerSolver = new CL2N2_LineSearch(lambda);
         }
#ifdef HAVE_L1N1_INNER_SOLVER
         else if(innerSolverType == "L1N1_Clp")
         {
            int wLength = model.GetW().Length();
            innerSolver = new CL1N1_Clp(lambda, wLength);
         }
#endif
         else if(innerSolverType == "L2N2_qld")
         {
            innerSolver = new CL2N2_qld(lambda);
         }
         else 
         {
            throw CBMRMException("unknown innerSolverType <" + innerSolverType + ">", 
                                 "CBMRMInnerSolverFactory::GetBMRMInnerSolver()");
         }
         
         return innerSolver;
      }
コード例 #2
0
ファイル: linesearchlossfactory.hpp プロジェクト: funkey/bmrm
 /**  Return an instance of loss function based on user's argument in configuration file
  *
  *   @param model [read] Pointer to model object
  *   @param data [read] Pointer to data object
  *   @return loss object
  */
 static CLoss* GetLoss(CModel* &model, CData* &data)
 {         
    CLoss* loss = 0;
    Configuration &config = Configuration::GetInstance();
    
    // select the loss function specified by user (in configuration file)
    if(config.IsSet("Loss.lossFunctionType"))
    {
       std::string lossFunctionType = config.GetString("Loss.lossFunctionType");
       
       if(lossFunctionType == "LINESEARCH_HINGE")
       { 
          CVecData *vecdata = 0;
          if(! (vecdata = dynamic_cast<CVecData*>(data))) 
          {
             throw CBMRMException("unable to cast data into CVecData",
                                  "CLineSearchLossFactory::GetLoss()");
          }
          loss = new CLinesearch_HingeLoss(model, vecdata);
       }
       else if(lossFunctionType == "LINESEARCH_MULTI_LABEL_CLASSIFICATION")
       { 
          CMultilabelVecData *mlvecdata = 0;
          if(! (mlvecdata = dynamic_cast<CMultilabelVecData*>(data))) 
          {
             throw CBMRMException("unable to cast data into CVecData",
                                  "CLineSearchLossFactory::GetLoss()");
          }
          loss = new CLinesearch_MultilabelLoss(model, mlvecdata);
       }
       
       else
       {
          throw CBMRMException("ERROR: unrecognised loss function ("+lossFunctionType+")\n", 
                               "CLineSearchLossFactory::GetLoss()");
       }
    }
    else
    {
       throw CBMRMException("ERROR: no loss function specified!\n", "CLineSearchLossFactory::GetLoss()");
    }
    return loss;  
 }      
コード例 #3
0
ファイル: vecconsdata.hpp プロジェクト: funkey/bmrm
	CConsVecData(
			unsigned int start  = 0,
			unsigned int nparts = 1) {

		if (nparts != 1) {

			string msg =
					"CConsVecData does not support distribution of data (yet)";
			throw CBMRMException(msg, "CConsVecData::CConsVecData");
		}

		LoadConstraintData(NumOfLabel());
	}
コード例 #4
0
ファイル: datafactory.hpp プロジェクト: funkey/bmrm
      /**  Return a data object based on user's argument in configuration file.
       *   For serial computation, start and nparts are dummies.
       *   For distributed/parallel computation,
       *     load a portion of whole dataset: divide dataset into "nparts" parts and 
       *     load only the "start"-th part.
       *
       *   @param start [read] The part of dataset (divided into nparts) this machine should load
       *   @param nparts [read] The number of parts the original dataset will be divided into
       *   @return data object
       */
      static CData* GetData(unsigned int start=0, unsigned int nparts=1)
      {  
         CData *ds = 0;
         Configuration &config = Configuration::GetInstance();
         
         // default to this format
         std::string dataFormat = "VECTOR_LABEL_VECTOR_FEATURE";
         
         // default when a constraints file is given
         if(config.IsSet("Data.constraintsFile"))
            dataFormat = "CONSTRAINTS_LABEL_VECTOR_FEATURE";

         // unless the user specifies otherwise in the config 
         if(config.IsSet("Data.format"))
            dataFormat = config.GetString("Data.format");
         
         if(dataFormat == "VECTOR_LABEL_VECTOR_FEATURE")
         {
            ds = new CVecData(start,nparts);            
         }
         else if(dataFormat == "VARIABLE_LENGTH_VECTOR_LABEL_VECTOR_FEATURE")
         {
            ds = new CMultilabelVecData(start,nparts);            
         }
         else if(dataFormat == "CONSTRAINTS_LABEL_VECTOR_FEATURE")
         {
            ds = new CConsVecData(start,nparts);
         }
         // else if(dataFormat == "YOUR_DATA_FORMAT")
         //{
         //   ds = new CYourDataFormat();
         //}
         else
         {
            throw CBMRMException("ERROR: unrecognised data format ("+dataFormat+")\n", "CDataFactory::GetData()");
         }
         
         return ds;
      }   
コード例 #5
0
int main(int argc, char** argv)
{
   
	// sanity check
	if(argc < 2) 
	{
		std::cout << "Usage: ramp-bmrm-predict config.file" << std::endl;
		std::cout << "Check the configfiles directory for examples" << std::endl;
		std::cout << "ERROR: No configuration file given!" << std::endl;
		exit(EXIT_FAILURE);
	}

	// the very first thing to do!
	Configuration &config = Configuration::GetInstance();
	config.ReadFromFile(argv[1]);
	
	CData* data = 0;
	CLoss* loss_vex = 0;
	CLoss* loss_cav = 0;
	CModel* model = 0;
	
	try {
		// serial computation with centralised data
		config.SetString("Computation.mode", "SERIAL_CENTRALISED_DS");
		
		std::string modelFilename = config.GetString("Model.modelFile");
		std::string programMode = config.GetString("Program.mode");

		data = CDataFactory::GetData();     		
		model = CModelFactory::GetModel();
		model->Initialize(modelFilename, data->dim());
		CRampLossFactory::GetRampLoss(model,data, loss_vex, loss_cav);
		
		if(programMode == "PREDICTION")
			loss_vex->Predict(model);
		else if(programMode == "EVALUATION")
			loss_vex->Evaluate(model);
		else
			throw CBMRMException("unknown program mode <" + programMode +">","main()");
		
		// compute ramp loss function value
		Scalar lossVal_vex = 0.0;
		Scalar lossVal_cav = 0.0;
		
		loss_vex->ComputeLoss(lossVal_vex);
		loss_cav->ComputeLoss(lossVal_cav);

		std::cout << "a) Convex loss function value: " << lossVal_vex << std::endl;
		std::cout << "b) Concave loss function linearization value: " << lossVal_cav << std::endl;
		std::cout << "c) Ramp loss function value (a-b) : " << lossVal_vex - lossVal_cav << std::endl;

		// cleaning up
		delete model;
		delete loss_vex;
		delete loss_cav;
		delete data;
		
	}
	catch(CBMRMException e) {
		cout << e.Report() << endl;
	}
	
	return EXIT_SUCCESS;
}
コード例 #6
0
 void ComputeLoss(Scalar& loss)
 {
   throw CBMRMException("ERROR: not implemented!\n", "CGraphMatchLoss::ComputeLoss()");
 }
コード例 #7
0
        /**  Instantiate one convex loss function and another linearization of the concave loss 
         *   based on user's argument in configuration file
         *
         *   @param model [read] Pointer to model object
         *   @param data [read] Pointer to data object  
         *   @param loss_vex [write] Convex loss function
         *   @param loss_cav [write] Linearization of concave loss function corresponding to loss_vex     
         */
        static void GetRampLoss(CModel* &model, CData* &data, CLoss* &loss_vex, CLoss* &loss_cav)
        {                         
                Configuration &config = Configuration::GetInstance();
	 
                // select the loss function specified by user (in configuration file)
                if(config.IsSet("Loss.lossFunctionType"))
                {       
                        std::string lossFunctionType = config.GetString("Loss.lossFunctionType");
                        if(lossFunctionType == "WTA_MULTICLASS")
                        {
                                CVecData *vecdata = 0;
                                if(not (vecdata = dynamic_cast<CVecData*>(data))) 
                                {
                                        throw CBMRMException("unable to cast data into CVecData",
                                                             "CLossFactory::GetLoss()");
                                }
                                loss_vex = new CWTAMulticlassLoss(model, vecdata);
                                
                                // in the ramp losses, users must know which loss_cav to use for their specific loss_vex!                                
                                loss_cav = new CWTAMulticlassLoss(model, vecdata, false); // with additive label loss switched off
                        }
                        else if(lossFunctionType == "ROC_SCORE")
                        {
                                CVecData *vecdata = 0;
                                if(not (vecdata = dynamic_cast<CVecData*>(data))) 
                                {
                                        throw CBMRMException("unable to cast data into CVecData",
                                                             "CLossFactory::GetLoss()");
                                }
                                loss_vex = new CROCScoreLoss(model, vecdata);
                                
                                // in the ramp losses, users must know which loss_cav to use for their specific loss_vex!                                
                                loss_cav = new CROCScoreLoss(model, vecdata, false); // with additive label loss switched off
                        }
                        else if(lossFunctionType == "NDCG_RANK")
                        {
                                CVecData *vecdata = 0;
                                if(not (vecdata = dynamic_cast<CVecData*>(data))) 
                                {
                                        throw CBMRMException("unable to cast data into CVecData",
                                                             "CLossFactory::GetLoss()");
                                }
                                loss_vex = new CNDCGRankLoss(model, vecdata);
                                
                                // in the ramp losses, users must know which loss_cav to use for their specific loss_vex!                                
                                loss_cav = new CRampNDCGRankLoss(model, vecdata); 
                        }
                        //else if(lossFunctionType == "YOUR_LOSS_FUNCTION")
                        //{
                        //      loss = new CYourLoss(w, data);
                        //}
                        else
                        {
                                throw CBMRMException("ERROR: unrecognised loss function ("+lossFunctionType+")\n", 
                                                     "CLossFactory::GetLoss()");
                        }
                }
                else
                {
                        throw CBMRMException("ERROR: no loss function specified!\n", "CLossFactory::GetLoss()");
                }
	 
        }      
コード例 #8
0
ファイル: lossfactory.hpp プロジェクト: funkey/bmrm
    /**  Return an instance of loss function based on user's argument in configuration file
     *
     *   @param data [read] Pointer to data object
     *   @return loss object
     */
    static CLoss* GetLoss(CModel* &model, CData* &data)
    {
        CLoss* loss = 0;
        Configuration &config = Configuration::GetInstance();

        // select the loss function specified by user (in configuration file)
        if(config.IsSet("Loss.lossFunctionType"))
        {
            std::string lossFunctionType = config.GetString("Loss.lossFunctionType");

            if(lossFunctionType == "HINGE")
            {
                CVecData *vecdata = 0;
                if(! (vecdata = dynamic_cast<CVecData*>(data)))
                {
                    throw CBMRMException("unable to cast data into CVecData",
                                         "CLossFactory::GetLoss()");
                }
                loss = new CHingeLoss(model, vecdata);
            }
            else if(lossFunctionType == "SQUARED_HINGE")
            {
                CVecData *vecdata = 0;
                if(! (vecdata = dynamic_cast<CVecData*>(data)))
                {
                    throw CBMRMException("unable to cast data into CVecData",
                                         "CLossFactory::GetLoss()");
                }
                loss = new CSquaredHingeLoss(model, vecdata);
            }
            else if(lossFunctionType == "HUBER_HINGE")
            {
                CVecData *vecdata = 0;
                if(! (vecdata = dynamic_cast<CVecData*>(data)))
                {
                    throw CBMRMException("unable to cast data into CVecData",
                                         "CLossFactory::GetLoss()");
                }
                loss = new CHuberHingeLoss(model, vecdata);
            }
            else if(lossFunctionType == "LOGISTIC")
            {
                CVecData *vecdata = 0;
                if(! (vecdata = dynamic_cast<CVecData*>(data)))
                {
                    throw CBMRMException("unable to cast data into CVecData",
                                         "CLossFactory::GetLoss()");
                }
                loss = new CLogisticLoss(model, vecdata);
            }
            else if(lossFunctionType == "EXPONENTIAL")
            {
                CVecData *vecdata = 0;
                if(! (vecdata = dynamic_cast<CVecData*>(data)))
                {
                    throw CBMRMException("unable to cast data into CVecData",
                                         "CLossFactory::GetLoss()");
                }
                loss = new CExponentialLoss(model, vecdata);
            }
#ifndef PARALLEL_BMRM
            else if(lossFunctionType == "ROC_SCORE")
            {
                CVecData *vecdata = 0;
                if(! (vecdata = dynamic_cast<CVecData*>(data)))
                {
                    throw CBMRMException("unable to cast data into CVecData",
                                         "CLossFactory::GetLoss()");
                }
                loss = new CROCScoreLoss(model, vecdata);
            }
            else if(lossFunctionType == "F_BETA")
            {
                CVecData *vecdata = 0;
                if(! (vecdata = dynamic_cast<CVecData*>(data)))
                {
                    throw CBMRMException("unable to cast data into CVecData",
                                         "CLossFactory::GetLoss()");
                }
                loss = new CFBetaLoss(model, vecdata);
            }
#endif
            else if(lossFunctionType == "EPSILON_INSENSITIVE")
            {
                CVecData *vecdata = 0;
                if(! (vecdata = dynamic_cast<CVecData*>(data)))
                {
                    throw CBMRMException("unable to cast data into CVecData",
                                         "CLossFactory::GetLoss()");
                }
                loss = new CEpsilonInsensitiveLoss(model, vecdata);
            }
            else if(lossFunctionType == "LEAST_SQUARES")
            {
                CVecData *vecdata = 0;
                if(! (vecdata = dynamic_cast<CVecData*>(data)))
                {
                    throw CBMRMException("unable to cast data into CVecData",
                                         "CLossFactory::GetLoss()");
                }
                loss = new CLeastSquaresLoss(model, vecdata);
            }
            else if(lossFunctionType == "LEAST_ABSOLUTE_DEVIATION")
            {
                CVecData *vecdata = 0;
                if(! (vecdata = dynamic_cast<CVecData*>(data)))
                {
                    throw CBMRMException("unable to cast data into CVecData",
                                         "CLossFactory::GetLoss()");
                }
                loss = new CLeastAbsDevLoss(model, vecdata);
            }
            else if(lossFunctionType == "QUANTILE_REGRESSION")
            {
                CVecData *vecdata = 0;
                if(! (vecdata = dynamic_cast<CVecData*>(data)))
                {
                    throw CBMRMException("unable to cast data into CVecData",
                                         "CLossFactory::GetLoss()");
                }
                loss = new CQuantileLoss(model, vecdata);
            }
            else if(lossFunctionType == "POISSON_REGRESSION")
            {
                CVecData *vecdata = 0;
                if(! (vecdata = dynamic_cast<CVecData*>(data)))
                {
                    throw CBMRMException("unable to cast data into CVecData",
                                         "CLossFactory::GetLoss()");
                }
                loss = new CPoissonLoss(model, vecdata);
            }
            else if(lossFunctionType == "HUBER_ROBUST_REGRESSION")
            {
                CVecData *vecdata = 0;
                if(! (vecdata = dynamic_cast<CVecData*>(data)))
                {
                    throw CBMRMException("unable to cast data into CVecData",
                                         "CLossFactory::GetLoss()");
                }
                loss = new CHuberRobustLoss(model, vecdata);
            }
            else if(lossFunctionType == "NOVELTY_DETECTION")
            {
                CVecData *vecdata = 0;
                if(! (vecdata = dynamic_cast<CVecData*>(data)))
                {
                    throw CBMRMException("unable to cast data into CVecData",
                                         "CLossFactory::GetLoss()");
                }
                loss = new CNoveltyLoss(model, vecdata);
            }
            else if(lossFunctionType == "WTA_MULTICLASS")
            {
                CVecData *vecdata = 0;
                if(! (vecdata = dynamic_cast<CVecData*>(data)))
                {
                    throw CBMRMException("unable to cast data into CVecData",
                                         "CLossFactory::GetLoss()");
                }
                loss = new CWTAMulticlassLoss(model, vecdata);
            }
            else if(lossFunctionType == "MULTI_LABEL_CLASSIFICATION")
            {
                CMultilabelVecData *mlvecdata = 0;
                if(! (mlvecdata = dynamic_cast<CMultilabelVecData*>(data)))
                {
                    throw CBMRMException("unable to cast data into CMultilabelVecData",
                                         "CLossFactory::GetLoss()");
                }
                loss = new CMultilabelLoss(model, mlvecdata);
            }
            else if(lossFunctionType == "NDCG_RANK")
            {
                CVecData *vecdata = 0;
                if(! (vecdata = dynamic_cast<CVecData*>(data)))
                {
                    throw CBMRMException("unable to cast data into CVecData",
                                         "CLossFactory::GetLoss()");
                }
                loss = new CNDCGRankLoss(model, vecdata);
            }
            else if(lossFunctionType == "SOFT_MARGIN")
            {
                CConsVecData *consvecdata = 0;
                if(! (consvecdata = dynamic_cast<CConsVecData*>(data)))
                {
                    throw CBMRMException("unable to cast data into CConsVecData",
                                         "CLossFactory::GetLoss()");
                }
                loss = new SoftMarginLoss(model, consvecdata);
            }
            else
            {
                throw CBMRMException("ERROR: unrecognised loss function ("+lossFunctionType+")\n",
                                     "CLossFactory::GetLoss()");
            }
        }
        else
        {
            throw CBMRMException("ERROR: no loss function specified!\n", "CLossFactory::GetLoss()");
        }
        return loss;
    }
コード例 #9
0
/** Read examples into memory
 */
void CSeqFeature::LoadFeatures()
{ 
        unsigned int tmpFidx = 0;
        Scalar tmpFval = 0;
        unsigned int featureCnt = 0;
        unsigned int seqNum = 0;
        unsigned int phiNum = 0;
        unsigned int posNum1 = 0, posNum2 = 0;
        std::string line = "";
        std::string token = "";
        std::ifstream featureFp;
   
        featureFp.open(featureFile.c_str());   
        if(!featureFp.good()) 
        {
                string msg = "Cannot open feature file <" + featureFile + ">!";
                throw CBMRMException(msg, "CSeqFeature::ScanFeatureFile()");
        }
   
        // read header information
        int headerInfoCnt = 3; // min duration, max duration, feature dimension
        do {
                getline(featureFp, line);
                trim(line);
                if(IsBlankLine(line)) continue;  // blank line
                if(line[0] == '#') continue;  // comment line
                if(sscanf(line.c_str(),"maxDuration:%d",&maxDuration)==1) headerInfoCnt--;
                if(sscanf(line.c_str(),"minDuration:%d",&minDuration)==1) headerInfoCnt--;
                if(sscanf(line.c_str(),"globalFeatureDim:%d",&featureDimension)==1) headerInfoCnt--;
        } while(!featureFp.eof() && (headerInfoCnt != 0));
        
        assert(maxDuration >= minDuration);
        assert(featureDimension < (1<<30));  // featureDimension is normally less then 1 billion
                
        if(featureFp.eof())
                throw CBMRMException("Feature file does not contain valid examples","CSeqFeature::LoadFeatures()");
        
        // read sequences
        nnz = 0;
        while(!featureFp.eof()) 
        {
                // read sequence number
                do {
                        getline(featureFp, line);
                        trim(line);
                        if(IsBlankLine(line)) continue;  // blank line
                        if(line[0] == '#') continue;  // comment line
                        if(sscanf(line.c_str(),"sequence:%d",&seqNum)==1) break;
                } while(!featureFp.eof());
                
                if(featureFp.eof())
                        throw CBMRMException("Feature file does not contain valid phi:*","CSeqFeature::LoadFeatures()");
                
                
                // read phi:1 tag
                phiNum = 0;
                do {
                        getline(featureFp, line);
                        trim(line);
                        if(IsBlankLine(line)) continue;  // blank line
                        if(line[0] == '#') continue;  // comment line
                        if(sscanf(line.c_str(),"phi:%d",&phiNum)==1) break;
                } while(!featureFp.eof());
                
                if(featureFp.eof() || (phiNum != 1))
                        throw CBMRMException("Feature file does not contain valid phi:1","CSeqFeature::LoadFeatures()");
                
                // read phi:1 sparse vectors
                do {
                        getline(featureFp, line);
                        trim(line);
                        if(IsBlankLine(line)) continue;  // blank line
                        if(line[0] == '#') continue;  // comment line
                        
                        if(sscanf(line.c_str(),"phi:%d",&phiNum) == 1)
                                break;
                        
                        istringstream iss(line);
                        iss >> token;
                        if((sscanf(token.c_str(),"pos:%d",&posNum1) != 1))
                                throw CBMRMException("Feature file does not contain valid pos tag in phi:1","CSeqFeature::LoadFeatures()");
                        
                        TheMatrix svec(1,featureDimension,SML::SPARSE);
                        featureCnt = 0;
                        while(!iss.eof())
                        {
                                iss >> token;
                                if(sscanf(token.c_str(),svec_feature_index_and_value_format.c_str(),&tmpFidx, &tmpFval) != 2)
                                {
                                        ostringstream msg;
                                        msg << "Invalid #" << featureCnt + 1 << " sparse vector element in phi:"<< phiNum << " seq:" << seqNum << " pos:" << posNum1;
                                        throw CBMRMException(msg.str(),"CSeqFeature::LoadFeatures()");
                                }
                                svec.Set(0,tmpFidx,tmpFval);       
                                nnz++;
                        }
                        
                        if(featureCnt == 0)
                                throw CBMRMException("Feature file does not contain valid phi:2 sparse vector","CSeqFeature::LoadFeatures()");
                        
                        phi_1.push_back(svec);
                } while(!featureFp.eof());
                
                if(phi_1.size() < 1)
                        throw CBMRMException("Feature file does not contain valid phi:1","CSeqFeature::LoadFeatures()");
                
                numOfSeq = phi_1.size();
                
                if(featureFp.eof() || (phiNum != 2))
                        throw CBMRMException("Feature file does not contain valid phi:2","CSeqFeature::LoadFeatures()");
                
                // read phi:2 sparse vectors
                unsigned int prevPosNum1 = 0, prevPosNum2 = 0; 
                vector<TheMatrix> tmp_phi_2_svecs;
                featureCnt = 0;
                do {
                        getline(featureFp, line);
                        trim(line);
                        if(IsBlankLine(line)) continue;  // blank line
                        if(line[0] == '#') continue;  // comment line
                        
                        if((sscanf(line.c_str(),"phi:%d",&phiNum) == 1))
                                break;
                        
                        istringstream iss(line);
                        iss >> token;
                        if((sscanf(token.c_str(),"pos:%d,%d",&posNum1,&posNum2) != 2))
                                throw CBMRMException("Feature file does not containt valid pos tag in phi:2","CSeqFeature::LoadFeatures()");
                        
                        if(prevPosNum2 >= posNum2)
                        {
                                ostringstream msg;
                                msg << "previous posNum2 must be > current posNum2 in phi:2 (phi:2 pos:" << posNum1 << "," << posNum2;
                                throw CBMRMException(msg.str(),"CSeqFeature::LoadFeatures()");
                        }
                        
                        if(prevPosNum1 >= posNum1)
                        {
                                ostringstream msg;
                                msg << "previous posNum1 must be > current posNum1 in phi:2 (phi:2 pos:" << posNum1 << "," << posNum2;
                                throw CBMRMException(msg.str(),"CSeqFeature::LoadFeatures()");
                        }
                        
                        if(posNum1 != prevPosNum1)
                        {
                                phi_2.push_back(tmp_phi_2_svecs);
                                tmp_phi_2_svecs.clear();                                
                        }
                        
                        TheMatrix svec(1,featureDimension,SML::SPARSE);
                        featureCnt = 0;
                        while(!iss.eof())
                        {
                                iss >> token;
                                if(sscanf(token.c_str(),svec_feature_index_and_value_format.c_str(),&tmpFidx, &tmpFval) != 2)
                                {
                                        ostringstream msg;
                                        msg << "Invalid #" << featureCnt + 1 << " sparse vector element in phi:"<< phiNum << " seq:" << seqNum << " pos:" << posNum1;
                                        throw CBMRMException(msg.str(),"CSeqFeature::LoadFeatures()");
                                }
                                svec.Set(0,tmpFidx,tmpFval);    
                                nnz++;
                        }
                        
                        if(featureCnt == 0)
                                throw CBMRMException("Feature file does not containt valid phi:2 sparse vector","CSeqFeature::LoadFeatures()");
                        
                        tmp_phi_2_svecs.push_back(svec);

                } while(!featureFp.eof());
                
                if(phi_2.size() < 1)
                        throw CBMRMException("Feature file does not contain phi:2","CSeqFeature::LoadFeatures()");
        }
        
        // data matrix density
        density = ((double)nnz/featureDimension)/numOfSeq;
   
        featureFp.close();
}