コード例 #1
0
ファイル: Model.cpp プロジェクト: jloehr/KinectHeadTracking
void Model::CreatePipelineState()
{
	Microsoft::WRL::ComPtr<ID3DBlob> VertexShader;
	Microsoft::WRL::ComPtr<ID3DBlob> PixelShader;

	LoadAndCompileShader(VertexShader, PixelShader);

	std::array<D3D12_INPUT_ELEMENT_DESC, 2> InputElementDesc
	{ {
		{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
		{ "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
	} };

	D3D12_GRAPHICS_PIPELINE_STATE_DESC PipelineStateDesc = {};
	PipelineStateDesc.InputLayout = { InputElementDesc.data(), static_cast<UINT>(InputElementDesc.size()) };
	PipelineStateDesc.pRootSignature = RootSignature.Get();
	PipelineStateDesc.VS = CD3DX12_SHADER_BYTECODE(VertexShader.Get());
	PipelineStateDesc.PS = CD3DX12_SHADER_BYTECODE(PixelShader.Get());
	PipelineStateDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
	PipelineStateDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
	PipelineStateDesc.DepthStencilState = CD3DX12_DEPTH_STENCIL_DESC(D3D12_DEFAULT);
	PipelineStateDesc.SampleMask = UINT_MAX;
	PipelineStateDesc.SampleDesc.Count = 1;
	PipelineStateDesc.NumRenderTargets = 1;
	PipelineStateDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
	PipelineStateDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
	PipelineStateDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;

	Utility::ThrowOnFail(DeviceContext.GetDevice()->CreateGraphicsPipelineState(&PipelineStateDesc, IID_PPV_ARGS(&PipelineState)));
}
コード例 #2
0
// Load the sample assets.
void D3D12HDR::LoadAssets()
{
    // Create a root signature containing root constants for brightness information
    // and the desired output curve as well as a SRV descriptor table pointing to the
    // intermediate render targets.
    {
        CD3DX12_DESCRIPTOR_RANGE ranges[1];
        ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 2, 0);

        CD3DX12_ROOT_PARAMETER rootParameters[2];
        rootParameters[0].InitAsConstants(4, 0);
        rootParameters[1].InitAsDescriptorTable(1, &ranges[0]);

        D3D12_STATIC_SAMPLER_DESC sampler = {};
        sampler.Filter = D3D12_FILTER_MIN_MAG_MIP_POINT;
        sampler.AddressU = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
        sampler.AddressV = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
        sampler.AddressW = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
        sampler.ComparisonFunc = D3D12_COMPARISON_FUNC_NEVER;
        sampler.MaxLOD = D3D12_FLOAT32_MAX;
        sampler.ShaderVisibility = D3D12_SHADER_VISIBILITY_ALL;

        // Allow input layout and deny uneccessary access to certain pipeline stages.
        D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
            D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
            D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
            D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
            D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS;

        CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
        rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 1, &sampler, rootSignatureFlags);

        ComPtr<ID3DBlob> signature;
        ComPtr<ID3DBlob> error;
        ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
        ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
    }

    // Create the pipeline state objects for the different views and render target formats
    // as well as the intermediate blend step.
    {
        // Create the pipeline state for the scene geometry.

        D3D12_INPUT_ELEMENT_DESC gradientElementDescs[] =
        {
            { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
            { "COLOR", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
        };

        // Describe and create the graphics pipeline state objects (PSO).
        D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
        psoDesc.InputLayout = { gradientElementDescs, _countof(gradientElementDescs) };
        psoDesc.pRootSignature = m_rootSignature.Get();
        psoDesc.VS = CD3DX12_SHADER_BYTECODE(g_gradientVS, sizeof(g_gradientVS));
        psoDesc.PS = CD3DX12_SHADER_BYTECODE(g_gradientPS, sizeof(g_gradientPS));
        psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
        psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
        psoDesc.DepthStencilState.DepthEnable = FALSE;
        psoDesc.DepthStencilState.StencilEnable = FALSE;
        psoDesc.SampleMask = UINT_MAX;
        psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
        psoDesc.NumRenderTargets = 1;
        psoDesc.RTVFormats[0] = m_intermediateRenderTargetFormat;
        psoDesc.SampleDesc.Count = 1;

        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineStates[GradientPSO])));

        // Create pipeline state for the color space triangles.

        D3D12_INPUT_ELEMENT_DESC colorElementDescs[] =
        {
            { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
            { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
        };

        psoDesc.InputLayout = { colorElementDescs, _countof(colorElementDescs) };
        psoDesc.VS = CD3DX12_SHADER_BYTECODE(g_paletteVS, sizeof(g_paletteVS));
        psoDesc.PS = CD3DX12_SHADER_BYTECODE(g_palettePS, sizeof(g_palettePS));
        psoDesc.RTVFormats[0] = m_intermediateRenderTargetFormat;

        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineStates[PalettePSO])));

        // Create pipeline states for the final blend step.
        // There will be one for each swap chain format the sample supports.

        D3D12_INPUT_ELEMENT_DESC quadElementDescs[] =
        {
            { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
            { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
        };

        psoDesc.InputLayout = { quadElementDescs, _countof(quadElementDescs) };
        psoDesc.VS = CD3DX12_SHADER_BYTECODE(g_presentVS, sizeof(g_presentVS));
        psoDesc.PS = CD3DX12_SHADER_BYTECODE(g_presentPS, sizeof(g_presentPS));
        psoDesc.RTVFormats[0] = m_swapChainFormats[_8];
        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineStates[Present8bitPSO])));

        psoDesc.RTVFormats[0] = m_swapChainFormats[_10];
        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineStates[Present10bitPSO])));

        psoDesc.RTVFormats[0] = m_swapChainFormats[_16];
        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineStates[Present16bitPSO])));
    }

    // Create the command list.
    ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), nullptr, IID_PPV_ARGS(&m_commandList)));

    // Create the vertex buffer.
    {
        // Create geometry for the different sections of the render target.
        GradientVertex gradientVertices[] =
        {
            // Upper strip. SDR Gradient from [0,1].

            { { -1.0f, 0.45f, 0.0f }, { 0.0f, 0.0f, 0.0f } },
            { { -1.0f, 0.55f, 0.0f }, { 0.0f, 0.0f, 0.0f } },
            { { 0.0f, 0.45f, 0.0f }, { 1.0f, 1.0f, 1.0f } },
            { { 0.0f, 0.55f, 0.0f }, { 1.0f, 1.0f, 1.0f } },

            // Lower strip. HDR Gradient from [0,9]. Perceptually, 9.0 is about 3 times as bright as 1.0. (See gradientPS.hlsl.)

            { { -1.0f, -0.55f, 0.0f }, { 0.0f, 0.0f, 0.0f } },
            { { -1.0f, -0.45f, 0.0f }, { 0.0f, 0.0f, 0.0f } },
            { { 0.0f, -0.55f, 0.0f }, { 3.0f, 3.0f, 3.0f } },
            { { 0.0f, -0.45f, 0.0f }, { 3.0f, 3.0f, 3.0f } },
        };

        // The vertices for the color space triangles are dependent on the size of the
        // render target and will not be loaded at this time. We'll leave a gap in the
        // buffer that will be filled in later.
        const UINT triangleVerticesSize = sizeof(TrianglesVertex) * TrianglesVertexCount;
        m_updateVertexBuffer = true;

        PresentVertex presentVertices[] =
        {
            // 1 triangle that fills the entire render target.

            { { -1.0f, -3.0f, 0.0f }, { 0.0f, 2.0f } },    // Bottom left
            { { -1.0f, 1.0f, 0.0f }, { 0.0f, 0.0f } },    // Top left
            { { 3.0f, 1.0f, 0.0f }, { 2.0f, 0.0f } },    // Top right
        };

        const UINT vertexBufferSize = sizeof(gradientVertices) + triangleVerticesSize + sizeof(presentVertices);

        ThrowIfFailed(m_device->CreateCommittedResource(
            &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
            D3D12_HEAP_FLAG_NONE,
            &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
            D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER,
            nullptr,
            IID_PPV_ARGS(&m_vertexBuffer)));

        ThrowIfFailed(m_device->CreateCommittedResource(
            &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
            D3D12_HEAP_FLAG_NONE,
            &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
            D3D12_RESOURCE_STATE_GENERIC_READ,
            nullptr,
            IID_PPV_ARGS(&m_vertexBufferUpload)));

        // Copy data to the intermediate upload heap. It will be uploaded to the
        // DEFAULT buffer when the color space triangle vertices are updated.
        UINT8* mappedUploadHeap = nullptr;
        ThrowIfFailed(m_vertexBufferUpload->Map(0, &CD3DX12_RANGE(0, 0), reinterpret_cast<void**>(&mappedUploadHeap)));

        memcpy(mappedUploadHeap, gradientVertices, sizeof(gradientVertices));
        mappedUploadHeap += sizeof(gradientVertices) + triangleVerticesSize;
        memcpy(mappedUploadHeap, presentVertices, sizeof(presentVertices));

        m_vertexBufferUpload->Unmap(0, &CD3DX12_RANGE(0, 0));

        // Initialize the vertex buffer views.
        m_gradientVertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
        m_gradientVertexBufferView.StrideInBytes = sizeof(GradientVertex);
        m_gradientVertexBufferView.SizeInBytes = sizeof(gradientVertices);

        m_trianglesVertexBufferView.BufferLocation = m_gradientVertexBufferView.BufferLocation + m_gradientVertexBufferView.SizeInBytes;
        m_trianglesVertexBufferView.StrideInBytes = sizeof(TrianglesVertex);
        m_trianglesVertexBufferView.SizeInBytes = triangleVerticesSize;

        m_presentVertexBufferView.BufferLocation = m_trianglesVertexBufferView.BufferLocation + m_trianglesVertexBufferView.SizeInBytes;
        m_presentVertexBufferView.StrideInBytes = sizeof(PresentVertex);
        m_presentVertexBufferView.SizeInBytes = sizeof(presentVertices);
    }

    LoadSizeDependentResources();

    // Close the command list and execute it to begin the vertex buffer copy into
    // the default heap.
    ThrowIfFailed(m_commandList->Close());
    ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
    m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

    // Create synchronization objects and wait until assets have been uploaded to the GPU.
    {
        ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
        m_fenceValues[m_frameIndex]++;

        // Create an event handle to use for frame synchronization.
        m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
        if (m_fenceEvent == nullptr)
        {
            ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
        }

        // Wait for the command list to execute; we are reusing the same command 
        // list in our main loop but for now, we just want to wait for setup to 
        // complete before continuing.
        WaitForGpu();
    }
}
コード例 #3
0
// Load the sample assets.
void D3D12Multithreading::LoadAssets()
{
	// Create the root signature.
	{
		CD3DX12_DESCRIPTOR_RANGE ranges[4]; // Perfomance TIP: Order from most frequent to least frequent.
		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 2, 1);		// 2 frequently changed diffuse + normal textures - using registers t1 and t2.
		ranges[1].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0);		// 1 frequently changed constant buffer.
		ranges[2].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);		// 1 infrequently changed shadow texture - starting in register t0.
		ranges[3].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER, 2, 0);	// 2 static samplers.

		CD3DX12_ROOT_PARAMETER rootParameters[4];
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_PIXEL);
		rootParameters[1].InitAsDescriptorTable(1, &ranges[1], D3D12_SHADER_VISIBILITY_ALL);
		rootParameters[2].InitAsDescriptorTable(1, &ranges[2], D3D12_SHADER_VISIBILITY_PIXEL);
		rootParameters[3].InitAsDescriptorTable(1, &ranges[3], D3D12_SHADER_VISIBILITY_PIXEL);

		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
		NAME_D3D12_OBJECT(m_rootSignature);
	}

	// Create the pipeline state, which includes loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;

#if defined(_DEBUG)
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = D3DCOMPILE_OPTIMIZATION_LEVEL3;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

		D3D12_INPUT_LAYOUT_DESC inputLayoutDesc;
		inputLayoutDesc.pInputElementDescs = SampleAssets::StandardVertexDescription;
		inputLayoutDesc.NumElements = _countof(SampleAssets::StandardVertexDescription);

		CD3DX12_DEPTH_STENCIL_DESC depthStencilDesc(D3D12_DEFAULT);
		depthStencilDesc.DepthEnable = true;
		depthStencilDesc.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ALL;
		depthStencilDesc.DepthFunc = D3D12_COMPARISON_FUNC_LESS_EQUAL;
		depthStencilDesc.StencilEnable = FALSE;

		// Describe and create the PSO for rendering the scene.
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = inputLayoutDesc;
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get());
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get());
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState = depthStencilDesc;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
		NAME_D3D12_OBJECT(m_pipelineState);

		// Alter the description and create the PSO for rendering
		// the shadow map.  The shadow map does not use a pixel
		// shader or render targets.
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(0, 0);
		psoDesc.RTVFormats[0] = DXGI_FORMAT_UNKNOWN;
		psoDesc.NumRenderTargets = 0;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineStateShadowMap)));
		NAME_D3D12_OBJECT(m_pipelineStateShadowMap);
	}

	// Create temporary command list for initial GPU setup.
	ComPtr<ID3D12GraphicsCommandList> commandList;
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocator.Get(), m_pipelineState.Get(), IID_PPV_ARGS(&commandList)));

	// Create render target views (RTVs).
	CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHandle(m_rtvHeap->GetCPUDescriptorHandleForHeapStart());
	for (UINT i = 0; i < FrameCount; i++)
	{
		ThrowIfFailed(m_swapChain->GetBuffer(i, IID_PPV_ARGS(&m_renderTargets[i])));
		m_device->CreateRenderTargetView(m_renderTargets[i].Get(), nullptr, rtvHandle);
		rtvHandle.Offset(1, m_rtvDescriptorSize);

		WCHAR name[25];
		if (swprintf_s(name, L"m_renderTargets[%u]", i) > 0)
		{
			SetName(m_renderTargets[i].Get(), name);
		}
	}

	// Create the depth stencil.
	{
		CD3DX12_RESOURCE_DESC shadowTextureDesc(
			D3D12_RESOURCE_DIMENSION_TEXTURE2D,
			0,
			static_cast<UINT>(m_viewport.Width), 
			static_cast<UINT>(m_viewport.Height), 
			1,
			1,
			DXGI_FORMAT_D32_FLOAT,
			1, 
			0,
			D3D12_TEXTURE_LAYOUT_UNKNOWN,
			D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL | D3D12_RESOURCE_FLAG_DENY_SHADER_RESOURCE);

		D3D12_CLEAR_VALUE clearValue;	// Performance tip: Tell the runtime at resource creation the desired clear value.
		clearValue.Format = DXGI_FORMAT_D32_FLOAT;
		clearValue.DepthStencil.Depth = 1.0f;
		clearValue.DepthStencil.Stencil = 0;

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&shadowTextureDesc,
			D3D12_RESOURCE_STATE_DEPTH_WRITE,
			&clearValue,
			IID_PPV_ARGS(&m_depthStencil)));

		NAME_D3D12_OBJECT(m_depthStencil);

		// Create the depth stencil view.
		m_device->CreateDepthStencilView(m_depthStencil.Get(), nullptr, m_dsvHeap->GetCPUDescriptorHandleForHeapStart());
	}

	// Load scene assets.
	UINT fileSize = 0;
	UINT8* pAssetData;
	ThrowIfFailed(ReadDataFromFile(GetAssetFullPath(SampleAssets::DataFileName).c_str(), &pAssetData, &fileSize));

	// Create the vertex buffer.
	{
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::VertexDataSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		NAME_D3D12_OBJECT(m_vertexBuffer);

		{
			ThrowIfFailed(m_device->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
				D3D12_HEAP_FLAG_NONE,
				&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::VertexDataSize),
				D3D12_RESOURCE_STATE_GENERIC_READ,
				nullptr,
				IID_PPV_ARGS(&m_vertexBufferUpload)));

			// Copy data to the upload heap and then schedule a copy 
			// from the upload heap to the vertex buffer.
			D3D12_SUBRESOURCE_DATA vertexData = {};
			vertexData.pData = pAssetData + SampleAssets::VertexDataOffset;
			vertexData.RowPitch = SampleAssets::VertexDataSize;
			vertexData.SlicePitch = vertexData.RowPitch;

			PIXBeginEvent(commandList.Get(), 0, L"Copy vertex buffer data to default resource...");

			UpdateSubresources<1>(commandList.Get(), m_vertexBuffer.Get(), m_vertexBufferUpload.Get(), 0, 0, 1, &vertexData);
			commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

			PIXEndEvent(commandList.Get());
		}

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.SizeInBytes = SampleAssets::VertexDataSize;
		m_vertexBufferView.StrideInBytes = SampleAssets::StandardVertexStride;
	}

	// Create the index buffer.
	{
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::IndexDataSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_indexBuffer)));

		NAME_D3D12_OBJECT(m_indexBuffer);

		{
			ThrowIfFailed(m_device->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
				D3D12_HEAP_FLAG_NONE,
				&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::IndexDataSize),
				D3D12_RESOURCE_STATE_GENERIC_READ,
				nullptr,
				IID_PPV_ARGS(&m_indexBufferUpload)));

			// Copy data to the upload heap and then schedule a copy 
			// from the upload heap to the index buffer.
			D3D12_SUBRESOURCE_DATA indexData = {};
			indexData.pData = pAssetData + SampleAssets::IndexDataOffset;
			indexData.RowPitch = SampleAssets::IndexDataSize;
			indexData.SlicePitch = indexData.RowPitch;

			PIXBeginEvent(commandList.Get(), 0, L"Copy index buffer data to default resource...");

			UpdateSubresources<1>(commandList.Get(), m_indexBuffer.Get(), m_indexBufferUpload.Get(), 0, 0, 1, &indexData);
			commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_indexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_INDEX_BUFFER));

			PIXEndEvent(commandList.Get());
		}

		// Initialize the index buffer view.
		m_indexBufferView.BufferLocation = m_indexBuffer->GetGPUVirtualAddress();
		m_indexBufferView.SizeInBytes = SampleAssets::IndexDataSize;
		m_indexBufferView.Format = SampleAssets::StandardIndexFormat;
	}

	// Create shader resources.
	{
		// Get the CBV SRV descriptor size for the current device.
		const UINT cbvSrvDescriptorSize = m_device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);

		// Get a handle to the start of the descriptor heap.
		CD3DX12_CPU_DESCRIPTOR_HANDLE cbvSrvHandle(m_cbvSrvHeap->GetCPUDescriptorHandleForHeapStart());

		{
			// Describe and create 2 null SRVs. Null descriptors are needed in order 
			// to achieve the effect of an "unbound" resource.
			D3D12_SHADER_RESOURCE_VIEW_DESC nullSrvDesc = {};
			nullSrvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
			nullSrvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
			nullSrvDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
			nullSrvDesc.Texture2D.MipLevels = 1;
			nullSrvDesc.Texture2D.MostDetailedMip = 0;
			nullSrvDesc.Texture2D.ResourceMinLODClamp = 0.0f;

			m_device->CreateShaderResourceView(nullptr, &nullSrvDesc, cbvSrvHandle);
			cbvSrvHandle.Offset(cbvSrvDescriptorSize);

			m_device->CreateShaderResourceView(nullptr, &nullSrvDesc, cbvSrvHandle);
			cbvSrvHandle.Offset(cbvSrvDescriptorSize);
		}

		// Create each texture and SRV descriptor.
		const UINT srvCount = _countof(SampleAssets::Textures);
		PIXBeginEvent(commandList.Get(), 0, L"Copy diffuse and normal texture data to default resources...");
		for (int i = 0; i < srvCount; i++)
		{
			// Describe and create a Texture2D.
			const SampleAssets::TextureResource &tex = SampleAssets::Textures[i];
			CD3DX12_RESOURCE_DESC texDesc(
				D3D12_RESOURCE_DIMENSION_TEXTURE2D,
				0,
				tex.Width, 
				tex.Height, 
				1,
				static_cast<UINT16>(tex.MipLevels),
				tex.Format,
				1, 
				0,
				D3D12_TEXTURE_LAYOUT_UNKNOWN,
				D3D12_RESOURCE_FLAG_NONE);

			ThrowIfFailed(m_device->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
				D3D12_HEAP_FLAG_NONE,
				&texDesc,
				D3D12_RESOURCE_STATE_COPY_DEST,
				nullptr,
				IID_PPV_ARGS(&m_textures[i])));

			WCHAR name[30];
			swprintf_s(name, L"m_textures[%d]", i);
			SetName(m_textures[i].Get(), name);

			{
				const UINT subresourceCount = texDesc.DepthOrArraySize * texDesc.MipLevels;
				UINT64 uploadBufferSize = GetRequiredIntermediateSize(m_textures[i].Get(), 0, subresourceCount);
				ThrowIfFailed(m_device->CreateCommittedResource(
					&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
					D3D12_HEAP_FLAG_NONE,
					&CD3DX12_RESOURCE_DESC::Buffer(uploadBufferSize),
					D3D12_RESOURCE_STATE_GENERIC_READ,
					nullptr,
					IID_PPV_ARGS(&m_textureUploads[i])));

				// Copy data to the intermediate upload heap and then schedule a copy
				// from the upload heap to the Texture2D.
				D3D12_SUBRESOURCE_DATA textureData = {};
				textureData.pData = pAssetData + tex.Data->Offset;
				textureData.RowPitch = tex.Data->Pitch;
				textureData.SlicePitch = tex.Data->Size;

				UpdateSubresources(commandList.Get(), m_textures[i].Get(), m_textureUploads[i].Get(), 0, 0, subresourceCount, &textureData);
				commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_textures[i].Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE));
			}

			// Describe and create an SRV.
			D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
			srvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
			srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
			srvDesc.Format = tex.Format;
			srvDesc.Texture2D.MipLevels = tex.MipLevels;
			srvDesc.Texture2D.MostDetailedMip = 0;
			srvDesc.Texture2D.ResourceMinLODClamp = 0.0f;
			m_device->CreateShaderResourceView(m_textures[i].Get(), &srvDesc, cbvSrvHandle);

			// Move to the next descriptor slot.
			cbvSrvHandle.Offset(cbvSrvDescriptorSize);
		}
		PIXEndEvent(commandList.Get());
	}

	free(pAssetData);

	// Create the samplers.
	{
		// Get the sampler descriptor size for the current device.
		const UINT samplerDescriptorSize = m_device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER);

		// Get a handle to the start of the descriptor heap.
		CD3DX12_CPU_DESCRIPTOR_HANDLE samplerHandle(m_samplerHeap->GetCPUDescriptorHandleForHeapStart());

		// Describe and create the wrapping sampler, which is used for 
		// sampling diffuse/normal maps.
		D3D12_SAMPLER_DESC wrapSamplerDesc = {};
		wrapSamplerDesc.Filter = D3D12_FILTER_MIN_MAG_MIP_LINEAR;
		wrapSamplerDesc.AddressU = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
		wrapSamplerDesc.AddressV = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
		wrapSamplerDesc.AddressW = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
		wrapSamplerDesc.MinLOD = 0;
		wrapSamplerDesc.MaxLOD = D3D12_FLOAT32_MAX;
		wrapSamplerDesc.MipLODBias = 0.0f;
		wrapSamplerDesc.MaxAnisotropy = 1;
		wrapSamplerDesc.ComparisonFunc = D3D12_COMPARISON_FUNC_ALWAYS;
		wrapSamplerDesc.BorderColor[0] = wrapSamplerDesc.BorderColor[1] = wrapSamplerDesc.BorderColor[2] = wrapSamplerDesc.BorderColor[3] = 0;
		m_device->CreateSampler(&wrapSamplerDesc, samplerHandle);

		// Move the handle to the next slot in the descriptor heap.
		samplerHandle.Offset(samplerDescriptorSize);

		// Describe and create the point clamping sampler, which is 
		// used for the shadow map.
		D3D12_SAMPLER_DESC clampSamplerDesc = {};
		clampSamplerDesc.Filter = D3D12_FILTER_MIN_MAG_MIP_POINT;
		clampSamplerDesc.AddressU = D3D12_TEXTURE_ADDRESS_MODE_CLAMP;
		clampSamplerDesc.AddressV = D3D12_TEXTURE_ADDRESS_MODE_CLAMP;
		clampSamplerDesc.AddressW = D3D12_TEXTURE_ADDRESS_MODE_CLAMP;
		clampSamplerDesc.MipLODBias = 0.0f;
		clampSamplerDesc.MaxAnisotropy = 1;
		clampSamplerDesc.ComparisonFunc = D3D12_COMPARISON_FUNC_ALWAYS;
		clampSamplerDesc.BorderColor[0] = clampSamplerDesc.BorderColor[1] = clampSamplerDesc.BorderColor[2] = clampSamplerDesc.BorderColor[3] = 0;
		clampSamplerDesc.MinLOD = 0;
		clampSamplerDesc.MaxLOD = D3D12_FLOAT32_MAX;
		m_device->CreateSampler(&clampSamplerDesc, samplerHandle);
	}

	// Create lights.
	for (int i = 0; i < NumLights; i++)
	{
		// Set up each of the light positions and directions (they all start 
		// in the same place).
		m_lights[i].position = { 0.0f, 15.0f, -30.0f, 1.0f };
		m_lights[i].direction = { 0.0, 0.0f, 1.0f, 0.0f };
		m_lights[i].falloff = { 800.0f, 1.0f, 0.0f, 1.0f };
		m_lights[i].color = { 0.7f, 0.7f, 0.7f, 1.0f };

		XMVECTOR eye = XMLoadFloat4(&m_lights[i].position);
		XMVECTOR at = XMVectorAdd(eye, XMLoadFloat4(&m_lights[i].direction));
		XMVECTOR up = { 0, 1, 0 };

		m_lightCameras[i].Set(eye, at, up);
	}

	// Close the command list and use it to execute the initial GPU setup.
	ThrowIfFailed(commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create frame resources.
	for (int i = 0; i < FrameCount; i++)
	{
		m_frameResources[i] = new FrameResource(m_device.Get(), m_pipelineState.Get(), m_pipelineStateShadowMap.Get(), m_dsvHeap.Get(), m_cbvSrvHeap.Get(), &m_viewport, i);
		m_frameResources[i]->WriteConstantBuffers(&m_viewport, &m_camera, m_lightCameras, m_lights);
	}
	m_currentFrameResourceIndex = 0;
	m_pCurrentFrameResource = m_frameResources[m_currentFrameResourceIndex];

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(m_fenceValue, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		m_fenceValue++;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.

		// Signal and increment the fence value.
		const UINT64 fenceToWaitFor = m_fenceValue;
		ThrowIfFailed(m_commandQueue->Signal(m_fence.Get(), fenceToWaitFor));
		m_fenceValue++;

		// Wait until the fence is completed.
		ThrowIfFailed(m_fence->SetEventOnCompletion(fenceToWaitFor, m_fenceEvent));
		WaitForSingleObject(m_fenceEvent, INFINITE);
	}
}
コード例 #4
0
// Load the sample assets.
void D3D12HeterogeneousMultiadapter::LoadAssets()
{
	// Create the root signatures.
	{
		CD3DX12_ROOT_PARAMETER rootParameters[2];
		rootParameters[0].InitAsConstantBufferView(0, 0, D3D12_SHADER_VISIBILITY_VERTEX);
		rootParameters[1].InitAsConstantBufferView(1, 0, D3D12_SHADER_VISIBILITY_PIXEL);

		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_devices[Primary]->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));

		CD3DX12_DESCRIPTOR_RANGE ranges[1];
		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);

		CD3DX12_ROOT_PARAMETER blurRootParameters[3];
		blurRootParameters[0].InitAsConstantBufferView(0, 0, D3D12_SHADER_VISIBILITY_PIXEL);
		blurRootParameters[1].InitAsDescriptorTable(_countof(ranges), ranges, D3D12_SHADER_VISIBILITY_PIXEL);
		blurRootParameters[2].InitAsConstantBufferView(1, 0, D3D12_SHADER_VISIBILITY_PIXEL);

		CD3DX12_STATIC_SAMPLER_DESC staticPointSampler(0);
		staticPointSampler.Filter = D3D12_FILTER_MIN_MAG_MIP_POINT;
		staticPointSampler.ShaderVisibility = D3D12_SHADER_VISIBILITY_PIXEL;

		CD3DX12_STATIC_SAMPLER_DESC staticLinearSampler(1);
		staticLinearSampler.Filter = D3D12_FILTER_MIN_MAG_MIP_LINEAR;
		staticLinearSampler.ShaderVisibility = D3D12_SHADER_VISIBILITY_PIXEL;

		D3D12_STATIC_SAMPLER_DESC staticSamplers[] = { staticPointSampler, staticLinearSampler };
		rootSignatureDesc.Init(_countof(blurRootParameters), blurRootParameters, _countof(staticSamplers), staticSamplers, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_devices[Secondary]->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_blurRootSignature)));
	}

	// Create the pipeline states, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;
		ComPtr<ID3DBlob> vertexShaderBlur;
		ComPtr<ID3DBlob> pixelShaderBlurU;
		ComPtr<ID3DBlob> pixelShaderBlurV;
		ComPtr<ID3DBlob> error;

#if defined(_DEBUG)
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VShader", "vs_5_0", compileFlags, 0, &vertexShader, &error));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PShader", "ps_5_0", compileFlags, 0, &pixelShader, &error));

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"blurShaders.hlsl").c_str(), nullptr, nullptr, "VSSimpleBlur", "vs_5_0", compileFlags, 0, &vertexShaderBlur, &error));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"blurShaders.hlsl").c_str(), nullptr, nullptr, "PSSimpleBlurU", "ps_5_0", compileFlags, 0, &pixelShaderBlurU, &error));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"blurShaders.hlsl").c_str(), nullptr, nullptr, "PSSimpleBlurV", "ps_5_0", compileFlags, 0, &pixelShaderBlurV, &error));

		// Define the vertex input layouts.
		const D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
		};

		const D3D12_INPUT_ELEMENT_DESC blurInputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
		};

		// Describe and create the graphics pipeline state objects (PSOs).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get());
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get());
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState = CD3DX12_DEPTH_STENCIL_DESC(D3D12_DEFAULT);
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
		psoDesc.SampleDesc.Count = 1;
		ThrowIfFailed(m_devices[Primary]->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));

		psoDesc.InputLayout = { blurInputElementDescs, _countof(blurInputElementDescs) };
		psoDesc.pRootSignature = m_blurRootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShaderBlur.Get());
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShaderBlurU.Get());
		psoDesc.DepthStencilState.DepthEnable = false;
		psoDesc.DSVFormat = DXGI_FORMAT_UNKNOWN;
		ThrowIfFailed(m_devices[Secondary]->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_blurPipelineStates[0])));

		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShaderBlurV.Get());
		ThrowIfFailed(m_devices[Secondary]->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_blurPipelineStates[1])));
	}

	// Create the command lists.
	ThrowIfFailed(m_devices[Primary]->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_directCommandAllocators[Primary][m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_directCommandLists[Primary])));
	ThrowIfFailed(m_devices[Primary]->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_COPY, m_copyCommandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_copyCommandList)));
	ThrowIfFailed(m_copyCommandList->Close());

	ThrowIfFailed(m_devices[Secondary]->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_directCommandAllocators[Secondary][m_frameIndex].Get(), m_blurPipelineStates[0].Get(), IID_PPV_ARGS(&m_directCommandLists[Secondary])));

	// Note: ComPtr's are CPU objects but these resources need to stay in scope until
	// the command list that references them has finished executing on the GPU.
	// We will flush the GPU at the end of this method to ensure the resources are not
	// prematurely destroyed.
	ComPtr<ID3D12Resource> vertexBufferUpload;
	ComPtr<ID3D12Resource> fullscreenQuadVertexBufferUpload;

	// Create the vertex buffer for the primary adapter.
	{
		// Define the geometry for a triangle.
		Vertex triangleVertices[] =
		{
			{ { 0.0f, TriangleHalfWidth, TriangleDepth } },
			{ { TriangleHalfWidth, -TriangleHalfWidth, TriangleDepth } },
			{ { -TriangleHalfWidth, -TriangleHalfWidth, TriangleDepth } }
		};

		const UINT vertexBufferSize = sizeof(triangleVertices);

		ThrowIfFailed(m_devices[Primary]->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		ThrowIfFailed(m_devices[Primary]->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&vertexBufferUpload)));

		// Copy data to the intermediate upload heap and then schedule a copy
		// from the upload heap to the vertex buffer.
		D3D12_SUBRESOURCE_DATA vertexData = {};
		vertexData.pData = reinterpret_cast<UINT8*>(triangleVertices);
		vertexData.RowPitch = vertexBufferSize;
		vertexData.SlicePitch = vertexData.RowPitch;

		UpdateSubresources<1>(m_directCommandLists[Primary].Get(), m_vertexBuffer.Get(), vertexBufferUpload.Get(), 0, 0, 1, &vertexData);
		m_directCommandLists[Primary]->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof(Vertex);
		m_vertexBufferView.SizeInBytes = sizeof(triangleVertices);
	}

	// Create the vertex buffer for the secondary adapter.
	{
		// Define the geometry for a fullscreen triangle.
		VertexPositionUV quadVertices[] =
		{
			{ { -1.0f, -1.0f, 0.0f, 1.0f }, { 0.0f, 0.0f } },	// Bottom left.
			{ { -1.0f, 1.0f, 0.0f, 1.0f }, { 0.0f, 1.0f } },	// Top left.
			{ { 1.0f, -1.0f, 0.0f, 1.0f }, { 1.0f, 0.0f } },	// Bottom right.
			{ { 1.0f, 1.0f, 0.0f, 1.0f }, { 1.0f, 1.0f } },		// Top right.
		};

		const UINT vertexBufferSize = sizeof(quadVertices);

		ThrowIfFailed(m_devices[Secondary]->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_fullscreenQuadVertexBuffer)));

		ThrowIfFailed(m_devices[Secondary]->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&fullscreenQuadVertexBufferUpload)));

		// Copy data to the intermediate upload heap and then schedule a copy
		// from the upload heap to the vertex buffer.
		D3D12_SUBRESOURCE_DATA vertexData = {};
		vertexData.pData = reinterpret_cast<UINT8*>(quadVertices);
		vertexData.RowPitch = vertexBufferSize;
		vertexData.SlicePitch = vertexData.RowPitch;

		UpdateSubresources<1>(m_directCommandLists[Secondary].Get(), m_fullscreenQuadVertexBuffer.Get(), fullscreenQuadVertexBufferUpload.Get(), 0, 0, 1, &vertexData);
		m_directCommandLists[Secondary]->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_fullscreenQuadVertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

		// Initialize the vertex buffer view.
		m_fullscreenQuadVertexBufferView.BufferLocation = m_fullscreenQuadVertexBuffer->GetGPUVirtualAddress();
		m_fullscreenQuadVertexBufferView.StrideInBytes = sizeof(VertexPositionUV);
		m_fullscreenQuadVertexBufferView.SizeInBytes = sizeof(quadVertices);
	}

	// Create the depth stencil view.
	{
		D3D12_DEPTH_STENCIL_VIEW_DESC depthStencilDesc = {};
		depthStencilDesc.Format = DXGI_FORMAT_D32_FLOAT;
		depthStencilDesc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE2D;
		depthStencilDesc.Flags = D3D12_DSV_FLAG_NONE;

		const CD3DX12_CLEAR_VALUE clearValue(DXGI_FORMAT_D32_FLOAT, 1.0f, 0);

		ThrowIfFailed(m_devices[Primary]->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Tex2D(DXGI_FORMAT_D32_FLOAT, m_width, m_height, 1, 0, 1, 0, D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL),
			D3D12_RESOURCE_STATE_DEPTH_WRITE,
			&clearValue,
			IID_PPV_ARGS(&m_depthStencil)
			));

		m_devices[Primary]->CreateDepthStencilView(m_depthStencil.Get(), &depthStencilDesc, m_dsvHeap->GetCPUDescriptorHandleForHeapStart());
	}

	// Create the constant buffers.
	{
		{
			const UINT64 constantBufferSize = sizeof(ConstantBufferData) * MaxTriangleCount * FrameCount;

			ThrowIfFailed(m_devices[Primary]->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
				D3D12_HEAP_FLAG_NONE,
				&CD3DX12_RESOURCE_DESC::Buffer(constantBufferSize),
				D3D12_RESOURCE_STATE_GENERIC_READ,
				nullptr,
				IID_PPV_ARGS(&m_constantBuffer)));

			// Setup constant buffer data.
			for (UINT n = 0; n < MaxTriangleCount; n++)
			{
				m_constantBufferData[n].velocity = XMFLOAT4(GetRandomFloat(0.01f, 0.02f), 0.0f, 0.0f, 0.0f);
				m_constantBufferData[n].offset = XMFLOAT4(GetRandomFloat(-5.0f, -1.5f), GetRandomFloat(-1.0f, 1.0f), GetRandomFloat(0.0f, 2.0f), 0.0f);
				m_constantBufferData[n].color = XMFLOAT4(GetRandomFloat(0.5f, 1.0f), GetRandomFloat(0.5f, 1.0f), GetRandomFloat(0.5f, 1.0f), 1.0f);
				XMStoreFloat4x4(&m_constantBufferData[n].projection, XMMatrixTranspose(XMMatrixPerspectiveFovLH(XM_PIDIV4, m_aspectRatio, 0.01f, 20.0f)));
			}

			// Map the constant buffer. We don't unmap this until the app closes.
			// Keeping things mapped for the lifetime of the resource is okay.
			CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
			ThrowIfFailed(m_constantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pCbvDataBegin)));
			memcpy(m_pCbvDataBegin, &m_constantBufferData[0], constantBufferSize / FrameCount);
		}

		{
			const UINT64 workloadConstantBufferSize = sizeof(WorkloadConstantBufferData) * FrameCount;

			ThrowIfFailed(m_devices[Primary]->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
				D3D12_HEAP_FLAG_NONE,
				&CD3DX12_RESOURCE_DESC::Buffer(workloadConstantBufferSize),
				D3D12_RESOURCE_STATE_GENERIC_READ,
				nullptr,
				IID_PPV_ARGS(&m_workloadConstantBuffer)));

			// Setup constant buffer data.
			m_workloadConstantBufferData.loopCount = m_psLoopCount;

			// Map the constant buffer. We don't unmap this until the app closes.
			// Keeping things mapped for the lifetime of the resource is okay.
			CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
			ThrowIfFailed(m_workloadConstantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pWorkloadCbvDataBegin)));
			memcpy(m_pWorkloadCbvDataBegin, &m_workloadConstantBufferData, workloadConstantBufferSize / FrameCount);
		}

		{
			const UINT64 blurWorkloadConstantBufferSize = sizeof(WorkloadConstantBufferData) * FrameCount;

			ThrowIfFailed(m_devices[Secondary]->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
				D3D12_HEAP_FLAG_NONE,
				&CD3DX12_RESOURCE_DESC::Buffer(blurWorkloadConstantBufferSize),
				D3D12_RESOURCE_STATE_GENERIC_READ,
				nullptr,
				IID_PPV_ARGS(&m_blurWorkloadConstantBuffer)));

			// Setup constant buffer data.
			m_blurWorkloadConstantBufferData.loopCount = m_blurPSLoopCount;

			// Map the constant buffer. We don't unmap this until the app closes.
			// Keeping things mapped for the lifetime of the resource is okay.
			CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
			ThrowIfFailed(m_blurWorkloadConstantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pBlurWorkloadCbvDataBegin)));
			memcpy(m_pBlurWorkloadCbvDataBegin, &m_blurWorkloadConstantBufferData, blurWorkloadConstantBufferSize / FrameCount);
		}

		{
			ThrowIfFailed(m_devices[Secondary]->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
				D3D12_HEAP_FLAG_NONE,
				&CD3DX12_RESOURCE_DESC::Buffer(sizeof(BlurConstantBufferData)),
				D3D12_RESOURCE_STATE_GENERIC_READ,
				nullptr,
				IID_PPV_ARGS(&m_blurConstantBuffer)));

			// Map the constant buffer.
			CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
			ThrowIfFailed(m_blurConstantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pBlurCbvDataBegin)));

			// Setup constant buffer data.
			m_pBlurCbvDataBegin[0].offset = 0.5f;
			m_pBlurCbvDataBegin[0].textureDimensions.x = static_cast<float>(m_width);
			m_pBlurCbvDataBegin[0].textureDimensions.y = static_cast<float>(m_height);

			// Unmap the constant buffer because we don't update this again.
			// If we ever do, it should be buffered by the number of frames like other constant buffers.
			const CD3DX12_RANGE emptyRange(0, 0);
			m_blurConstantBuffer->Unmap(0, &emptyRange);
			m_pBlurCbvDataBegin = nullptr;
		}
	}

	// Close the command lists and execute them to begin the vertex buffer copies into the default heaps.
	for (UINT i = 0; i < GraphicsAdaptersCount; i++)
	{
		ThrowIfFailed(m_directCommandLists[i]->Close());
		ID3D12CommandList* ppCommandLists[] = { m_directCommandLists[i].Get() };
		m_directCommandQueues[i]->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);
	}

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	// We use a cross-adapter fence for handling Signals and Waits between adapters.
	// We use regular fences for things that don't need to be cross adapter because they don't need the additional overhead associated with being cross-adapter.
	{
		// Fence used to control CPU pacing.
		ThrowIfFailed(m_devices[Secondary]->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_frameFence)));

		// Fence used by the primary adapter to signal its copy queue that it has completed rendering.
		// When this is signaled, the primary adapter's copy queue can begin copying to the cross-adapter shared resource.
		ThrowIfFailed(m_devices[Primary]->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_renderFence)));	

		// Cross-adapter shared fence used by both adapters.
		// Used by the primary adapter to signal the secondary adapter that it has completed copying to the cross-adapter shared resource.
		// When this is signaled, the secondary adapter can begin its work.
		ThrowIfFailed(m_devices[Primary]->CreateFence(0, D3D12_FENCE_FLAG_SHARED | D3D12_FENCE_FLAG_SHARED_CROSS_ADAPTER, IID_PPV_ARGS(&m_crossAdapterFences[Primary]))); 

		// For now, require GENERIC_ALL access.
		HANDLE fenceHandle = nullptr;
		ThrowIfFailed(m_devices[Primary]->CreateSharedHandle(
			m_crossAdapterFences[Primary].Get(),
			nullptr,
			GENERIC_ALL,
			nullptr,
			&fenceHandle));

		HRESULT openSharedHandleResult = m_devices[Secondary]->OpenSharedHandle(fenceHandle, IID_PPV_ARGS(&m_crossAdapterFences[Secondary]));

		// We can close the handle after opening the cross-adapter shared fence.
		CloseHandle(fenceHandle);

		ThrowIfFailed(openSharedHandleResult);

		for (UINT i = 0; i < GraphicsAdaptersCount; i++)
		{
			// Create an event handle to use for frame synchronization.
			m_fenceEvents[i] = CreateEventEx(nullptr, FALSE, FALSE, EVENT_ALL_ACCESS);
			if (m_fenceEvents == nullptr)
			{
				ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
			}

			// Wait for the command list to execute; we are reusing the same command 
			// list in our main loop but for now, we just want to wait for setup to 
			// complete before continuing.
			WaitForGpu(static_cast<GraphicsAdapter>(i));
		}
	}
}
コード例 #5
0
// Load the sample assets.
void D3D12DynamicIndexing::LoadAssets()
{
	// Note: ComPtr's are CPU objects but these resources need to stay in scope until
	// the command list that references them has finished executing on the GPU.
	// We will flush the GPU at the end of this method to ensure the resources are not
	// prematurely destroyed.
	ComPtr<ID3D12Resource> vertexBufferUploadHeap;
	ComPtr<ID3D12Resource> indexBufferUploadHeap;
	ComPtr<ID3D12Resource> textureUploadHeap;
	ComPtr<ID3D12Resource> materialsUploadHeap;

	// Create the root signature.
	{
		CD3DX12_DESCRIPTOR_RANGE ranges[3];
		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1 + CityMaterialCount, 0);  // Diffuse texture + array of materials.
		ranges[1].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER, 1, 0);
		ranges[2].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0);

		CD3DX12_ROOT_PARAMETER rootParameters[4];
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_PIXEL);
		rootParameters[1].InitAsDescriptorTable(1, &ranges[1], D3D12_SHADER_VISIBILITY_PIXEL);
		rootParameters[2].InitAsDescriptorTable(1, &ranges[2], D3D12_SHADER_VISIBILITY_VERTEX);
		rootParameters[3].InitAsConstants(1, 0, 0, D3D12_SHADER_VISIBILITY_PIXEL);

		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
		NAME_D3D12_OBJECT(m_rootSignature);
	}

	// Create the pipeline state, which includes loading shaders.
	{
		UINT8* pVertexShaderData;
		UINT8* pPixelShaderData;
		UINT vertexShaderDataLength;
		UINT pixelShaderDataLength;

		ThrowIfFailed(ReadDataFromFile(GetAssetFullPath(L"shader_mesh_simple_vert.cso").c_str(), &pVertexShaderData, &vertexShaderDataLength));
		ThrowIfFailed(ReadDataFromFile(GetAssetFullPath(L"shader_mesh_dynamic_indexing_pixel.cso").c_str(), &pPixelShaderData, &pixelShaderDataLength));

		CD3DX12_RASTERIZER_DESC rasterizerStateDesc(D3D12_DEFAULT);
		rasterizerStateDesc.CullMode = D3D12_CULL_MODE_NONE;

		// Describe and create the graphics pipeline state object (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { SampleAssets::StandardVertexDescription, SampleAssets::StandardVertexDescriptionNumElements };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(pVertexShaderData, vertexShaderDataLength);
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pPixelShaderData, pixelShaderDataLength);
		psoDesc.RasterizerState = rasterizerStateDesc;
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState = CD3DX12_DEPTH_STENCIL_DESC(D3D12_DEFAULT);
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
		NAME_D3D12_OBJECT(m_pipelineState);

		delete pVertexShaderData;
		delete pPixelShaderData;
	}

	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocator.Get(), nullptr, IID_PPV_ARGS(&m_commandList)));
	NAME_D3D12_OBJECT(m_commandList);

	// Create render target views (RTVs).
	CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHandle(m_rtvHeap->GetCPUDescriptorHandleForHeapStart());
	for (UINT i = 0; i < FrameCount; i++)
	{
		ThrowIfFailed(m_swapChain->GetBuffer(i, IID_PPV_ARGS(&m_renderTargets[i])));
		m_device->CreateRenderTargetView(m_renderTargets[i].Get(), nullptr, rtvHandle);
		rtvHandle.Offset(1, m_rtvDescriptorSize);

		NAME_D3D12_OBJECT_INDEXED(m_renderTargets, i);
	}

	// Read in mesh data for vertex/index buffers.
	UINT8* pMeshData;
	UINT meshDataLength;
	ThrowIfFailed(ReadDataFromFile(GetAssetFullPath(SampleAssets::DataFileName).c_str(), &pMeshData, &meshDataLength));

	// Create the vertex buffer.
	{
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::VertexDataSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::VertexDataSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&vertexBufferUploadHeap)));

		NAME_D3D12_OBJECT(m_vertexBuffer);

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the vertex buffer.
		D3D12_SUBRESOURCE_DATA vertexData = {};
		vertexData.pData = pMeshData + SampleAssets::VertexDataOffset;
		vertexData.RowPitch = SampleAssets::VertexDataSize;
		vertexData.SlicePitch = vertexData.RowPitch;

		UpdateSubresources<1>(m_commandList.Get(), m_vertexBuffer.Get(), vertexBufferUploadHeap.Get(), 0, 0, 1, &vertexData);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = SampleAssets::StandardVertexStride;
		m_vertexBufferView.SizeInBytes = SampleAssets::VertexDataSize;
	}

	// Create the index buffer.
	{
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::IndexDataSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_indexBuffer)));

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::IndexDataSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&indexBufferUploadHeap)));

		NAME_D3D12_OBJECT(m_indexBuffer);

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the index buffer.
		D3D12_SUBRESOURCE_DATA indexData = {};
		indexData.pData = pMeshData + SampleAssets::IndexDataOffset;
		indexData.RowPitch = SampleAssets::IndexDataSize;
		indexData.SlicePitch = indexData.RowPitch;

		UpdateSubresources<1>(m_commandList.Get(), m_indexBuffer.Get(), indexBufferUploadHeap.Get(), 0, 0, 1, &indexData);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_indexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_INDEX_BUFFER));

		// Describe the index buffer view.
		m_indexBufferView.BufferLocation = m_indexBuffer->GetGPUVirtualAddress();
		m_indexBufferView.Format = SampleAssets::StandardIndexFormat;
		m_indexBufferView.SizeInBytes = SampleAssets::IndexDataSize;

		m_numIndices = SampleAssets::IndexDataSize / 4;	// R32_UINT (SampleAssets::StandardIndexFormat) = 4 bytes each.
	}

	// Create the textures and sampler.
	{
		// Procedurally generate an array of textures to use as city materials.
		{
			// All of these materials use the same texture desc.
			D3D12_RESOURCE_DESC textureDesc = {};
			textureDesc.MipLevels = 1;
			textureDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
			textureDesc.Width = CityMaterialTextureWidth;
			textureDesc.Height = CityMaterialTextureHeight;
			textureDesc.Flags = D3D12_RESOURCE_FLAG_NONE;
			textureDesc.DepthOrArraySize = 1;
			textureDesc.SampleDesc.Count = 1;
			textureDesc.SampleDesc.Quality = 0;
			textureDesc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D;

			// The textures evenly span the color rainbow so that each city gets
			// a different material.
			float materialGradStep = (1.0f / static_cast<float>(CityMaterialCount));

			// Generate texture data.
			std::vector<std::vector<unsigned char>> cityTextureData;
			cityTextureData.resize(CityMaterialCount);
			for (UINT i = 0; i < CityMaterialCount; ++i)
			{
				ThrowIfFailed(m_device->CreateCommittedResource(
					&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
					D3D12_HEAP_FLAG_NONE,
					&textureDesc,
					D3D12_RESOURCE_STATE_COPY_DEST,
					nullptr,
					IID_PPV_ARGS(&m_cityMaterialTextures[i])));

				NAME_D3D12_OBJECT_INDEXED(m_cityMaterialTextures, i);

				// Fill the texture.
				float t = i * materialGradStep;
				cityTextureData[i].resize(CityMaterialTextureWidth * CityMaterialTextureHeight * CityMaterialTextureChannelCount);
				for (int x = 0; x < CityMaterialTextureWidth; ++x)
				{
					for (int y = 0; y < CityMaterialTextureHeight; ++y)
					{
						// Compute the appropriate index into the buffer based on the x/y coordinates.
						int pixelIndex = (y * CityMaterialTextureChannelCount * CityMaterialTextureWidth) + (x * CityMaterialTextureChannelCount);

						// Determine this row's position along the rainbow gradient.
						float tPrime = t + ((static_cast<float>(y) / static_cast<float>(CityMaterialTextureHeight)) * materialGradStep);

						// Compute the RGB value for this position along the rainbow
						// and pack the pixel value.
						XMVECTOR hsl = XMVectorSet(tPrime, 0.5f, 0.5f, 1.0f);
						XMVECTOR rgb = XMColorHSLToRGB(hsl);
						cityTextureData[i][pixelIndex + 0] = static_cast<unsigned char>((255 * XMVectorGetX(rgb)));
						cityTextureData[i][pixelIndex + 1] = static_cast<unsigned char>((255 * XMVectorGetY(rgb)));
						cityTextureData[i][pixelIndex + 2] = static_cast<unsigned char>((255 * XMVectorGetZ(rgb)));
						cityTextureData[i][pixelIndex + 3] = 255;
					}
				}
			}

			// Upload texture data to the default heap resources.
			{
				const UINT subresourceCount = textureDesc.DepthOrArraySize * textureDesc.MipLevels;
				const UINT64 uploadBufferStep = GetRequiredIntermediateSize(m_cityMaterialTextures[0].Get(), 0, subresourceCount); // All of our textures are the same size in this case.
				const UINT64 uploadBufferSize = uploadBufferStep * CityMaterialCount;
				ThrowIfFailed(m_device->CreateCommittedResource(
					&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
					D3D12_HEAP_FLAG_NONE,
					&CD3DX12_RESOURCE_DESC::Buffer(uploadBufferSize),
					D3D12_RESOURCE_STATE_GENERIC_READ,
					nullptr,
					IID_PPV_ARGS(&materialsUploadHeap)));

				for (int i = 0; i < CityMaterialCount; ++i)
				{
					// Copy data to the intermediate upload heap and then schedule 
					// a copy from the upload heap to the appropriate texture.
					D3D12_SUBRESOURCE_DATA textureData = {};
					textureData.pData = &cityTextureData[i][0];
					textureData.RowPitch = static_cast<LONG_PTR>((CityMaterialTextureChannelCount * textureDesc.Width));
					textureData.SlicePitch = textureData.RowPitch * textureDesc.Height;

					UpdateSubresources(m_commandList.Get(), m_cityMaterialTextures[i].Get(), materialsUploadHeap.Get(), i * uploadBufferStep, 0, subresourceCount, &textureData);
					m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_cityMaterialTextures[i].Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE));
				}
			}
		}

		// Load the occcity diffuse texture with baked-in ambient lighting.
		// This texture will be blended with a texture from the materials
		// array in the pixel shader.
		{
			D3D12_RESOURCE_DESC textureDesc = {};
			textureDesc.MipLevels = SampleAssets::Textures[0].MipLevels;
			textureDesc.Format = SampleAssets::Textures[0].Format;
			textureDesc.Width = SampleAssets::Textures[0].Width;
			textureDesc.Height = SampleAssets::Textures[0].Height;
			textureDesc.Flags = D3D12_RESOURCE_FLAG_NONE;
			textureDesc.DepthOrArraySize = 1;
			textureDesc.SampleDesc.Count = 1;
			textureDesc.SampleDesc.Quality = 0;
			textureDesc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D;

			ThrowIfFailed(m_device->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
				D3D12_HEAP_FLAG_NONE,
				&textureDesc,
				D3D12_RESOURCE_STATE_COPY_DEST,
				nullptr,
				IID_PPV_ARGS(&m_cityDiffuseTexture)));

			const UINT subresourceCount = textureDesc.DepthOrArraySize * textureDesc.MipLevels;
			const UINT64 uploadBufferSize = GetRequiredIntermediateSize(m_cityDiffuseTexture.Get(), 0, subresourceCount);
			ThrowIfFailed(m_device->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
				D3D12_HEAP_FLAG_NONE,
				&CD3DX12_RESOURCE_DESC::Buffer(uploadBufferSize),
				D3D12_RESOURCE_STATE_GENERIC_READ,
				nullptr,
				IID_PPV_ARGS(&textureUploadHeap)));

			NAME_D3D12_OBJECT(m_cityDiffuseTexture);

			// Copy data to the intermediate upload heap and then schedule 
			// a copy from the upload heap to the diffuse texture.
			D3D12_SUBRESOURCE_DATA textureData = {};
			textureData.pData = pMeshData + SampleAssets::Textures[0].Data[0].Offset;
			textureData.RowPitch = SampleAssets::Textures[0].Data[0].Pitch;
			textureData.SlicePitch = SampleAssets::Textures[0].Data[0].Size;

			UpdateSubresources(m_commandList.Get(), m_cityDiffuseTexture.Get(), textureUploadHeap.Get(), 0, 0, subresourceCount, &textureData);
			m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_cityDiffuseTexture.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE));
		}

		// Describe and create a sampler.
		D3D12_SAMPLER_DESC samplerDesc = {};
		samplerDesc.Filter = D3D12_FILTER_MIN_MAG_MIP_LINEAR;
		samplerDesc.AddressU = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
		samplerDesc.AddressV = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
		samplerDesc.AddressW = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
		samplerDesc.MinLOD = 0;
		samplerDesc.MaxLOD = D3D12_FLOAT32_MAX;
		samplerDesc.MipLODBias = 0.0f;
		samplerDesc.MaxAnisotropy = 1;
		samplerDesc.ComparisonFunc = D3D12_COMPARISON_FUNC_ALWAYS;
		m_device->CreateSampler(&samplerDesc, m_samplerHeap->GetCPUDescriptorHandleForHeapStart());

		// Create SRV for the city's diffuse texture.
		CD3DX12_CPU_DESCRIPTOR_HANDLE srvHandle(m_cbvSrvHeap->GetCPUDescriptorHandleForHeapStart(), 0, m_cbvSrvDescriptorSize);
		D3D12_SHADER_RESOURCE_VIEW_DESC diffuseSrvDesc = {};
		diffuseSrvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
		diffuseSrvDesc.Format = SampleAssets::Textures->Format;
		diffuseSrvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
		diffuseSrvDesc.Texture2D.MipLevels = 1;
		m_device->CreateShaderResourceView(m_cityDiffuseTexture.Get(), &diffuseSrvDesc, srvHandle);
		srvHandle.Offset(m_cbvSrvDescriptorSize);

		// Create SRVs for each city material.
		for (int i = 0; i < CityMaterialCount; ++i)
		{
			D3D12_SHADER_RESOURCE_VIEW_DESC materialSrvDesc = {};
			materialSrvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
			materialSrvDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
			materialSrvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
			materialSrvDesc.Texture2D.MipLevels = 1;
			m_device->CreateShaderResourceView(m_cityMaterialTextures[i].Get(), &materialSrvDesc, srvHandle);

			srvHandle.Offset(m_cbvSrvDescriptorSize);
		}
	}

	delete pMeshData;

	// Create the depth stencil view.
	{
		D3D12_DEPTH_STENCIL_VIEW_DESC depthStencilDesc = {};
		depthStencilDesc.Format = DXGI_FORMAT_D32_FLOAT;
		depthStencilDesc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE2D;
		depthStencilDesc.Flags = D3D12_DSV_FLAG_NONE;

		D3D12_CLEAR_VALUE depthOptimizedClearValue = {};
		depthOptimizedClearValue.Format = DXGI_FORMAT_D32_FLOAT;
		depthOptimizedClearValue.DepthStencil.Depth = 1.0f;
		depthOptimizedClearValue.DepthStencil.Stencil = 0;

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Tex2D(DXGI_FORMAT_D32_FLOAT, m_width, m_height, 1, 0, 1, 0, D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL),
			D3D12_RESOURCE_STATE_DEPTH_WRITE,
			&depthOptimizedClearValue,
			IID_PPV_ARGS(&m_depthStencil)
			));

		NAME_D3D12_OBJECT(m_depthStencil);

		m_device->CreateDepthStencilView(m_depthStencil.Get(), &depthStencilDesc, m_dsvHeap->GetCPUDescriptorHandleForHeapStart());
	}

	// Close the command list and execute it to begin the initial GPU setup.
	ThrowIfFailed(m_commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	CreateFrameResources();

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(m_fenceValue, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		m_fenceValue++;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.

		// Signal and increment the fence value.
		const UINT64 fenceToWaitFor = m_fenceValue;
		ThrowIfFailed(m_commandQueue->Signal(m_fence.Get(), fenceToWaitFor));
		m_fenceValue++;

		// Wait until the fence is completed.
		ThrowIfFailed(m_fence->SetEventOnCompletion(fenceToWaitFor, m_fenceEvent));
		WaitForSingleObject(m_fenceEvent, INFINITE);
	}
}
コード例 #6
0
// Load the sample assets.
void D3D12PredicationQueries::LoadAssets()
{
    // Create a root signature consisting of a single CBV parameter.
    {
        D3D12_FEATURE_DATA_ROOT_SIGNATURE featureData = {};

        // This is the highest version the sample supports. If CheckFeatureSupport succeeds, the HighestVersion returned will not be greater than this.
        featureData.HighestVersion = D3D_ROOT_SIGNATURE_VERSION_1_1;

        if (FAILED(m_device->CheckFeatureSupport(D3D12_FEATURE_ROOT_SIGNATURE, &featureData, sizeof(featureData))))
        {
            featureData.HighestVersion = D3D_ROOT_SIGNATURE_VERSION_1_0;
        }

        CD3DX12_DESCRIPTOR_RANGE1 ranges[1];
        CD3DX12_ROOT_PARAMETER1 rootParameters[1];

        ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0, 0, D3D12_DESCRIPTOR_RANGE_FLAG_DATA_STATIC);
        rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_VERTEX);

        // Allow input layout and deny uneccessary access to certain pipeline stages.
        D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
            D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
            D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
            D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
            D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS |
            D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS;

        CD3DX12_VERSIONED_ROOT_SIGNATURE_DESC rootSignatureDesc;
        rootSignatureDesc.Init_1_1(_countof(rootParameters), rootParameters, 0, nullptr, rootSignatureFlags);

        ComPtr<ID3DBlob> signature;
        ComPtr<ID3DBlob> error;
        ThrowIfFailed(D3DX12SerializeVersionedRootSignature(&rootSignatureDesc, featureData.HighestVersion, &signature, &error));
        ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
        NAME_D3D12_OBJECT(m_rootSignature);
    }

    // Create the pipeline state, which includes compiling and loading shaders.
    {
        ComPtr<ID3DBlob> vertexShader;
        ComPtr<ID3DBlob> pixelShader;

#if defined(_DEBUG)
        // Enable better shader debugging with the graphics debugging tools.
        UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
        UINT compileFlags = 0;
#endif

        ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
        ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

        // Define the vertex input layout.
        D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
        {
            { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
            { "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
        };

        // Enable alpha blending so we can visualize the occlusion query results.
        CD3DX12_BLEND_DESC blendDesc(D3D12_DEFAULT);
        blendDesc.RenderTarget[0] =
        {
            TRUE, FALSE,
            D3D12_BLEND_SRC_ALPHA, D3D12_BLEND_INV_SRC_ALPHA, D3D12_BLEND_OP_ADD,
            D3D12_BLEND_ONE, D3D12_BLEND_ZERO, D3D12_BLEND_OP_ADD,
            D3D12_LOGIC_OP_NOOP,
            D3D12_COLOR_WRITE_ENABLE_ALL,
        };

        // Describe and create the graphics pipeline state objects (PSO).
        D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
        psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
        psoDesc.pRootSignature = m_rootSignature.Get();
        psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get());
        psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get());
        psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
        psoDesc.BlendState = blendDesc;
        psoDesc.DepthStencilState = CD3DX12_DEPTH_STENCIL_DESC(D3D12_DEFAULT);
        psoDesc.SampleMask = UINT_MAX;
        psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
        psoDesc.NumRenderTargets = 1;
        psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
        psoDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
        psoDesc.SampleDesc.Count = 1;

        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
        NAME_D3D12_OBJECT(m_pipelineState);

        // Disable color writes and depth writes for the occlusion query's state.
        psoDesc.BlendState.RenderTarget[0].RenderTargetWriteMask = 0;
        psoDesc.DepthStencilState.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ZERO;

        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_queryState)));
        NAME_D3D12_OBJECT(m_queryState);
    }

    // Create the command list.
    ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));
    NAME_D3D12_OBJECT(m_commandList);

    // Note: ComPtr's are CPU objects but this resource needs to stay in scope until
    // the command list that references it has finished executing on the GPU.
    // We will flush the GPU at the end of this method to ensure the resource is not
    // prematurely destroyed.
    ComPtr<ID3D12Resource> vertexBufferUpload;

    // Create the vertex buffer.
    {
        // Create geometry for two quads and a bounding box for the occlusion query.
        // Geometry will be rendered back-to-front to support transparency in the scene.
        Vertex quadVertices[] =
        {
            // Far quad - in practice this would be a complex geometry.
            { { -0.25f, -0.25f * m_aspectRatio, 0.5f }, { 1.0f, 1.0f, 1.0f, 1.0f } },
            { { -0.25f, 0.25f * m_aspectRatio, 0.5f }, { 1.0f, 1.0f, 1.0f, 1.0f } },
            { { 0.25f, -0.25f * m_aspectRatio, 0.5f }, { 1.0f, 1.0f, 1.0f, 1.0f } },
            { { 0.25f, 0.25f * m_aspectRatio, 0.5f }, { 1.0f, 1.0f, 1.0f, 1.0f } },

            // Near quad.
            { { -0.5f, -0.35f * m_aspectRatio, 0.0f }, { 1.0f, 0.0f, 0.0f, 0.65f } },
            { { -0.5f, 0.35f * m_aspectRatio, 0.0f }, { 1.0f, 0.0f, 0.0f, 0.65f } },
            { { 0.5f, -0.35f * m_aspectRatio, 0.0f }, { 1.0f, 1.0f, 0.0f, 0.65f } },
            { { 0.5f, 0.35f * m_aspectRatio, 0.0f }, { 1.0f, 1.0f, 0.0f, 0.65f } },

            // Far quad bounding box used for occlusion query (offset slightly to avoid z-fighting).
            { { -0.25f, -0.25f * m_aspectRatio, 0.4999f }, { 0.0f, 0.0f, 0.0f, 1.0f } },
            { { -0.25f, 0.25f * m_aspectRatio, 0.4999f }, { 0.0f, 0.0f, 0.0f, 1.0f } },
            { { 0.25f, -0.25f * m_aspectRatio, 0.4999f }, { 0.0f, 0.0f, 0.0f, 1.0f } },
            { { 0.25f, 0.25f * m_aspectRatio, 0.4999f }, { 0.0f, 0.0f, 0.0f, 1.0f } },
        };

        const UINT vertexBufferSize = sizeof(quadVertices);

        ThrowIfFailed(m_device->CreateCommittedResource(
            &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
            D3D12_HEAP_FLAG_NONE,
            &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
            D3D12_RESOURCE_STATE_COPY_DEST,
            nullptr,
            IID_PPV_ARGS(&m_vertexBuffer)));

        ThrowIfFailed(m_device->CreateCommittedResource(
            &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
            D3D12_HEAP_FLAG_NONE,
            &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
            D3D12_RESOURCE_STATE_GENERIC_READ,
            nullptr,
            IID_PPV_ARGS(&vertexBufferUpload)));

        NAME_D3D12_OBJECT(m_vertexBuffer);

        // Copy data to the intermediate upload heap and then schedule a copy 
        // from the upload heap to the vertex buffer.
        D3D12_SUBRESOURCE_DATA vertexData = {};
        vertexData.pData = reinterpret_cast<UINT8*>(quadVertices);
        vertexData.RowPitch = vertexBufferSize;
        vertexData.SlicePitch = vertexData.RowPitch;

        UpdateSubresources<1>(m_commandList.Get(), m_vertexBuffer.Get(), vertexBufferUpload.Get(), 0, 0, 1, &vertexData);
        m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

        // Initialize the vertex buffer view.
        m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
        m_vertexBufferView.StrideInBytes = sizeof(Vertex);
        m_vertexBufferView.SizeInBytes = sizeof(quadVertices);
    }

    // Create the constant buffers.
    {
        ThrowIfFailed(m_device->CreateCommittedResource(
            &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
            D3D12_HEAP_FLAG_NONE,
            &CD3DX12_RESOURCE_DESC::Buffer(FrameCount * sizeof(m_constantBufferData)),
            D3D12_RESOURCE_STATE_GENERIC_READ,
            nullptr,
            IID_PPV_ARGS(&m_constantBuffer)));

        NAME_D3D12_OBJECT(m_constantBuffer);

        // Map and initialize the constant buffer. We don't unmap this until the
        // app closes. Keeping things mapped for the lifetime of the resource is okay.
        CD3DX12_RANGE readRange(0, 0);        // We do not intend to read from this resource on the CPU.
        ThrowIfFailed(m_constantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pCbvDataBegin)));
        ZeroMemory(m_pCbvDataBegin, FrameCount * sizeof(m_constantBufferData));

        // Create constant buffer views to access the upload buffer.
        CD3DX12_CPU_DESCRIPTOR_HANDLE cpuHandle(m_cbvHeap->GetCPUDescriptorHandleForHeapStart());
        D3D12_GPU_VIRTUAL_ADDRESS gpuAddress = m_constantBuffer->GetGPUVirtualAddress();

        D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc = {};
        cbvDesc.SizeInBytes = sizeof(SceneConstantBuffer);

        for (UINT n = 0; n < FrameCount; n++)
        {
            cbvDesc.BufferLocation = gpuAddress;

            m_device->CreateConstantBufferView(&cbvDesc, cpuHandle);

            cpuHandle.Offset(m_cbvSrvDescriptorSize);
            gpuAddress += cbvDesc.SizeInBytes;
            cbvDesc.BufferLocation = gpuAddress;

            m_device->CreateConstantBufferView(&cbvDesc, cpuHandle);

            cpuHandle.Offset(m_cbvSrvDescriptorSize);
            gpuAddress += cbvDesc.SizeInBytes;
        }
    }

    // Create the depth stencil view.
    {
        D3D12_DEPTH_STENCIL_VIEW_DESC depthStencilDesc = {};
        depthStencilDesc.Format = DXGI_FORMAT_D32_FLOAT;
        depthStencilDesc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE2D;
        depthStencilDesc.Flags = D3D12_DSV_FLAG_NONE;

        D3D12_CLEAR_VALUE depthOptimizedClearValue = {};
        depthOptimizedClearValue.Format = DXGI_FORMAT_D32_FLOAT;
        depthOptimizedClearValue.DepthStencil.Depth = 1.0f;
        depthOptimizedClearValue.DepthStencil.Stencil = 0;

        ThrowIfFailed(m_device->CreateCommittedResource(
            &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
            D3D12_HEAP_FLAG_NONE,
            &CD3DX12_RESOURCE_DESC::Tex2D(DXGI_FORMAT_D32_FLOAT, m_width, m_height, 1, 0, 1, 0, D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL),
            D3D12_RESOURCE_STATE_DEPTH_WRITE,
            &depthOptimizedClearValue,
            IID_PPV_ARGS(&m_depthStencil)
            ));

        NAME_D3D12_OBJECT(m_depthStencil);

        m_device->CreateDepthStencilView(m_depthStencil.Get(), &depthStencilDesc, m_dsvHeap->GetCPUDescriptorHandleForHeapStart());
    }

    // Create the query result buffer.
    {
        D3D12_RESOURCE_DESC queryResultDesc = CD3DX12_RESOURCE_DESC::Buffer(8);
        ThrowIfFailed(m_device->CreateCommittedResource(
            &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
            D3D12_HEAP_FLAG_NONE,
            &queryResultDesc,
            D3D12_RESOURCE_STATE_PREDICATION,
            nullptr,
            IID_PPV_ARGS(&m_queryResult)
            ));

        NAME_D3D12_OBJECT(m_queryResult);
    }

    // Close the command list and execute it to begin the vertex buffer copy into
    // the default heap.
    ThrowIfFailed(m_commandList->Close());
    ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
    m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

    // Create synchronization objects and wait until assets have been uploaded to the GPU.
    {
        ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
        m_fenceValues[m_frameIndex]++;

        // Create an event handle to use for frame synchronization.
        m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
        if (m_fenceEvent == nullptr)
        {
            ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
        }

        // Wait for the command list to execute; we are reusing the same command 
        // list in our main loop but for now, we just want to wait for setup to 
        // complete before continuing.
        WaitForGpu();
    }
}
コード例 #7
0
// Load the sample assets.
void D3D12Fullscreen::LoadAssets()
{
	// Create a root signature consisting of a descriptor table with a single CBV.
	{
		CD3DX12_DESCRIPTOR_RANGE ranges[1];
		CD3DX12_ROOT_PARAMETER rootParameters[1];

		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0);
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_VERTEX);

		// Allow input layout and deny uneccessary access to certain pipeline stages.
		D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
			D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS;

		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, rootSignatureFlags);
	
		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
		NAME_D3D12_OBJECT(m_rootSignature);
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;
		ComPtr<ID3DBlob> error;

#if defined(_DEBUG)
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, &error));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, &error));

		// Define the vertex input layout.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};

		// Describe and create the graphics pipeline state object (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get());
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get());
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState.DepthEnable = FALSE;
		psoDesc.DepthStencilState.StencilEnable = FALSE;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
		NAME_D3D12_OBJECT(m_pipelineState);
	}

	// Create the command list.
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));
	NAME_D3D12_OBJECT(m_commandList);

	LoadSizeDependentResources();

	// Create/update the vertex buffer.
	{
		// Define the geometry for a thin quad that will animate across the screen.
		const float x = QuadWidth / 2.0f;
		const float y = QuadHeight / 2.0f;
		Vertex quadVertices[] =
		{
			{ { -x, -y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } },
			{ { -x, y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } },
			{ { x, -y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } },
			{ { x, y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } }
		};

		const UINT vertexBufferSize = sizeof(quadVertices);

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_vertexBufferUpload)));

		NAME_D3D12_OBJECT(m_vertexBuffer);

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the vertex buffer.
		UINT8* pVertexDataBegin;
		CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
		ThrowIfFailed(m_vertexBufferUpload->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin)));
		memcpy(pVertexDataBegin, quadVertices, sizeof(quadVertices));
		m_vertexBufferUpload->Unmap(0, nullptr);

		m_commandList->CopyBufferRegion(m_vertexBuffer.Get(), 0, m_vertexBufferUpload.Get(), 0, vertexBufferSize);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

		// Initialize the vertex buffer views.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof(Vertex);
		m_vertexBufferView.SizeInBytes = vertexBufferSize;
	}

	// Create the constant buffer.
	{
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(sizeof(SceneConstantBuffer) * FrameCount),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_constantBuffer)));

		NAME_D3D12_OBJECT(m_constantBuffer);

		// Describe and create constant buffer views.
		D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc = {};
		cbvDesc.BufferLocation = m_constantBuffer->GetGPUVirtualAddress();
		cbvDesc.SizeInBytes = sizeof(SceneConstantBuffer);

		CD3DX12_CPU_DESCRIPTOR_HANDLE cpuHandle(m_cbvHeap->GetCPUDescriptorHandleForHeapStart());

		for (UINT n = 0; n < FrameCount; n++)
		{
			m_device->CreateConstantBufferView(&cbvDesc, cpuHandle);

			cbvDesc.BufferLocation += sizeof(SceneConstantBuffer);
			cpuHandle.Offset(m_cbvDescriptorSize);
		}

		// Initialize and map the constant buffers. We don't unmap this until the
		// app closes. Keeping things mapped for the lifetime of the resource is okay.
		ZeroMemory(&m_constantBufferData, sizeof(m_constantBufferData));

		CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
		ThrowIfFailed(m_constantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pCbvDataBegin)));
		memcpy(m_pCbvDataBegin, &m_constantBufferData, sizeof(m_constantBufferData));
	}

	// Close the command list and execute it to begin the vertex buffer copy into
	// the default heap.
	ThrowIfFailed(m_commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		m_fenceValues[m_frameIndex]++;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.
		WaitForGpu();
	}
}
コード例 #8
0
// Load the sample assets.
void D3D12HelloBundles::LoadAssets()
{
	// Create an empty root signature.
	{
		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(0, nullptr, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;

#if defined(_DEBUG)
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

		// Define the vertex input layout.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};

		// Describe and create the graphics pipeline state object (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get());
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get());
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState.DepthEnable = FALSE;
		psoDesc.DepthStencilState.StencilEnable = FALSE;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.SampleDesc.Count = 1;
		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
	}

	// Create the command list.
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocator.Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));

	// Command lists are created in the recording state, but there is nothing
	// to record yet. The main loop expects it to be closed, so close it now.
	ThrowIfFailed(m_commandList->Close());

	// Create the vertex buffer.
	{
		// Define the geometry for a triangle.
		Vertex triangleVertices[] =
		{
			{ { 0.0f, 0.25f * m_aspectRatio, 0.0f }, { 1.0f, 0.0f, 0.0f, 1.0f } },
			{ { 0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 1.0f, 0.0f, 1.0f } },
			{ { -0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 0.0f, 1.0f, 1.0f } }
		};

		const UINT vertexBufferSize = sizeof(triangleVertices);

		// Note: using upload heaps to transfer static data like vert buffers is not 
		// recommended. Every time the GPU needs it, the upload heap will be marshalled 
		// over. Please read up on Default Heap usage. An upload heap is used here for 
		// code simplicity and because there are very few verts to actually transfer.
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		// Copy the triangle data to the vertex buffer.
		UINT8* pVertexDataBegin;
		CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
		ThrowIfFailed(m_vertexBuffer->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin)));
		memcpy(pVertexDataBegin, triangleVertices, sizeof(triangleVertices));
		m_vertexBuffer->Unmap(0, nullptr);

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof(Vertex);
		m_vertexBufferView.SizeInBytes = vertexBufferSize;
	}

	// Create and record the bundle.
	{
		ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_BUNDLE, m_bundleAllocator.Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_bundle)));
		m_bundle->SetGraphicsRootSignature(m_rootSignature.Get());
		m_bundle->IASetPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
		m_bundle->IASetVertexBuffers(0, 1, &m_vertexBufferView);
		m_bundle->DrawInstanced(3, 1, 0, 0);
		ThrowIfFailed(m_bundle->Close());
	}

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		m_fenceValue = 1;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.
		WaitForPreviousFrame();
	}
}
コード例 #9
0
// Load the sample assets.
void D3D1211on12::LoadAssets()
{
	// Create an empty root signature.
	{
		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(0, nullptr, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_d3d12Device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
		NAME_D3D12_OBJECT(m_rootSignature);
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;

#if defined(_DEBUG)
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

		// Define the vertex input layout.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};

		// Describe and create the graphics pipeline state object (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get());
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get());
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState.DepthEnable = FALSE;
		psoDesc.DepthStencilState.StencilEnable = FALSE;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_d3d12Device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
		NAME_D3D12_OBJECT(m_pipelineState);
	}

	ThrowIfFailed(m_d3d12Device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));
	NAME_D3D12_OBJECT(m_commandList);

	// Create D2D/DWrite objects for rendering text.
	{
		ThrowIfFailed(m_d2dDeviceContext->CreateSolidColorBrush(D2D1::ColorF(D2D1::ColorF::Black), &m_textBrush));
		ThrowIfFailed(m_dWriteFactory->CreateTextFormat(
			L"Verdana",
			NULL,
			DWRITE_FONT_WEIGHT_NORMAL,
			DWRITE_FONT_STYLE_NORMAL,
			DWRITE_FONT_STRETCH_NORMAL,
			50,
			L"en-us",
			&m_textFormat
			));
		ThrowIfFailed(m_textFormat->SetTextAlignment(DWRITE_TEXT_ALIGNMENT_CENTER));
		ThrowIfFailed(m_textFormat->SetParagraphAlignment(DWRITE_PARAGRAPH_ALIGNMENT_CENTER));
	}

	// Note: ComPtr's are CPU objects but this resource needs to stay in scope until
	// the command list that references it has finished executing on the GPU.
	// We will flush the GPU at the end of this method to ensure the resource is not
	// prematurely destroyed.
	ComPtr<ID3D12Resource> vertexBufferUpload;

	// Create the vertex buffer.
	{
		// Define the geometry for a triangle.
		Vertex triangleVertices[] =
		{
			{ { 0.0f, 0.25f * m_aspectRatio, 0.0f }, { 1.0f, 0.0f, 0.0f, 1.0f } },
			{ { 0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 1.0f, 0.0f, 1.0f } },
			{ { -0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 0.0f, 1.0f, 1.0f } }
		};

		const UINT vertexBufferSize = sizeof(triangleVertices);

		ThrowIfFailed(m_d3d12Device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		ThrowIfFailed(m_d3d12Device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&vertexBufferUpload)));

		NAME_D3D12_OBJECT(m_vertexBuffer);

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the vertex buffer.
		D3D12_SUBRESOURCE_DATA vertexData = {};
		vertexData.pData = reinterpret_cast<UINT8*>(triangleVertices);
		vertexData.RowPitch = vertexBufferSize;
		vertexData.SlicePitch = vertexData.RowPitch;

		UpdateSubresources<1>(m_commandList.Get(), m_vertexBuffer.Get(), vertexBufferUpload.Get(), 0, 0, 1, &vertexData);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof(Vertex);
		m_vertexBufferView.SizeInBytes = vertexBufferSize;
	}

	// Close the command list and execute it to begin the vertex buffer copy into
	// the default heap.
	ThrowIfFailed(m_commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_d3d12Device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(m_fence.GetAddressOf())));
		m_fenceValues[m_frameIndex]++;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.
		WaitForGpu();
	}
}
コード例 #10
0
// Load the sample assets.
void D3D12Fullscreen::LoadAssets()
{
	D3D12_FEATURE_DATA_ROOT_SIGNATURE featureData = {};

	// This is the highest version the sample supports. If CheckFeatureSupport succeeds, the HighestVersion returned will not be greater than this.
	featureData.HighestVersion = D3D_ROOT_SIGNATURE_VERSION_1_1;

	if (FAILED(m_device->CheckFeatureSupport(D3D12_FEATURE_ROOT_SIGNATURE, &featureData, sizeof(featureData))))
	{
		featureData.HighestVersion = D3D_ROOT_SIGNATURE_VERSION_1_0;
	}

	// Create a root signature consisting of a descriptor table with a single CBV.
	{
		CD3DX12_DESCRIPTOR_RANGE1 ranges[1];
		CD3DX12_ROOT_PARAMETER1 rootParameters[1];

		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0, 0, D3D12_DESCRIPTOR_RANGE_FLAG_DATA_STATIC);
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_VERTEX);

		// Allow input layout and deny uneccessary access to certain pipeline stages.
		D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
			D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS;

		CD3DX12_VERSIONED_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init_1_1(_countof(rootParameters), rootParameters, 0, nullptr, rootSignatureFlags);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3DX12SerializeVersionedRootSignature(&rootSignatureDesc, featureData.HighestVersion, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_sceneRootSignature)));
		NAME_D3D12_OBJECT(m_sceneRootSignature);
	}

	// Create a root signature consisting of a descriptor table with a SRV and a sampler.
	{
		CD3DX12_DESCRIPTOR_RANGE1 ranges[1];
		CD3DX12_ROOT_PARAMETER1 rootParameters[1];

		// We don't modify the SRV in the post-processing command list after
		// SetGraphicsRootDescriptorTable is executed on the GPU so we can use the default
		// range behavior: D3D12_DESCRIPTOR_RANGE_FLAG_DATA_STATIC_WHILE_SET_AT_EXECUTE
		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_PIXEL);

		// Allow input layout and pixel shader access and deny uneccessary access to certain pipeline stages.
		D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
			D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS;

		// Create a sampler.
		D3D12_STATIC_SAMPLER_DESC sampler = {};
		sampler.Filter = D3D12_FILTER_MIN_MAG_MIP_LINEAR;
		sampler.AddressU = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.AddressV = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.AddressW = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.MipLODBias = 0;
		sampler.MaxAnisotropy = 0;
		sampler.ComparisonFunc = D3D12_COMPARISON_FUNC_NEVER;
		sampler.BorderColor = D3D12_STATIC_BORDER_COLOR_TRANSPARENT_BLACK;
		sampler.MinLOD = 0.0f;
		sampler.MaxLOD = D3D12_FLOAT32_MAX;
		sampler.ShaderRegister = 0;
		sampler.RegisterSpace = 0;
		sampler.ShaderVisibility = D3D12_SHADER_VISIBILITY_PIXEL;

		CD3DX12_VERSIONED_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init_1_1(_countof(rootParameters), rootParameters, 1, &sampler, rootSignatureFlags);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3DX12SerializeVersionedRootSignature(&rootSignatureDesc, featureData.HighestVersion, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_postRootSignature)));
		NAME_D3D12_OBJECT(m_postRootSignature);
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> sceneVertexShader;
		ComPtr<ID3DBlob> scenePixelShader;
		ComPtr<ID3DBlob> postVertexShader;
		ComPtr<ID3DBlob> postPixelShader;
		ComPtr<ID3DBlob> error;

#if defined(_DEBUG)
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"sceneShaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &sceneVertexShader, &error));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"sceneShaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &scenePixelShader, &error));

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"postShaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &postVertexShader, &error));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"postShaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &postPixelShader, &error));

		// Define the vertex input layouts.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};
		D3D12_INPUT_ELEMENT_DESC scaleInputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};

		// Describe and create the graphics pipeline state objects (PSOs).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_sceneRootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(sceneVertexShader.Get());
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(scenePixelShader.Get());
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState.DepthEnable = FALSE;
		psoDesc.DepthStencilState.StencilEnable = FALSE;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_scenePipelineState)));
		NAME_D3D12_OBJECT(m_scenePipelineState);

		psoDesc.InputLayout = { scaleInputElementDescs, _countof(scaleInputElementDescs) };
		psoDesc.pRootSignature = m_postRootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(postVertexShader.Get());
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(postPixelShader.Get());

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_postPipelineState)));
		NAME_D3D12_OBJECT(m_postPipelineState);
	}

	// Single-use command allocator and command list for creating resources.
	ComPtr<ID3D12CommandAllocator> commandAllocator;
	ComPtr<ID3D12GraphicsCommandList> commandList;

	ThrowIfFailed(m_device->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_DIRECT, IID_PPV_ARGS(&commandAllocator)));
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, commandAllocator.Get(), nullptr, IID_PPV_ARGS(&commandList)));

	// Create the command lists.
	{
		ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_sceneCommandAllocators[m_frameIndex].Get(), m_scenePipelineState.Get(), IID_PPV_ARGS(&m_sceneCommandList)));
		NAME_D3D12_OBJECT(m_sceneCommandList);

		ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_postCommandAllocators[m_frameIndex].Get(), m_postPipelineState.Get(), IID_PPV_ARGS(&m_postCommandList)));
		NAME_D3D12_OBJECT(m_postCommandList);

		// Close the command lists.
		ThrowIfFailed(m_sceneCommandList->Close());
		ThrowIfFailed(m_postCommandList->Close());
	}

	LoadSizeDependentResources();
	LoadSceneResolutionDependentResources();

	// Create/update the vertex buffer.
	ComPtr<ID3D12Resource> sceneVertexBufferUpload;
	{
		// Define the geometry for a thin quad that will animate across the screen.
		const float x = QuadWidth / 2.0f;
		const float y = QuadHeight / 2.0f;
		SceneVertex quadVertices[] =
		{
			{ { -x, -y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } },
			{ { -x, y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } },
			{ { x, -y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } },
			{ { x, y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } }
		};

		const UINT vertexBufferSize = sizeof(quadVertices);

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_sceneVertexBuffer)));

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&sceneVertexBufferUpload)));

		NAME_D3D12_OBJECT(m_sceneVertexBuffer);

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the vertex buffer.
		UINT8* pVertexDataBegin;
		CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
		ThrowIfFailed(sceneVertexBufferUpload->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin)));
		memcpy(pVertexDataBegin, quadVertices, sizeof(quadVertices));
		sceneVertexBufferUpload->Unmap(0, nullptr);

		commandList->CopyBufferRegion(m_sceneVertexBuffer.Get(), 0, sceneVertexBufferUpload.Get(), 0, vertexBufferSize);
		commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_sceneVertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

		// Initialize the vertex buffer views.
		m_sceneVertexBufferView.BufferLocation = m_sceneVertexBuffer->GetGPUVirtualAddress();
		m_sceneVertexBufferView.StrideInBytes = sizeof(SceneVertex);
		m_sceneVertexBufferView.SizeInBytes = vertexBufferSize;
	}

	// Create/update the fullscreen quad vertex buffer.
	ComPtr<ID3D12Resource> postVertexBufferUpload;
	{
		// Define the geometry for a fullscreen quad.
		PostVertex quadVertices[] =
		{
			{ { -1.0f, -1.0f, 0.0f, 1.0f }, { 0.0f, 0.0f } },	// Bottom left.
			{ { -1.0f, 1.0f, 0.0f, 1.0f }, { 0.0f, 1.0f } },	// Top left.
			{ { 1.0f, -1.0f, 0.0f, 1.0f }, { 1.0f, 0.0f } },	// Bottom right.
			{ { 1.0f, 1.0f, 0.0f, 1.0f }, { 1.0f, 1.0f } }		// Top right.
		};

		const UINT vertexBufferSize = sizeof(quadVertices);

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_postVertexBuffer)));

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&postVertexBufferUpload)));

		NAME_D3D12_OBJECT(m_postVertexBuffer);

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the vertex buffer.
		UINT8* pVertexDataBegin;
		CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
		ThrowIfFailed(postVertexBufferUpload->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin)));
		memcpy(pVertexDataBegin, quadVertices, sizeof(quadVertices));
		postVertexBufferUpload->Unmap(0, nullptr);

		commandList->CopyBufferRegion(m_postVertexBuffer.Get(), 0, postVertexBufferUpload.Get(), 0, vertexBufferSize);
		commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_postVertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

		// Initialize the vertex buffer views.
		m_postVertexBufferView.BufferLocation = m_postVertexBuffer->GetGPUVirtualAddress();
		m_postVertexBufferView.StrideInBytes = sizeof(PostVertex);
		m_postVertexBufferView.SizeInBytes = vertexBufferSize;
	}

	// Create the constant buffer.
	{
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(sizeof(SceneConstantBuffer) * FrameCount),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_sceneConstantBuffer)));

		NAME_D3D12_OBJECT(m_sceneConstantBuffer);

		// Describe and create constant buffer views.
		D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc = {};
		cbvDesc.BufferLocation = m_sceneConstantBuffer->GetGPUVirtualAddress();
		cbvDesc.SizeInBytes = sizeof(SceneConstantBuffer);

		CD3DX12_CPU_DESCRIPTOR_HANDLE cpuHandle(m_cbvSrvHeap->GetCPUDescriptorHandleForHeapStart(), 1, m_cbvSrvDescriptorSize);

		for (UINT n = 0; n < FrameCount; n++)
		{
			m_device->CreateConstantBufferView(&cbvDesc, cpuHandle);

			cbvDesc.BufferLocation += sizeof(SceneConstantBuffer);
			cpuHandle.Offset(m_cbvSrvDescriptorSize);
		}

		// Map and initialize the constant buffer. We don't unmap this until the
		// app closes. Keeping things mapped for the lifetime of the resource is okay.
		CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
		ThrowIfFailed(m_sceneConstantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pCbvDataBegin)));
		memcpy(m_pCbvDataBegin, &m_sceneConstantBufferData, sizeof(m_sceneConstantBufferData));
	}

	// Close the resource creation command list and execute it to begin the vertex buffer copy into
	// the default heap.
	ThrowIfFailed(commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		m_fenceValues[m_frameIndex]++;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute before continuing.
		WaitForGpu();
	}
}
コード例 #11
0
// Load the sample assets.
void D3D12SmallResources::LoadAssets()
{
	// Create a root signature consisting of a single CBV parameter.
	{
		CD3DX12_DESCRIPTOR_RANGE ranges[1];
		CD3DX12_ROOT_PARAMETER rootParameters[1];

		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_PIXEL);

		// Allow input layout and deny uneccessary access to certain pipeline stages.
		D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
			D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_VERTEX_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS;

		CD3DX12_STATIC_SAMPLER_DESC samplerDesc(0, D3D12_FILTER_MIN_MAG_MIP_LINEAR);

		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 1, &samplerDesc, rootSignatureFlags);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
		NAME_D3D12_OBJECT(m_rootSignature);
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;

#if defined(_DEBUG)
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

		// Define the vertex input layout.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};

		// Describe and create the graphics pipeline state objects (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get());
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get());
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState.DepthEnable = FALSE;
		psoDesc.DepthStencilState.StencilEnable = FALSE;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
		NAME_D3D12_OBJECT(m_pipelineState);
	}

	// Create the command lists.
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));
	NAME_D3D12_OBJECT(m_commandList);

	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_COPY, m_copyCommandAllocator.Get(), nullptr, IID_PPV_ARGS(&m_copyCommandList)));
	ThrowIfFailed(m_copyCommandList->Close());
	NAME_D3D12_OBJECT(m_copyCommandList);

	// Note: ComPtr's are CPU objects but this resource needs to stay in scope until
	// the command list that references it has finished executing on the GPU.
	// We will flush the GPU at the end of this method to ensure the resource is not
	// prematurely destroyed.
	ComPtr<ID3D12Resource> vertexBufferUpload;

	// Create the vertex buffer.
	{
		// Create quads for all of the images that will be generated and drawn to the screen.
		Vertex quadVertices[TextureCount * 4];
		UINT index = 0;
		float offsetX = 0.15f;
		float marginX = offsetX / 10.0f;;
		float startX = (GridWidth / 2.0f) * -(offsetX + marginX) + marginX / 2.0f;
		float offsetY = offsetX * m_aspectRatio;
		float marginY = offsetY / 10.0f;
		float y = (GridHeight / 2.0f) * (offsetY + marginY) - marginY / 2.0f;
		for (UINT row = 0; row < GridHeight; row++)
		{
			float x = startX;
			for (UINT column = 0; column < GridWidth; column++)
			{
				quadVertices[index++] = { { x, y - offsetY, 0.0f }, { 0.0f, 0.0f } };
				quadVertices[index++] = { { x, y, 0.0f }, { 0.0f, 1.0f } };
				quadVertices[index++] = { { x + offsetX, y - offsetY, 0.0f }, { 1.0f, 0.0f } };
				quadVertices[index++] = { { x + offsetX, y, 0.0f }, { 1.0f, 1.0f } };
				x += offsetX + marginX;
			}
			y -= offsetY + marginY;
		}
		const UINT vertexBufferSize = sizeof(quadVertices);

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&vertexBufferUpload)));

		NAME_D3D12_OBJECT(m_vertexBuffer);

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the vertex buffer.
		D3D12_SUBRESOURCE_DATA vertexData = {};
		vertexData.pData = reinterpret_cast<UINT8*>(quadVertices);
		vertexData.RowPitch = vertexBufferSize;
		vertexData.SlicePitch = vertexData.RowPitch;

		UpdateSubresources<1>(m_commandList.Get(), m_vertexBuffer.Get(), vertexBufferUpload.Get(), 0, 0, 1, &vertexData);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof(Vertex);
		m_vertexBufferView.SizeInBytes = sizeof(quadVertices);
	}

	// Close the command list and execute it to begin the vertex buffer copy into
	// the default heap.
	ThrowIfFailed(m_commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		m_fenceValues[m_frameIndex]++;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.
		WaitForGpu();
	}

	CreateTextures();
}
コード例 #12
0
// Load the sample assets.
void D3D12HelloTexture::LoadAssets()
{
	// Create the root signature.
	{
		CD3DX12_DESCRIPTOR_RANGE ranges[1];
		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);

		CD3DX12_ROOT_PARAMETER rootParameters[1];
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_PIXEL);

		D3D12_STATIC_SAMPLER_DESC sampler = {};
		sampler.Filter = D3D12_FILTER_MIN_MAG_MIP_POINT;
		sampler.AddressU = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.AddressV = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.AddressW = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.MipLODBias = 0;
		sampler.MaxAnisotropy = 0;
		sampler.ComparisonFunc = D3D12_COMPARISON_FUNC_NEVER;
		sampler.BorderColor = D3D12_STATIC_BORDER_COLOR_TRANSPARENT_BLACK;
		sampler.MinLOD = 0.0f;
		sampler.MaxLOD = D3D12_FLOAT32_MAX;
		sampler.ShaderRegister = 0;
		sampler.RegisterSpace = 0;
		sampler.ShaderVisibility = D3D12_SHADER_VISIBILITY_PIXEL;

		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 1, &sampler, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;

#if defined(_DEBUG)
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

		// Define the vertex input layout.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};

		// Describe and create the graphics pipeline state object (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get());
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get());
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState.DepthEnable = FALSE;
		psoDesc.DepthStencilState.StencilEnable = FALSE;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.SampleDesc.Count = 1;
		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
	}

	// Create the command list.
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocator.Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));

	// Create the vertex buffer.
	{
		// Define the geometry for a triangle.
		Vertex triangleVertices[] =
		{
			{ { 0.0f, 0.25f * m_aspectRatio, 0.0f }, { 0.5f, 0.0f } },
			{ { 0.25f, -0.25f * m_aspectRatio, 0.0f }, { 1.0f, 1.0f } },
			{ { -0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 1.0f } }
		};

		const UINT vertexBufferSize = sizeof(triangleVertices);

		// Note: using upload heaps to transfer static data like vert buffers is not 
		// recommended. Every time the GPU needs it, the upload heap will be marshalled 
		// over. Please read up on Default Heap usage. An upload heap is used here for 
		// code simplicity and because there are very few verts to actually transfer.
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		// Copy the triangle data to the vertex buffer.
		UINT8* pVertexDataBegin;
		CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
		ThrowIfFailed(m_vertexBuffer->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin)));
		memcpy(pVertexDataBegin, triangleVertices, sizeof(triangleVertices));
		m_vertexBuffer->Unmap(0, nullptr);

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof(Vertex);
		m_vertexBufferView.SizeInBytes = vertexBufferSize;
	}

	// Note: ComPtr's are CPU objects but this resource needs to stay in scope until
	// the command list that references it has finished executing on the GPU.
	// We will flush the GPU at the end of this method to ensure the resource is not
	// prematurely destroyed.
	ComPtr<ID3D12Resource> textureUploadHeap;

	// Create the texture.
	{
		// Describe and create a Texture2D.
		D3D12_RESOURCE_DESC textureDesc = {};
		textureDesc.MipLevels = 1;
		textureDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
		textureDesc.Width = TextureWidth;
		textureDesc.Height = TextureHeight;
		textureDesc.Flags = D3D12_RESOURCE_FLAG_NONE;
		textureDesc.DepthOrArraySize = 1;
		textureDesc.SampleDesc.Count = 1;
		textureDesc.SampleDesc.Quality = 0;
		textureDesc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D;

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&textureDesc,
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_texture)));

		const UINT64 uploadBufferSize = GetRequiredIntermediateSize(m_texture.Get(), 0, 1);

		// Create the GPU upload buffer.
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(uploadBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&textureUploadHeap)));

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the Texture2D.
		std::vector<UINT8> texture = GenerateTextureData();

		D3D12_SUBRESOURCE_DATA textureData = {};
		textureData.pData = &texture[0];
		textureData.RowPitch = TextureWidth * TexturePixelSize;
		textureData.SlicePitch = textureData.RowPitch * TextureHeight;

		UpdateSubresources(m_commandList.Get(), m_texture.Get(), textureUploadHeap.Get(), 0, 0, 1, &textureData);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_texture.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE));

		// Describe and create a SRV for the texture.
		D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
		srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
		srvDesc.Format = textureDesc.Format;
		srvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
		srvDesc.Texture2D.MipLevels = 1;
		m_device->CreateShaderResourceView(m_texture.Get(), &srvDesc, m_srvHeap->GetCPUDescriptorHandleForHeapStart());
	}
	
	// Close the command list and execute it to begin the initial GPU setup.
	ThrowIfFailed(m_commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		m_fenceValue = 1;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.
		WaitForPreviousFrame();
	}
}
コード例 #13
0
// Load the sample assets.
void D3D12Bundles::LoadAssets()
{
	// Note: ComPtr's are CPU objects but these resources need to stay in scope until
	// the command list that references them has finished executing on the GPU.
	// We will flush the GPU at the end of this method to ensure the resources are not
	// prematurely destroyed.
	ComPtr<ID3D12Resource> vertexBufferUploadHeap;
	ComPtr<ID3D12Resource> indexBufferUploadHeap;
	ComPtr<ID3D12Resource> textureUploadHeap;

	// Create the root signature.
	{
		D3D12_FEATURE_DATA_ROOT_SIGNATURE featureData = {};

		// This is the highest version the sample supports. If CheckFeatureSupport succeeds, the HighestVersion returned will not be greater than this.
		featureData.HighestVersion = D3D_ROOT_SIGNATURE_VERSION_1_1;

		if (FAILED(m_device->CheckFeatureSupport(D3D12_FEATURE_ROOT_SIGNATURE, &featureData, sizeof(featureData))))
		{
			featureData.HighestVersion = D3D_ROOT_SIGNATURE_VERSION_1_0;
		}

		CD3DX12_DESCRIPTOR_RANGE1 ranges[3];
		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0, 0, D3D12_DESCRIPTOR_RANGE_FLAG_DATA_STATIC);
		ranges[1].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER, 1, 0);
		ranges[2].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0, 0, D3D12_DESCRIPTOR_RANGE_FLAG_DATA_STATIC);

		CD3DX12_ROOT_PARAMETER1 rootParameters[3];
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_PIXEL);
		rootParameters[1].InitAsDescriptorTable(1, &ranges[1], D3D12_SHADER_VISIBILITY_PIXEL);
		rootParameters[2].InitAsDescriptorTable(1, &ranges[2], D3D12_SHADER_VISIBILITY_ALL);

		CD3DX12_VERSIONED_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init_1_1(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3DX12SerializeVersionedRootSignature(&rootSignatureDesc, featureData.HighestVersion, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
		NAME_D3D12_OBJECT(m_rootSignature);
	}

	// Create the pipeline state, which includes loading shaders.
	{
		UINT8* pVertexShaderData;
		UINT8* pPixelShaderData1;
		UINT8* pPixelShaderData2;
		UINT vertexShaderDataLength;
		UINT pixelShaderDataLength1;
		UINT pixelShaderDataLength2;

		// Load pre-compiled shaders.
		ThrowIfFailed(ReadDataFromFile(GetAssetFullPath(L"shader_mesh_simple_vert.cso").c_str(), &pVertexShaderData, &vertexShaderDataLength));
		ThrowIfFailed(ReadDataFromFile(GetAssetFullPath(L"shader_mesh_simple_pixel.cso").c_str(), &pPixelShaderData1, &pixelShaderDataLength1));
		ThrowIfFailed(ReadDataFromFile(GetAssetFullPath(L"shader_mesh_alt_pixel.cso").c_str(), &pPixelShaderData2, &pixelShaderDataLength2));

		CD3DX12_RASTERIZER_DESC rasterizerStateDesc(D3D12_DEFAULT);
		rasterizerStateDesc.CullMode = D3D12_CULL_MODE_NONE;

		// Describe and create the graphics pipeline state objects (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { SampleAssets::StandardVertexDescription, SampleAssets::StandardVertexDescriptionNumElements };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(pVertexShaderData, vertexShaderDataLength);
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pPixelShaderData1, pixelShaderDataLength1);
		psoDesc.RasterizerState = rasterizerStateDesc;
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState = CD3DX12_DEPTH_STENCIL_DESC(D3D12_DEFAULT);
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState1)));
		NAME_D3D12_OBJECT(m_pipelineState1);

		// Modify the description to use an alternate pixel shader and create
		// a second PSO.
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pPixelShaderData2, pixelShaderDataLength2);

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState2)));
		NAME_D3D12_OBJECT(m_pipelineState2);

		delete pVertexShaderData;
		delete pPixelShaderData1;
		delete pPixelShaderData2;
	}

	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocator.Get(), nullptr, IID_PPV_ARGS(&m_commandList)));
	NAME_D3D12_OBJECT(m_commandList);

	// Create render target views (RTVs).
	CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHandle(m_rtvHeap->GetCPUDescriptorHandleForHeapStart());
	for (UINT i = 0; i < FrameCount; i++)
	{
		ThrowIfFailed(m_swapChain->GetBuffer(i, IID_PPV_ARGS(&m_renderTargets[i])));
		m_device->CreateRenderTargetView(m_renderTargets[i].Get(), nullptr, rtvHandle);
		rtvHandle.Offset(1, m_rtvDescriptorSize);

		NAME_D3D12_OBJECT_INDEXED(m_renderTargets, i);
	}

	// Read in mesh data for vertex/index buffers.
	UINT8* pMeshData;
	UINT meshDataLength;
	ThrowIfFailed(ReadDataFromFile(GetAssetFullPath(SampleAssets::DataFileName).c_str(), &pMeshData, &meshDataLength));

	// Create the vertex buffer.
	{
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::VertexDataSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::VertexDataSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&vertexBufferUploadHeap)));

		NAME_D3D12_OBJECT(m_vertexBuffer);

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the vertex buffer.
		D3D12_SUBRESOURCE_DATA vertexData = {};
		vertexData.pData = pMeshData + SampleAssets::VertexDataOffset;
		vertexData.RowPitch = SampleAssets::VertexDataSize;
		vertexData.SlicePitch = vertexData.RowPitch;

		UpdateSubresources<1>(m_commandList.Get(), m_vertexBuffer.Get(), vertexBufferUploadHeap.Get(), 0, 0, 1, &vertexData);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = SampleAssets::StandardVertexStride;
		m_vertexBufferView.SizeInBytes = SampleAssets::VertexDataSize;
	}

	// Create the index buffer.
	{
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::IndexDataSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_indexBuffer)));

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::IndexDataSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&indexBufferUploadHeap)));

		NAME_D3D12_OBJECT(m_indexBuffer);

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the index buffer.
		D3D12_SUBRESOURCE_DATA indexData = {};
		indexData.pData = pMeshData + SampleAssets::IndexDataOffset;
		indexData.RowPitch = SampleAssets::IndexDataSize;
		indexData.SlicePitch = indexData.RowPitch;

		UpdateSubresources<1>(m_commandList.Get(), m_indexBuffer.Get(), indexBufferUploadHeap.Get(), 0, 0, 1, &indexData);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_indexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_INDEX_BUFFER));

		// Describe the index buffer view.
		m_indexBufferView.BufferLocation = m_indexBuffer->GetGPUVirtualAddress();
		m_indexBufferView.Format = SampleAssets::StandardIndexFormat;
		m_indexBufferView.SizeInBytes = SampleAssets::IndexDataSize;

		m_numIndices = SampleAssets::IndexDataSize / 4;	// R32_UINT (SampleAssets::StandardIndexFormat) = 4 bytes each.
	}

	// Create the texture and sampler.
	{
		// Describe and create a Texture2D.
		D3D12_RESOURCE_DESC textureDesc = {};
		textureDesc.MipLevels = SampleAssets::Textures[0].MipLevels;
		textureDesc.Format = SampleAssets::Textures[0].Format;
		textureDesc.Width = SampleAssets::Textures[0].Width;
		textureDesc.Height = SampleAssets::Textures[0].Height;
		textureDesc.Flags = D3D12_RESOURCE_FLAG_NONE;
		textureDesc.DepthOrArraySize = 1;
		textureDesc.SampleDesc.Count = 1;
		textureDesc.SampleDesc.Quality = 0;
		textureDesc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D;

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&textureDesc,
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_texture)));

		NAME_D3D12_OBJECT(m_texture);

		const UINT subresourceCount = textureDesc.DepthOrArraySize * textureDesc.MipLevels;
		const UINT64 uploadBufferSize = GetRequiredIntermediateSize(m_texture.Get(), 0, subresourceCount);

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(uploadBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&textureUploadHeap)));

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the Texture2D.
		D3D12_SUBRESOURCE_DATA textureData = {};
		textureData.pData = pMeshData + SampleAssets::Textures[0].Data[0].Offset;
		textureData.RowPitch = SampleAssets::Textures[0].Data[0].Pitch;
		textureData.SlicePitch = SampleAssets::Textures[0].Data[0].Size;

		UpdateSubresources(m_commandList.Get(), m_texture.Get(), textureUploadHeap.Get(), 0, 0, subresourceCount, &textureData);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_texture.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE));

		// Describe and create a sampler.
		D3D12_SAMPLER_DESC samplerDesc = {};
		samplerDesc.Filter = D3D12_FILTER_MIN_MAG_MIP_LINEAR;
		samplerDesc.AddressU = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
		samplerDesc.AddressV = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
		samplerDesc.AddressW = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
		samplerDesc.MinLOD = 0;
		samplerDesc.MaxLOD = D3D12_FLOAT32_MAX;
		samplerDesc.MipLODBias = 0.0f;
		samplerDesc.MaxAnisotropy = 1;
		samplerDesc.ComparisonFunc = D3D12_COMPARISON_FUNC_ALWAYS;
		m_device->CreateSampler(&samplerDesc, m_samplerHeap->GetCPUDescriptorHandleForHeapStart());

		// Describe and create a SRV for the texture.
		D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
		srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
		srvDesc.Format = SampleAssets::Textures->Format;
		srvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
		srvDesc.Texture2D.MipLevels = 1;
		m_device->CreateShaderResourceView(m_texture.Get(), &srvDesc, m_cbvSrvHeap->GetCPUDescriptorHandleForHeapStart());
	}

	delete pMeshData;

	// Create the depth stencil view.
	{
		D3D12_DEPTH_STENCIL_VIEW_DESC depthStencilDesc = {};
		depthStencilDesc.Format = DXGI_FORMAT_D32_FLOAT;
		depthStencilDesc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE2D;
		depthStencilDesc.Flags = D3D12_DSV_FLAG_NONE;

		D3D12_CLEAR_VALUE depthOptimizedClearValue = {};
		depthOptimizedClearValue.Format = DXGI_FORMAT_D32_FLOAT;
		depthOptimizedClearValue.DepthStencil.Depth = 1.0f;
		depthOptimizedClearValue.DepthStencil.Stencil = 0;

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Tex2D(DXGI_FORMAT_D32_FLOAT, m_width, m_height, 1, 0, 1, 0, D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL),
			D3D12_RESOURCE_STATE_DEPTH_WRITE,
			&depthOptimizedClearValue,
			IID_PPV_ARGS(&m_depthStencil)
			));

		NAME_D3D12_OBJECT(m_depthStencil);

		m_device->CreateDepthStencilView(m_depthStencil.Get(), &depthStencilDesc, m_dsvHeap->GetCPUDescriptorHandleForHeapStart());
	}

	// Close the command list and execute it to begin the initial GPU setup.
	ThrowIfFailed(m_commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(m_fenceValue, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		m_fenceValue++;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.

		// Signal and increment the fence value.
		const UINT64 fenceToWaitFor = m_fenceValue;
		ThrowIfFailed(m_commandQueue->Signal(m_fence.Get(), fenceToWaitFor));
		m_fenceValue++;

		// Wait until the fence is completed.
		ThrowIfFailed(m_fence->SetEventOnCompletion(fenceToWaitFor, m_fenceEvent));
		WaitForSingleObject(m_fenceEvent, INFINITE);
	}

	CreateFrameResources();
}
コード例 #14
0
// Load the sample assets.
void D3D12Fullscreen::LoadAssets()
{
    // Create an empty root signature.
    {
        CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
        rootSignatureDesc.Init(0, nullptr, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

        ComPtr<ID3DBlob> signature;
        ComPtr<ID3DBlob> error;
        ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
        ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
        NAME_D3D12_OBJECT(m_rootSignature);
    }

    // Create the pipeline state, which includes compiling and loading shaders.
    {
        ComPtr<ID3DBlob> vertexShader;
        ComPtr<ID3DBlob> pixelShader;
        ComPtr<ID3DBlob> error;

#if defined(_DEBUG)
        // Enable better shader debugging with the graphics debugging tools.
        UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
        UINT compileFlags = 0;
#endif

        ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, &error));
        ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, &error));

        // Define the vertex input layout.
        D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
        {
            { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
            { "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
        };

        // Describe and create the graphics pipeline state object (PSO).
        D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
        psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
        psoDesc.pRootSignature = m_rootSignature.Get();
        psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get());
        psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get());
        psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
        psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
        psoDesc.DepthStencilState.DepthEnable = FALSE;
        psoDesc.DepthStencilState.StencilEnable = FALSE;
        psoDesc.SampleMask = UINT_MAX;
        psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
        psoDesc.NumRenderTargets = 1;
        psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
        psoDesc.SampleDesc.Count = 1;

        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
        NAME_D3D12_OBJECT(m_pipelineState);
    }

    // Create the command list.
    ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));
    NAME_D3D12_OBJECT(m_commandList);

    LoadSizeDependentResources();

    // Close the command list and execute it to begin the vertex buffer copy into
    // the default heap.
    ThrowIfFailed(m_commandList->Close());
    ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
    m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

    // Create synchronization objects and wait until assets have been uploaded to the GPU.
    {
        ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
        m_fenceValues[m_frameIndex]++;

        // Create an event handle to use for frame synchronization.
        m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
        if (m_fenceEvent == nullptr)
        {
            ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
        }

        // Wait for the command list to execute; we are reusing the same command
        // list in our main loop but for now, we just want to wait for setup to
        // complete before continuing.
        WaitForGpu();
    }
}
コード例 #15
0
// Load the sample assets.
void D3D12ExecuteIndirect::LoadAssets()
{
	// Create the root signatures.
	{
		CD3DX12_ROOT_PARAMETER rootParameters[GraphicsRootParametersCount];
		rootParameters[Cbv].InitAsConstantBufferView(0, 0, D3D12_SHADER_VISIBILITY_VERTEX);

		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
		NAME_D3D12_OBJECT(m_rootSignature);

		// Create compute signature.
		CD3DX12_DESCRIPTOR_RANGE ranges[2];
		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 2, 0);
		ranges[1].Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 0);

		CD3DX12_ROOT_PARAMETER computeRootParameters[ComputeRootParametersCount];
		computeRootParameters[SrvUavTable].InitAsDescriptorTable(2, ranges);
		computeRootParameters[RootConstants].InitAsConstants(4, 0);

		CD3DX12_ROOT_SIGNATURE_DESC computeRootSignatureDesc;
		computeRootSignatureDesc.Init(_countof(computeRootParameters), computeRootParameters);

		ThrowIfFailed(D3D12SerializeRootSignature(&computeRootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_computeRootSignature)));
		NAME_D3D12_OBJECT(m_computeRootSignature);
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;
		ComPtr<ID3DBlob> computeShader;
		ComPtr<ID3DBlob> error;

#if defined(_DEBUG)
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, &error));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, &error));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"compute.hlsl").c_str(), nullptr, nullptr, "CSMain", "cs_5_0", compileFlags, 0, &computeShader, &error));

		// Define the vertex input layout.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
		};

		// Describe and create the graphics pipeline state objects (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get());
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get());
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState = CD3DX12_DEPTH_STENCIL_DESC(D3D12_DEFAULT);
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
		NAME_D3D12_OBJECT(m_pipelineState);

		// Describe and create the compute pipeline state object (PSO).
		D3D12_COMPUTE_PIPELINE_STATE_DESC computePsoDesc = {};
		computePsoDesc.pRootSignature = m_computeRootSignature.Get();
		computePsoDesc.CS = CD3DX12_SHADER_BYTECODE(computeShader.Get());

		ThrowIfFailed(m_device->CreateComputePipelineState(&computePsoDesc, IID_PPV_ARGS(&m_computeState)));
		NAME_D3D12_OBJECT(m_computeState);
	}

	// Create the command list.
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_COMPUTE, m_computeCommandAllocators[m_frameIndex].Get(), m_computeState.Get(), IID_PPV_ARGS(&m_computeCommandList)));
	ThrowIfFailed(m_computeCommandList->Close());

	NAME_D3D12_OBJECT(m_commandList);
	NAME_D3D12_OBJECT(m_computeCommandList);

	// Note: ComPtr's are CPU objects but these resources need to stay in scope until
	// the command list that references them has finished executing on the GPU.
	// We will flush the GPU at the end of this method to ensure the resources are not
	// prematurely destroyed.
	ComPtr<ID3D12Resource> vertexBufferUpload;
	ComPtr<ID3D12Resource> commandBufferUpload;

	// Create the vertex buffer.
	{
		// Define the geometry for a triangle.
		Vertex triangleVertices[] =
		{
			{ { 0.0f, TriangleHalfWidth, TriangleDepth } },
			{ { TriangleHalfWidth, -TriangleHalfWidth, TriangleDepth } },
			{ { -TriangleHalfWidth, -TriangleHalfWidth, TriangleDepth } }
		};

		const UINT vertexBufferSize = sizeof(triangleVertices);

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&vertexBufferUpload)));

		NAME_D3D12_OBJECT(m_vertexBuffer);

		// Copy data to the intermediate upload heap and then schedule a copy
		// from the upload heap to the vertex buffer.
		D3D12_SUBRESOURCE_DATA vertexData = {};
		vertexData.pData = reinterpret_cast<UINT8*>(triangleVertices);
		vertexData.RowPitch = vertexBufferSize;
		vertexData.SlicePitch = vertexData.RowPitch;

		UpdateSubresources<1>(m_commandList.Get(), m_vertexBuffer.Get(), vertexBufferUpload.Get(), 0, 0, 1, &vertexData);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof(Vertex);
		m_vertexBufferView.SizeInBytes = sizeof(triangleVertices);
	}

	// Create the depth stencil view.
	{
		D3D12_DEPTH_STENCIL_VIEW_DESC depthStencilDesc = {};
		depthStencilDesc.Format = DXGI_FORMAT_D32_FLOAT;
		depthStencilDesc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE2D;
		depthStencilDesc.Flags = D3D12_DSV_FLAG_NONE;

		D3D12_CLEAR_VALUE depthOptimizedClearValue = {};
		depthOptimizedClearValue.Format = DXGI_FORMAT_D32_FLOAT;
		depthOptimizedClearValue.DepthStencil.Depth = 1.0f;
		depthOptimizedClearValue.DepthStencil.Stencil = 0;

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Tex2D(DXGI_FORMAT_D32_FLOAT, m_width, m_height, 1, 0, 1, 0, D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL),
			D3D12_RESOURCE_STATE_DEPTH_WRITE,
			&depthOptimizedClearValue,
			IID_PPV_ARGS(&m_depthStencil)
			));

		NAME_D3D12_OBJECT(m_depthStencil);

		m_device->CreateDepthStencilView(m_depthStencil.Get(), &depthStencilDesc, m_dsvHeap->GetCPUDescriptorHandleForHeapStart());
	}

	// Create the constant buffers.
	{
		const UINT constantBufferDataSize = TriangleResourceCount * sizeof(SceneConstantBuffer);

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(constantBufferDataSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_constantBuffer)));

		NAME_D3D12_OBJECT(m_constantBuffer);

		// Initialize the constant buffers for each of the triangles.
		for (UINT n = 0; n < TriangleCount; n++)
		{
			m_constantBufferData[n].velocity = XMFLOAT4(GetRandomFloat(0.01f, 0.02f), 0.0f, 0.0f, 0.0f);
			m_constantBufferData[n].offset = XMFLOAT4(GetRandomFloat(-5.0f, -1.5f), GetRandomFloat(-1.0f, 1.0f), GetRandomFloat(0.0f, 2.0f), 0.0f);
			m_constantBufferData[n].color = XMFLOAT4(GetRandomFloat(0.5f, 1.0f), GetRandomFloat(0.5f, 1.0f), GetRandomFloat(0.5f, 1.0f), 1.0f);
			XMStoreFloat4x4(&m_constantBufferData[n].projection, XMMatrixTranspose(XMMatrixPerspectiveFovLH(XM_PIDIV4, m_aspectRatio, 0.01f, 20.0f)));
		}

		// Map the constant buffers. We don't unmap this until the app closes.
		// Keeping things mapped for the lifetime of the resource is okay.
		CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
		ThrowIfFailed(m_constantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pCbvDataBegin)));
		memcpy(m_pCbvDataBegin, &m_constantBufferData[0], TriangleCount * sizeof(SceneConstantBuffer));

		// Create shader resource views (SRV) of the constant buffers for the
		// compute shader to read from.
		D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
		srvDesc.Format = DXGI_FORMAT_UNKNOWN;
		srvDesc.ViewDimension = D3D12_SRV_DIMENSION_BUFFER;
		srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
		srvDesc.Buffer.NumElements = TriangleCount;
		srvDesc.Buffer.StructureByteStride = sizeof(SceneConstantBuffer);
		srvDesc.Buffer.Flags = D3D12_BUFFER_SRV_FLAG_NONE;

		CD3DX12_CPU_DESCRIPTOR_HANDLE cbvSrvHandle(m_cbvSrvUavHeap->GetCPUDescriptorHandleForHeapStart(), CbvSrvOffset, m_cbvSrvUavDescriptorSize);
		for (UINT frame = 0; frame < FrameCount; frame++)
		{
			srvDesc.Buffer.FirstElement = frame * TriangleCount;
			m_device->CreateShaderResourceView(m_constantBuffer.Get(), &srvDesc, cbvSrvHandle);
			cbvSrvHandle.Offset(CbvSrvUavDescriptorCountPerFrame, m_cbvSrvUavDescriptorSize);
		}
	}

	// Create the command signature used for indirect drawing.
	{
		// Each command consists of a CBV update and a DrawInstanced call.
		D3D12_INDIRECT_ARGUMENT_DESC argumentDescs[2] = {};
		argumentDescs[0].Type = D3D12_INDIRECT_ARGUMENT_TYPE_CONSTANT_BUFFER_VIEW;
		argumentDescs[0].ConstantBufferView.RootParameterIndex = Cbv;
		argumentDescs[1].Type = D3D12_INDIRECT_ARGUMENT_TYPE_DRAW;

		D3D12_COMMAND_SIGNATURE_DESC commandSignatureDesc = {};
		commandSignatureDesc.pArgumentDescs = argumentDescs;
		commandSignatureDesc.NumArgumentDescs = _countof(argumentDescs);
		commandSignatureDesc.ByteStride = sizeof(IndirectCommand);

		ThrowIfFailed(m_device->CreateCommandSignature(&commandSignatureDesc, m_rootSignature.Get(), IID_PPV_ARGS(&m_commandSignature)));
		NAME_D3D12_OBJECT(m_commandSignature);
	}

	// Create the command buffers and UAVs to store the results of the compute work.
	{
		std::vector<IndirectCommand> commands;
		commands.resize(TriangleResourceCount);
		const UINT commandBufferSize = CommandSizePerFrame * FrameCount;

		D3D12_RESOURCE_DESC commandBufferDesc = CD3DX12_RESOURCE_DESC::Buffer(commandBufferSize);
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&commandBufferDesc,
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_commandBuffer)));

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(commandBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&commandBufferUpload)));

		NAME_D3D12_OBJECT(m_commandBuffer);

		D3D12_GPU_VIRTUAL_ADDRESS gpuAddress = m_constantBuffer->GetGPUVirtualAddress();
		UINT commandIndex = 0;

		for (UINT frame = 0; frame < FrameCount; frame++)
		{
			for (UINT n = 0; n < TriangleCount; n++)
			{
				commands[commandIndex].cbv = gpuAddress;
				commands[commandIndex].drawArguments.VertexCountPerInstance = 3;
				commands[commandIndex].drawArguments.InstanceCount = 1;
				commands[commandIndex].drawArguments.StartVertexLocation = 0;
				commands[commandIndex].drawArguments.StartInstanceLocation = 0;

				commandIndex++;
				gpuAddress += sizeof(SceneConstantBuffer);
			}
		}

		// Copy data to the intermediate upload heap and then schedule a copy
		// from the upload heap to the command buffer.
		D3D12_SUBRESOURCE_DATA commandData = {};
		commandData.pData = reinterpret_cast<UINT8*>(&commands[0]);
		commandData.RowPitch = commandBufferSize;
		commandData.SlicePitch = commandData.RowPitch;

		UpdateSubresources<1>(m_commandList.Get(), m_commandBuffer.Get(), commandBufferUpload.Get(), 0, 0, 1, &commandData);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_commandBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_NON_PIXEL_SHADER_RESOURCE));

		// Create SRVs for the command buffers.
		D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
		srvDesc.Format = DXGI_FORMAT_UNKNOWN;
		srvDesc.ViewDimension = D3D12_SRV_DIMENSION_BUFFER;
		srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
		srvDesc.Buffer.NumElements = TriangleCount;
		srvDesc.Buffer.StructureByteStride = sizeof(IndirectCommand);
		srvDesc.Buffer.Flags = D3D12_BUFFER_SRV_FLAG_NONE;

		CD3DX12_CPU_DESCRIPTOR_HANDLE commandsHandle(m_cbvSrvUavHeap->GetCPUDescriptorHandleForHeapStart(), CommandsOffset, m_cbvSrvUavDescriptorSize);
		for (UINT frame = 0; frame < FrameCount; frame++)
		{
			srvDesc.Buffer.FirstElement = frame * TriangleCount;
			m_device->CreateShaderResourceView(m_commandBuffer.Get(), &srvDesc, commandsHandle);
			commandsHandle.Offset(CbvSrvUavDescriptorCountPerFrame, m_cbvSrvUavDescriptorSize);
		}

		// Create the unordered access views (UAVs) that store the results of the compute work.
		CD3DX12_CPU_DESCRIPTOR_HANDLE processedCommandsHandle(m_cbvSrvUavHeap->GetCPUDescriptorHandleForHeapStart(), ProcessedCommandsOffset, m_cbvSrvUavDescriptorSize);
		for (UINT frame = 0; frame < FrameCount; frame++)
		{
			// Allocate a buffer large enough to hold all of the indirect commands
			// for a single frame as well as a UAV counter.
			commandBufferDesc = CD3DX12_RESOURCE_DESC::Buffer(CommandBufferCounterOffset + sizeof(UINT), D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS);
			ThrowIfFailed(m_device->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
				D3D12_HEAP_FLAG_NONE,
				&commandBufferDesc,
				D3D12_RESOURCE_STATE_COPY_DEST,
				nullptr,
				IID_PPV_ARGS(&m_processedCommandBuffers[frame])));

			NAME_D3D12_OBJECT_INDEXED(m_processedCommandBuffers, frame);

			D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {};
			uavDesc.Format = DXGI_FORMAT_UNKNOWN;
			uavDesc.ViewDimension = D3D12_UAV_DIMENSION_BUFFER;
			uavDesc.Buffer.FirstElement = 0;
			uavDesc.Buffer.NumElements = TriangleCount;
			uavDesc.Buffer.StructureByteStride = sizeof(IndirectCommand);
			uavDesc.Buffer.CounterOffsetInBytes = CommandBufferCounterOffset;
			uavDesc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_NONE;

			m_device->CreateUnorderedAccessView(
				m_processedCommandBuffers[frame].Get(),
				m_processedCommandBuffers[frame].Get(),
				&uavDesc,
				processedCommandsHandle);

			processedCommandsHandle.Offset(CbvSrvUavDescriptorCountPerFrame, m_cbvSrvUavDescriptorSize);
		}

		// Allocate a buffer that can be used to reset the UAV counters and initialize
		// it to 0.
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(sizeof(UINT)),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_processedCommandBufferCounterReset)));

		UINT8* pMappedCounterReset = nullptr;
		CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
		ThrowIfFailed(m_processedCommandBufferCounterReset->Map(0, &readRange, reinterpret_cast<void**>(&pMappedCounterReset)));
		ZeroMemory(pMappedCounterReset, sizeof(UINT));
		m_processedCommandBufferCounterReset->Unmap(0, nullptr);
	}

	// Close the command list and execute it to begin the vertex buffer copy into
	// the default heap.
	ThrowIfFailed(m_commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_computeFence)));
		m_fenceValues[m_frameIndex]++;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.
		WaitForGpu();
	}
}
コード例 #16
0
// Load the sample assets.
void D3D12HelloConstBuffers::LoadAssets()
{
	// Create a root signature consisting of a descriptor table with a single CBV.
	{
		D3D12_FEATURE_DATA_ROOT_SIGNATURE featureData = {};

		// This is the highest version the sample supports. If CheckFeatureSupport succeeds, the HighestVersion returned will not be greater than this.
		featureData.HighestVersion = D3D_ROOT_SIGNATURE_VERSION_1_1;

		if (FAILED(m_device->CheckFeatureSupport(D3D12_FEATURE_ROOT_SIGNATURE, &featureData, sizeof(featureData))))
		{
			featureData.HighestVersion = D3D_ROOT_SIGNATURE_VERSION_1_0;
		}

		CD3DX12_DESCRIPTOR_RANGE1 ranges[1];
		CD3DX12_ROOT_PARAMETER1 rootParameters[1];

		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0, 0, D3D12_DESCRIPTOR_RANGE_FLAG_DATA_STATIC);
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_VERTEX);

		// Allow input layout and deny uneccessary access to certain pipeline stages.
		D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
			D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS;

		CD3DX12_VERSIONED_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init_1_1(_countof(rootParameters), rootParameters, 0, nullptr, rootSignatureFlags);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3DX12SerializeVersionedRootSignature(&rootSignatureDesc, featureData.HighestVersion, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;

#if defined(_DEBUG)
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

		// Define the vertex input layout.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};

		// Describe and create the graphics pipeline state object (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get());
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get());
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState.DepthEnable = FALSE;
		psoDesc.DepthStencilState.StencilEnable = FALSE;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
	}

	// Create the command list.
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocator.Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));

	// Command lists are created in the recording state, but there is nothing
	// to record yet. The main loop expects it to be closed, so close it now.
	ThrowIfFailed(m_commandList->Close());

	// Create the vertex buffer.
	{
		// Define the geometry for a triangle.
		Vertex triangleVertices[] =
		{
			{ { 0.0f, 0.25f * m_aspectRatio, 0.0f }, { 1.0f, 0.0f, 0.0f, 1.0f } },
			{ { 0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 1.0f, 0.0f, 1.0f } },
			{ { -0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 0.0f, 1.0f, 1.0f } }
		};

		const UINT vertexBufferSize = sizeof(triangleVertices);

		// Note: using upload heaps to transfer static data like vert buffers is not 
		// recommended. Every time the GPU needs it, the upload heap will be marshalled 
		// over. Please read up on Default Heap usage. An upload heap is used here for 
		// code simplicity and because there are very few verts to actually transfer.
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		// Copy the triangle data to the vertex buffer.
		UINT8* pVertexDataBegin;
		CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
		ThrowIfFailed(m_vertexBuffer->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin)));
		memcpy(pVertexDataBegin, triangleVertices, sizeof(triangleVertices));
		m_vertexBuffer->Unmap(0, nullptr);

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof(Vertex);
		m_vertexBufferView.SizeInBytes = vertexBufferSize;
	}

	// Create the constant buffer.
	{
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(1024 * 64),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_constantBuffer)));

		// Describe and create a constant buffer view.
		D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc = {};
		cbvDesc.BufferLocation = m_constantBuffer->GetGPUVirtualAddress();
		cbvDesc.SizeInBytes = (sizeof(SceneConstantBuffer) + 255) & ~255;	// CB size is required to be 256-byte aligned.
		m_device->CreateConstantBufferView(&cbvDesc, m_cbvHeap->GetCPUDescriptorHandleForHeapStart());

		// Map and initialize the constant buffer. We don't unmap this until the
		// app closes. Keeping things mapped for the lifetime of the resource is okay.
		CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
		ThrowIfFailed(m_constantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pCbvDataBegin)));
		memcpy(m_pCbvDataBegin, &m_constantBufferData, sizeof(m_constantBufferData));
	}

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		m_fenceValue = 1;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.
		WaitForPreviousFrame();
	}
}