static int ld_ataraid_start_span(struct ld_softc *ld, struct buf *bp) { struct ld_ataraid_softc *sc = (void *) ld; struct ataraid_array_info *aai = sc->sc_aai; struct ataraid_disk_info *adi; struct cbuf *cbp; char *addr; daddr_t bn; long bcount, rcount; u_int comp; /* Allocate component buffers. */ addr = bp->b_data; /* Find the first component. */ comp = 0; adi = &aai->aai_disks[comp]; bn = bp->b_rawblkno; while (bn >= adi->adi_compsize) { bn -= adi->adi_compsize; adi = &aai->aai_disks[++comp]; } bp->b_resid = bp->b_bcount; for (bcount = bp->b_bcount; bcount > 0; bcount -= rcount) { rcount = bp->b_bcount; if ((adi->adi_compsize - bn) < btodb(rcount)) rcount = dbtob(adi->adi_compsize - bn); cbp = ld_ataraid_make_cbuf(sc, bp, comp, bn, addr, rcount); if (cbp == NULL) { /* Free the already allocated component buffers. */ while ((cbp = SIMPLEQ_FIRST(&sc->sc_cbufq)) != NULL) { SIMPLEQ_REMOVE_HEAD(&sc->sc_cbufq, cb_q); CBUF_PUT(cbp); } return EAGAIN; } /* * For a span, we always know we advance to the next disk, * and always start at offset 0 on that disk. */ adi = &aai->aai_disks[++comp]; bn = 0; SIMPLEQ_INSERT_TAIL(&sc->sc_cbufq, cbp, cb_q); addr += rcount; } /* Now fire off the requests. */ softint_schedule(sc->sc_sih_cookie); return 0; }
/* * Called at interrupt time. Mark the component as done and if all * components are done, take an "interrupt". */ static void ld_ataraid_iodone_raid0(struct buf *vbp) { struct cbuf *cbp = (struct cbuf *) vbp, *other_cbp; struct buf *bp = cbp->cb_obp; struct ld_ataraid_softc *sc = cbp->cb_sc; struct ataraid_array_info *aai = sc->sc_aai; struct ataraid_disk_info *adi; long count; int s, iodone; s = splbio(); iodone = cbp->cb_flags & CBUF_IODONE; other_cbp = cbp->cb_other; if (other_cbp != NULL) /* You are alone */ other_cbp->cb_other = NULL; if (cbp->cb_buf.b_error != 0) { /* * Mark this component broken. */ adi = &aai->aai_disks[cbp->cb_comp]; adi->adi_status &= ~ADI_S_ONLINE; printf("%s: error %d on component %d (%s)\n", device_xname(sc->sc_ld.sc_dv), bp->b_error, cbp->cb_comp, device_xname(adi->adi_dev)); /* * If we didn't see an error yet and we are reading * RAID1 disk, try another component. */ if (bp->b_error == 0 && (cbp->cb_buf.b_flags & B_READ) != 0 && (aai->aai_level & AAI_L_RAID1) != 0 && cbp->cb_comp < aai->aai_width) { cbp->cb_comp += aai->aai_width; adi = &aai->aai_disks[cbp->cb_comp]; if (adi->adi_status & ADI_S_ONLINE) { cbp->cb_buf.b_error = 0; VOP_STRATEGY(cbp->cb_buf.b_vp, &cbp->cb_buf); goto out; } } if (iodone || other_cbp != NULL) /* * If I/O on other component successfully done * or the I/O is still in progress, no need * to tell an error to upper layer. */ ; else { bp->b_error = cbp->cb_buf.b_error ? cbp->cb_buf.b_error : EIO; } /* XXX Update component config blocks. */ } else { /* * If other I/O is still in progress, tell it that * our I/O is successfully done. */ if (other_cbp != NULL) other_cbp->cb_flags |= CBUF_IODONE; } count = cbp->cb_buf.b_bcount; buf_destroy(&cbp->cb_buf); CBUF_PUT(cbp); if (other_cbp != NULL) goto out; /* If all done, "interrupt". */ bp->b_resid -= count; if (bp->b_resid < 0) panic("ld_ataraid_iodone_raid0: count"); if (bp->b_resid == 0) lddone(&sc->sc_ld, bp); out: splx(s); }
static int ld_ataraid_start_raid0(struct ld_softc *ld, struct buf *bp) { struct ld_ataraid_softc *sc = (void *) ld; struct ataraid_array_info *aai = sc->sc_aai; struct ataraid_disk_info *adi; SIMPLEQ_HEAD(, cbuf) cbufq; struct cbuf *cbp, *other_cbp; char *addr; daddr_t bn, cbn, tbn, off; long bcount, rcount; u_int comp; const int read = bp->b_flags & B_READ; const int mirror = aai->aai_level & AAI_L_RAID1; int error; /* Allocate component buffers. */ SIMPLEQ_INIT(&cbufq); addr = bp->b_data; bn = bp->b_rawblkno; bp->b_resid = bp->b_bcount; for (bcount = bp->b_bcount; bcount > 0; bcount -= rcount) { tbn = bn / aai->aai_interleave; off = bn % aai->aai_interleave; if (__predict_false(tbn == aai->aai_capacity / aai->aai_interleave)) { /* Last stripe. */ daddr_t sz = (aai->aai_capacity - (tbn * aai->aai_interleave)) / aai->aai_width; comp = off / sz; cbn = ((tbn / aai->aai_width) * aai->aai_interleave) + (off % sz); rcount = min(bcount, dbtob(sz)); } else { comp = tbn % aai->aai_width; cbn = ((tbn / aai->aai_width) * aai->aai_interleave) + off; rcount = min(bcount, dbtob(aai->aai_interleave - off)); } /* * See if a component is valid. */ try_mirror: adi = &aai->aai_disks[comp]; if ((adi->adi_status & ADI_S_ONLINE) == 0) { if (mirror && comp < aai->aai_width) { comp += aai->aai_width; goto try_mirror; } /* * No component available. */ error = EIO; goto free_and_exit; } cbp = ld_ataraid_make_cbuf(sc, bp, comp, cbn, addr, rcount); if (cbp == NULL) { resource_shortage: error = EAGAIN; free_and_exit: /* Free the already allocated component buffers. */ while ((cbp = SIMPLEQ_FIRST(&cbufq)) != NULL) { SIMPLEQ_REMOVE_HEAD(&cbufq, cb_q); buf_destroy(&cbp->cb_buf); CBUF_PUT(cbp); } return (error); } SIMPLEQ_INSERT_TAIL(&cbufq, cbp, cb_q); if (mirror && !read && comp < aai->aai_width) { comp += aai->aai_width; adi = &aai->aai_disks[comp]; if (adi->adi_status & ADI_S_ONLINE) { other_cbp = ld_ataraid_make_cbuf(sc, bp, comp, cbn, addr, rcount); if (other_cbp == NULL) goto resource_shortage; SIMPLEQ_INSERT_TAIL(&cbufq, other_cbp, cb_q); other_cbp->cb_other = cbp; cbp->cb_other = other_cbp; } } bn += btodb(rcount); addr += rcount; } /* Now fire off the requests. */ while ((cbp = SIMPLEQ_FIRST(&cbufq)) != NULL) { SIMPLEQ_REMOVE_HEAD(&cbufq, cb_q); if ((cbp->cb_buf.b_flags & B_READ) == 0) { mutex_enter(&cbp->cb_buf.b_vp->v_interlock); cbp->cb_buf.b_vp->v_numoutput++; mutex_exit(&cbp->cb_buf.b_vp->v_interlock); } VOP_STRATEGY(cbp->cb_buf.b_vp, &cbp->cb_buf); } return (0); }
static int ld_ataraid_start_span(struct ld_softc *ld, struct buf *bp) { struct ld_ataraid_softc *sc = (void *) ld; struct ataraid_array_info *aai = sc->sc_aai; struct ataraid_disk_info *adi; SIMPLEQ_HEAD(, cbuf) cbufq; struct cbuf *cbp; char *addr; daddr_t bn; long bcount, rcount; u_int comp; /* Allocate component buffers. */ SIMPLEQ_INIT(&cbufq); addr = bp->b_data; /* Find the first component. */ comp = 0; adi = &aai->aai_disks[comp]; bn = bp->b_rawblkno; while (bn >= adi->adi_compsize) { bn -= adi->adi_compsize; adi = &aai->aai_disks[++comp]; } bp->b_resid = bp->b_bcount; for (bcount = bp->b_bcount; bcount > 0; bcount -= rcount) { rcount = bp->b_bcount; if ((adi->adi_compsize - bn) < btodb(rcount)) rcount = dbtob(adi->adi_compsize - bn); cbp = ld_ataraid_make_cbuf(sc, bp, comp, bn, addr, rcount); if (cbp == NULL) { /* Free the already allocated component buffers. */ while ((cbp = SIMPLEQ_FIRST(&cbufq)) != NULL) { SIMPLEQ_REMOVE_HEAD(&cbufq, cb_q); buf_destroy(&cbp->cb_buf); CBUF_PUT(cbp); } return (EAGAIN); } /* * For a span, we always know we advance to the next disk, * and always start at offset 0 on that disk. */ adi = &aai->aai_disks[++comp]; bn = 0; SIMPLEQ_INSERT_TAIL(&cbufq, cbp, cb_q); addr += rcount; } /* Now fire off the requests. */ while ((cbp = SIMPLEQ_FIRST(&cbufq)) != NULL) { SIMPLEQ_REMOVE_HEAD(&cbufq, cb_q); if ((cbp->cb_buf.b_flags & B_READ) == 0) { mutex_enter(&cbp->cb_buf.b_vp->v_interlock); cbp->cb_buf.b_vp->v_numoutput++; mutex_exit(&cbp->cb_buf.b_vp->v_interlock); } VOP_STRATEGY(cbp->cb_buf.b_vp, &cbp->cb_buf); } return (0); }