static void doTestsOnDefaultValues(PCFGMNODE pRoot) { /* integer */ uint64_t u64; RTTESTI_CHECK_RC(CFGMR3QueryU64(pRoot, "RamSize", &u64), VINF_SUCCESS); size_t cb = 0; RTTESTI_CHECK_RC(CFGMR3QuerySize(pRoot, "RamSize", &cb), VINF_SUCCESS); RTTESTI_CHECK(cb == sizeof(uint64_t)); /* string */ char *pszName = NULL; RTTESTI_CHECK_RC(CFGMR3QueryStringAlloc(pRoot, "Name", &pszName), VINF_SUCCESS); RTTESTI_CHECK_RC(CFGMR3QuerySize(pRoot, "Name", &cb), VINF_SUCCESS); RTTESTI_CHECK(cb == strlen(pszName) + 1); MMR3HeapFree(pszName); }
/** * Initialize the network shaper. * * @returns VBox status code * @param pVM Pointer to the VM. */ int pdmR3NetShaperInit(PVM pVM) { LogFlowFunc((": pVM=%p\n", pVM)); VM_ASSERT_EMT(pVM); PPDMNETSHAPER pNetShaper = NULL; int rc = MMR3HeapAllocZEx(pVM, MM_TAG_PDM_NET_SHAPER, sizeof(PDMNETSHAPER), (void **)&pNetShaper); if (RT_SUCCESS(rc)) { PCFGMNODE pCfgRoot = CFGMR3GetRoot(pVM); PCFGMNODE pCfgNetShaper = CFGMR3GetChild(CFGMR3GetChild(pCfgRoot, "PDM"), "NetworkShaper"); pNetShaper->pVM = pVM; rc = RTCritSectInit(&pNetShaper->cs); if (RT_SUCCESS(rc)) { /* Create all bandwidth groups. */ PCFGMNODE pCfgBwGrp = CFGMR3GetChild(pCfgNetShaper, "BwGroups"); if (pCfgBwGrp) { for (PCFGMNODE pCur = CFGMR3GetFirstChild(pCfgBwGrp); pCur; pCur = CFGMR3GetNextChild(pCur)) { uint64_t cbMax; size_t cbName = CFGMR3GetNameLen(pCur) + 1; char *pszBwGrpId = (char *)RTMemAllocZ(cbName); if (!pszBwGrpId) { rc = VERR_NO_MEMORY; break; } rc = CFGMR3GetName(pCur, pszBwGrpId, cbName); AssertRC(rc); if (RT_SUCCESS(rc)) rc = CFGMR3QueryU64(pCur, "Max", &cbMax); if (RT_SUCCESS(rc)) rc = pdmNsBwGroupCreate(pNetShaper, pszBwGrpId, cbMax); RTMemFree(pszBwGrpId); if (RT_FAILURE(rc)) break; } } if (RT_SUCCESS(rc)) { PUVM pUVM = pVM->pUVM; AssertMsg(!pUVM->pdm.s.pNetShaper, ("Network shaper was already initialized\n")); char szDesc[64]; static unsigned s_iThread; RTStrPrintf(szDesc, sizeof(szDesc), "PDMNsTx-%d", ++s_iThread); rc = PDMR3ThreadCreate(pVM, &pNetShaper->hTxThread, pNetShaper, pdmR3NsTxThread, pdmR3NsTxWakeUp, 0, RTTHREADTYPE_IO, szDesc); if (RT_SUCCESS(rc)) { pUVM->pdm.s.pNetShaper = pNetShaper; return VINF_SUCCESS; } } RTCritSectDelete(&pNetShaper->cs); } MMR3HeapFree(pNetShaper); } LogFlowFunc((": pVM=%p rc=%Rrc\n", pVM, rc)); return rc; }
/** * Initialize the network shaper. * * @returns VBox status code * @param pVM The cross context VM structure. */ int pdmR3NetShaperInit(PVM pVM) { LogFlow(("pdmR3NetShaperInit: pVM=%p\n", pVM)); VM_ASSERT_EMT(pVM); PUVM pUVM = pVM->pUVM; AssertMsgReturn(!pUVM->pdm.s.pNetShaper, ("Network shaper was already initialized\n"), VERR_WRONG_ORDER); PPDMNETSHAPER pShaper; int rc = MMR3HeapAllocZEx(pVM, MM_TAG_PDM_NET_SHAPER, sizeof(PDMNETSHAPER), (void **)&pShaper); if (RT_SUCCESS(rc)) { PCFGMNODE pCfgNetShaper = CFGMR3GetChild(CFGMR3GetChild(CFGMR3GetRoot(pVM), "PDM"), "NetworkShaper"); pShaper->pVM = pVM; rc = RTCritSectInit(&pShaper->Lock); if (RT_SUCCESS(rc)) { /* Create all bandwidth groups. */ PCFGMNODE pCfgBwGrp = CFGMR3GetChild(pCfgNetShaper, "BwGroups"); if (pCfgBwGrp) { for (PCFGMNODE pCur = CFGMR3GetFirstChild(pCfgBwGrp); pCur; pCur = CFGMR3GetNextChild(pCur)) { size_t cbName = CFGMR3GetNameLen(pCur) + 1; char *pszBwGrpId = (char *)RTMemAllocZ(cbName); if (pszBwGrpId) { rc = CFGMR3GetName(pCur, pszBwGrpId, cbName); if (RT_SUCCESS(rc)) { uint64_t cbMax; rc = CFGMR3QueryU64(pCur, "Max", &cbMax); if (RT_SUCCESS(rc)) rc = pdmNsBwGroupCreate(pShaper, pszBwGrpId, cbMax); } RTMemFree(pszBwGrpId); } else rc = VERR_NO_MEMORY; if (RT_FAILURE(rc)) break; } } if (RT_SUCCESS(rc)) { rc = PDMR3ThreadCreate(pVM, &pShaper->pTxThread, pShaper, pdmR3NsTxThread, pdmR3NsTxWakeUp, 0 /*cbStack*/, RTTHREADTYPE_IO, "PDMNsTx"); if (RT_SUCCESS(rc)) { pUVM->pdm.s.pNetShaper = pShaper; return VINF_SUCCESS; } } RTCritSectDelete(&pShaper->Lock); } MMR3HeapFree(pShaper); } LogFlow(("pdmR3NetShaperInit: pVM=%p rc=%Rrc\n", pVM, rc)); return rc; }
/** * Construct the DMI table. * * @returns VBox status code. * @param pDevIns The device instance. * @param pTable Where to create the DMI table. * @param cbMax The maximum size of the DMI table. * @param pUuid Pointer to the UUID to use if the DmiUuid * configuration string isn't present. * @param pCfg The handle to our config node. * @param cCpus Number of VCPUs. * @param pcbDmiTables Size of DMI data in bytes. * @param pcNumDmiTables Number of DMI tables. */ int FwCommonPlantDMITable(PPDMDEVINS pDevIns, uint8_t *pTable, unsigned cbMax, PCRTUUID pUuid, PCFGMNODE pCfg, uint16_t cCpus, uint16_t *pcbDmiTables, uint16_t *pcNumDmiTables) { #define CHECKSIZE(cbWant) \ { \ size_t cbNeed = (size_t)(pszStr + cbWant - (char *)pTable) + 5; /* +1 for strtab terminator +4 for end-of-table entry */ \ if (cbNeed > cbMax) \ { \ if (fHideErrors) \ { \ LogRel(("One of the DMI strings is too long -- using default DMI data!\n")); \ continue; \ } \ return PDMDevHlpVMSetError(pDevIns, VERR_TOO_MUCH_DATA, RT_SRC_POS, \ N_("One of the DMI strings is too long. Check all bios/Dmi* configuration entries. At least %zu bytes are needed but there is no space for more than %d bytes"), cbNeed, cbMax); \ } \ } #define READCFGSTRDEF(variable, name, default_value) \ { \ if (fForceDefault) \ pszTmp = default_value; \ else \ { \ rc = CFGMR3QueryStringDef(pCfg, name, szBuf, sizeof(szBuf), default_value); \ if (RT_FAILURE(rc)) \ { \ if (fHideErrors) \ { \ LogRel(("Configuration error: Querying \"" name "\" as a string failed -- using default DMI data!\n")); \ continue; \ } \ return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, \ N_("Configuration error: Querying \"" name "\" as a string failed")); \ } \ else if (!strcmp(szBuf, "<EMPTY>")) \ pszTmp = ""; \ else \ pszTmp = szBuf; \ } \ if (!pszTmp[0]) \ variable = 0; /* empty string */ \ else \ { \ variable = iStrNr++; \ size_t cStr = strlen(pszTmp) + 1; \ CHECKSIZE(cStr); \ memcpy(pszStr, pszTmp, cStr); \ pszStr += cStr ; \ } \ } #define READCFGSTR(variable, name) \ READCFGSTRDEF(variable, # name, s_szDef ## name) #define READCFGINT(variable, name) \ { \ if (fForceDefault) \ variable = s_iDef ## name; \ else \ { \ rc = CFGMR3QueryS32Def(pCfg, # name, & variable, s_iDef ## name); \ if (RT_FAILURE(rc)) \ { \ if (fHideErrors) \ { \ LogRel(("Configuration error: Querying \"" # name "\" as an int failed -- using default DMI data!\n")); \ continue; \ } \ return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, \ N_("Configuration error: Querying \"" # name "\" as an int failed")); \ } \ } \ } #define START_STRUCT(tbl) \ pszStr = (char *)(tbl + 1); \ iStrNr = 1; #define TERM_STRUCT \ { \ *pszStr++ = '\0'; /* terminate set of text strings */ \ if (iStrNr == 1) \ *pszStr++ = '\0'; /* terminate a structure without strings */ \ } bool fForceDefault = false; #ifdef VBOX_BIOS_DMI_FALLBACK /* * There will be two passes. If an error occurs during the first pass, a * message will be written to the release log and we fall back to default * DMI data and start a second pass. */ bool fHideErrors = true; #else /* * There will be one pass, every error is fatal and will prevent the VM * from starting. */ bool fHideErrors = false; #endif uint8_t fDmiUseHostInfo; int rc = CFGMR3QueryU8Def(pCfg, "DmiUseHostInfo", &fDmiUseHostInfo, 0); if (RT_FAILURE (rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"DmiUseHostInfo\"")); /* Sync up with host default DMI values */ if (fDmiUseHostInfo) fwCommonUseHostDMIStrings(); uint8_t fDmiExposeMemoryTable; rc = CFGMR3QueryU8Def(pCfg, "DmiExposeMemoryTable", &fDmiExposeMemoryTable, 0); if (RT_FAILURE (rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"DmiExposeMemoryTable\"")); uint8_t fDmiExposeProcessorInf; rc = CFGMR3QueryU8Def(pCfg, "DmiExposeProcInf", &fDmiExposeProcessorInf, 0); if (RT_FAILURE (rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"DmiExposeProcInf\"")); for (;; fForceDefault = true, fHideErrors = false) { int iStrNr; char szBuf[256]; char *pszStr = (char *)pTable; char szDmiSystemUuid[64]; char *pszDmiSystemUuid; const char *pszTmp; if (fForceDefault) pszDmiSystemUuid = NULL; else { rc = CFGMR3QueryString(pCfg, "DmiSystemUuid", szDmiSystemUuid, sizeof(szDmiSystemUuid)); if (rc == VERR_CFGM_VALUE_NOT_FOUND) pszDmiSystemUuid = NULL; else if (RT_FAILURE(rc)) { if (fHideErrors) { LogRel(("Configuration error: Querying \"DmiSystemUuid\" as a string failed, using default DMI data\n")); continue; } return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, N_("Configuration error: Querying \"DmiSystemUuid\" as a string failed")); } else pszDmiSystemUuid = szDmiSystemUuid; } /********************************* * DMI BIOS information (Type 0) * *********************************/ PDMIBIOSINF pBIOSInf = (PDMIBIOSINF)pszStr; CHECKSIZE(sizeof(*pBIOSInf)); pszStr = (char *)&pBIOSInf->u8ReleaseMajor; pBIOSInf->header.u8Length = RT_OFFSETOF(DMIBIOSINF, u8ReleaseMajor); /* don't set these fields by default for legacy compatibility */ int iDmiBIOSReleaseMajor, iDmiBIOSReleaseMinor; READCFGINT(iDmiBIOSReleaseMajor, DmiBIOSReleaseMajor); READCFGINT(iDmiBIOSReleaseMinor, DmiBIOSReleaseMinor); if (iDmiBIOSReleaseMajor != 0 || iDmiBIOSReleaseMinor != 0) { pszStr = (char *)&pBIOSInf->u8FirmwareMajor; pBIOSInf->header.u8Length = RT_OFFSETOF(DMIBIOSINF, u8FirmwareMajor); pBIOSInf->u8ReleaseMajor = iDmiBIOSReleaseMajor; pBIOSInf->u8ReleaseMinor = iDmiBIOSReleaseMinor; int iDmiBIOSFirmwareMajor, iDmiBIOSFirmwareMinor; READCFGINT(iDmiBIOSFirmwareMajor, DmiBIOSFirmwareMajor); READCFGINT(iDmiBIOSFirmwareMinor, DmiBIOSFirmwareMinor); if (iDmiBIOSFirmwareMajor != 0 || iDmiBIOSFirmwareMinor != 0) { pszStr = (char *)(pBIOSInf + 1); pBIOSInf->header.u8Length = sizeof(DMIBIOSINF); pBIOSInf->u8FirmwareMajor = iDmiBIOSFirmwareMajor; pBIOSInf->u8FirmwareMinor = iDmiBIOSFirmwareMinor; } } iStrNr = 1; pBIOSInf->header.u8Type = 0; /* BIOS Information */ pBIOSInf->header.u16Handle = 0x0000; READCFGSTR(pBIOSInf->u8Vendor, DmiBIOSVendor); READCFGSTR(pBIOSInf->u8Version, DmiBIOSVersion); pBIOSInf->u16Start = 0xE000; READCFGSTR(pBIOSInf->u8Release, DmiBIOSReleaseDate); pBIOSInf->u8ROMSize = 1; /* 128K */ pBIOSInf->u64Characteristics = RT_BIT(4) /* ISA is supported */ | RT_BIT(7) /* PCI is supported */ | RT_BIT(15) /* Boot from CD is supported */ | RT_BIT(16) /* Selectable Boot is supported */ | RT_BIT(27) /* Int 9h, 8042 Keyboard services supported */ | RT_BIT(30) /* Int 10h, CGA/Mono Video Services supported */ /* any more?? */ ; pBIOSInf->u8CharacteristicsByte1 = RT_BIT(0) /* ACPI is supported */ /* any more?? */ ; pBIOSInf->u8CharacteristicsByte2 = 0 /* any more?? */ ; TERM_STRUCT; /*********************************** * DMI system information (Type 1) * ***********************************/ PDMISYSTEMINF pSystemInf = (PDMISYSTEMINF)pszStr; CHECKSIZE(sizeof(*pSystemInf)); START_STRUCT(pSystemInf); pSystemInf->header.u8Type = 1; /* System Information */ pSystemInf->header.u8Length = sizeof(*pSystemInf); pSystemInf->header.u16Handle = 0x0001; READCFGSTR(pSystemInf->u8Manufacturer, DmiSystemVendor); READCFGSTR(pSystemInf->u8ProductName, DmiSystemProduct); READCFGSTR(pSystemInf->u8Version, DmiSystemVersion); READCFGSTR(pSystemInf->u8SerialNumber, DmiSystemSerial); RTUUID uuid; if (pszDmiSystemUuid) { rc = RTUuidFromStr(&uuid, pszDmiSystemUuid); if (RT_FAILURE(rc)) { if (fHideErrors) { LogRel(("Configuration error: Invalid UUID for DMI tables specified, using default DMI data\n")); continue; } return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, N_("Configuration error: Invalid UUID for DMI tables specified")); } uuid.Gen.u32TimeLow = RT_H2BE_U32(uuid.Gen.u32TimeLow); uuid.Gen.u16TimeMid = RT_H2BE_U16(uuid.Gen.u16TimeMid); uuid.Gen.u16TimeHiAndVersion = RT_H2BE_U16(uuid.Gen.u16TimeHiAndVersion); pUuid = &uuid; } memcpy(pSystemInf->au8Uuid, pUuid, sizeof(RTUUID)); pSystemInf->u8WakeupType = 6; /* Power Switch */ READCFGSTR(pSystemInf->u8SKUNumber, DmiSystemSKU); READCFGSTR(pSystemInf->u8Family, DmiSystemFamily); TERM_STRUCT; /********************************** * DMI board information (Type 2) * **********************************/ PDMIBOARDINF pBoardInf = (PDMIBOARDINF)pszStr; CHECKSIZE(sizeof(*pBoardInf)); START_STRUCT(pBoardInf); int iDmiBoardBoardType; pBoardInf->header.u8Type = 2; /* Board Information */ pBoardInf->header.u8Length = sizeof(*pBoardInf); pBoardInf->header.u16Handle = 0x0008; READCFGSTR(pBoardInf->u8Manufacturer, DmiBoardVendor); READCFGSTR(pBoardInf->u8Product, DmiBoardProduct); READCFGSTR(pBoardInf->u8Version, DmiBoardVersion); READCFGSTR(pBoardInf->u8SerialNumber, DmiBoardSerial); READCFGSTR(pBoardInf->u8AssetTag, DmiBoardAssetTag); pBoardInf->u8FeatureFlags = RT_BIT(0) /* hosting board, e.g. motherboard */ ; READCFGSTR(pBoardInf->u8LocationInChass, DmiBoardLocInChass); pBoardInf->u16ChassisHandle = 0x0003; /* see type 3 */ READCFGINT(iDmiBoardBoardType, DmiBoardBoardType); pBoardInf->u8BoardType = iDmiBoardBoardType; pBoardInf->u8cObjectHandles = 0; TERM_STRUCT; /******************************************** * DMI System Enclosure or Chassis (Type 3) * ********************************************/ PDMICHASSIS pChassis = (PDMICHASSIS)pszStr; CHECKSIZE(sizeof(*pChassis)); pszStr = (char*)&pChassis->u32OEMdefined; iStrNr = 1; #ifdef VBOX_WITH_DMI_CHASSIS pChassis->header.u8Type = 3; /* System Enclosure or Chassis */ #else pChassis->header.u8Type = 0x7e; /* inactive */ #endif pChassis->header.u8Length = RT_OFFSETOF(DMICHASSIS, u32OEMdefined); pChassis->header.u16Handle = 0x0003; READCFGSTR(pChassis->u8Manufacturer, DmiChassisVendor); int iDmiChassisType; READCFGINT(iDmiChassisType, DmiChassisType); pChassis->u8Type = iDmiChassisType; READCFGSTR(pChassis->u8Version, DmiChassisVersion); READCFGSTR(pChassis->u8SerialNumber, DmiChassisSerial); READCFGSTR(pChassis->u8AssetTag, DmiChassisAssetTag); pChassis->u8BootupState = 0x03; /* safe */ pChassis->u8PowerSupplyState = 0x03; /* safe */ pChassis->u8ThermalState = 0x03; /* safe */ pChassis->u8SecurityStatus = 0x03; /* none XXX */ # if 0 /* v2.3+, currently not supported */ pChassis->u32OEMdefined = 0; pChassis->u8Height = 0; /* unspecified */ pChassis->u8NumPowerChords = 0; /* unspecified */ pChassis->u8ContElems = 0; /* no contained elements */ pChassis->u8ContElemRecLen = 0; /* no contained elements */ # endif TERM_STRUCT; /************************************** * DMI Processor Information (Type 4) * **************************************/ /* * This is just a dummy processor. Should we expose the real guest CPU features * here? Accessing this information at this point is difficult. */ char szSocket[32]; PDMIPROCESSORINF pProcessorInf = (PDMIPROCESSORINF)pszStr; CHECKSIZE(sizeof(*pProcessorInf)); START_STRUCT(pProcessorInf); if (fDmiExposeProcessorInf) pProcessorInf->header.u8Type = 4; /* Processor Information */ else pProcessorInf->header.u8Type = 126; /* inactive structure */ pProcessorInf->header.u8Length = sizeof(*pProcessorInf); pProcessorInf->header.u16Handle = 0x0007; RTStrPrintf(szSocket, sizeof(szSocket), "Socket #%u", 0); pProcessorInf->u8SocketDesignation = iStrNr++; { size_t cStr = strlen(szSocket) + 1; CHECKSIZE(cStr); memcpy(pszStr, szSocket, cStr); pszStr += cStr; } pProcessorInf->u8ProcessorType = 0x03; /* Central Processor */ pProcessorInf->u8ProcessorFamily = 0xB1; /* Pentium III with Intel SpeedStep(TM) */ READCFGSTR(pProcessorInf->u8ProcessorManufacturer, DmiProcManufacturer); pProcessorInf->u64ProcessorID = UINT64_C(0x0FEBFBFF00010676); /* Ext Family ID = 0 * Ext Model ID = 2 * Processor Type = 0 * Family ID = 6 * Model = 7 * Stepping = 6 * Features: FPU, VME, DE, PSE, TSC, MSR, PAE, MCE, CX8, * APIC, SEP, MTRR, PGE, MCA, CMOV, PAT, PSE-36, * CFLSH, DS, ACPI, MMX, FXSR, SSE, SSE2, SS */ READCFGSTR(pProcessorInf->u8ProcessorVersion, DmiProcVersion); pProcessorInf->u8Voltage = 0x02; /* 3.3V */ pProcessorInf->u16ExternalClock = 0x00; /* unknown */ pProcessorInf->u16MaxSpeed = 3000; /* 3GHz */ pProcessorInf->u16CurrentSpeed = 3000; /* 3GHz */ pProcessorInf->u8Status = RT_BIT(6) /* CPU socket populated */ | RT_BIT(0) /* CPU enabled */ ; pProcessorInf->u8ProcessorUpgrade = 0x04; /* ZIF Socket */ pProcessorInf->u16L1CacheHandle = 0xFFFF; /* not specified */ pProcessorInf->u16L2CacheHandle = 0xFFFF; /* not specified */ pProcessorInf->u16L3CacheHandle = 0xFFFF; /* not specified */ pProcessorInf->u8SerialNumber = 0; /* not specified */ pProcessorInf->u8AssetTag = 0; /* not specified */ pProcessorInf->u8PartNumber = 0; /* not specified */ pProcessorInf->u8CoreCount = cCpus; /* */ pProcessorInf->u8CoreEnabled = cCpus; pProcessorInf->u8ThreadCount = 1; pProcessorInf->u16ProcessorCharacteristics = RT_BIT(2); /* 64-bit capable */ pProcessorInf->u16ProcessorFamily2 = 0; TERM_STRUCT; /*************************************** * DMI Physical Memory Array (Type 16) * ***************************************/ uint64_t u64RamSize; rc = CFGMR3QueryU64(pCfg, "RamSize", &u64RamSize); if (RT_FAILURE (rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"RamSize\"")); PDMIRAMARRAY pMemArray = (PDMIRAMARRAY)pszStr; CHECKSIZE(sizeof(*pMemArray)); START_STRUCT(pMemArray); if (fDmiExposeMemoryTable) pMemArray->header.u8Type = 16; /* Physical Memory Array */ else pMemArray->header.u8Type = 126; /* inactive structure */ pMemArray->header.u8Length = sizeof(*pMemArray); pMemArray->header.u16Handle = 0x0005; pMemArray->u8Location = 0x03; /* Motherboard */ pMemArray->u8Use = 0x03; /* System memory */ pMemArray->u8MemErrorCorrection = 0x01; /* Other */ pMemArray->u32MaxCapacity = (uint32_t)(u64RamSize / _1K); /* RAM size in K */ pMemArray->u16MemErrorHandle = 0xfffe; /* No error info structure */ pMemArray->u16NumberOfMemDevices = 1; TERM_STRUCT; /*************************************** * DMI Memory Device (Type 17) * ***************************************/ PDMIMEMORYDEV pMemDev = (PDMIMEMORYDEV)pszStr; CHECKSIZE(sizeof(*pMemDev)); START_STRUCT(pMemDev); if (fDmiExposeMemoryTable) pMemDev->header.u8Type = 17; /* Memory Device */ else pMemDev->header.u8Type = 126; /* inactive structure */ pMemDev->header.u8Length = sizeof(*pMemDev); pMemDev->header.u16Handle = 0x0006; pMemDev->u16PhysMemArrayHandle = 0x0005; /* handle of array we belong to */ pMemDev->u16MemErrHandle = 0xfffe; /* system doesn't provide this information */ pMemDev->u16TotalWidth = 0xffff; /* Unknown */ pMemDev->u16DataWidth = 0xffff; /* Unknown */ int16_t u16RamSizeM = (uint16_t)(u64RamSize / _1M); if (u16RamSizeM == 0) u16RamSizeM = 0x400; /* 1G */ pMemDev->u16Size = u16RamSizeM; /* RAM size */ pMemDev->u8FormFactor = 0x09; /* DIMM */ pMemDev->u8DeviceSet = 0x00; /* Not part of a device set */ READCFGSTRDEF(pMemDev->u8DeviceLocator, " ", "DIMM 0"); READCFGSTRDEF(pMemDev->u8BankLocator, " ", "Bank 0"); pMemDev->u8MemoryType = 0x03; /* DRAM */ pMemDev->u16TypeDetail = 0; /* Nothing special */ pMemDev->u16Speed = 1600; /* Unknown, shall be speed in MHz */ READCFGSTR(pMemDev->u8Manufacturer, DmiSystemVendor); READCFGSTRDEF(pMemDev->u8SerialNumber, " ", "00000000"); READCFGSTRDEF(pMemDev->u8AssetTag, " ", "00000000"); READCFGSTRDEF(pMemDev->u8PartNumber, " ", "00000000"); pMemDev->u8Attributes = 0; /* Unknown */ TERM_STRUCT; /***************************** * DMI OEM strings (Type 11) * *****************************/ PDMIOEMSTRINGS pOEMStrings = (PDMIOEMSTRINGS)pszStr; CHECKSIZE(sizeof(*pOEMStrings)); START_STRUCT(pOEMStrings); #ifdef VBOX_WITH_DMI_OEMSTRINGS pOEMStrings->header.u8Type = 0xb; /* OEM Strings */ #else pOEMStrings->header.u8Type = 126; /* inactive structure */ #endif pOEMStrings->header.u8Length = sizeof(*pOEMStrings); pOEMStrings->header.u16Handle = 0x0002; pOEMStrings->u8Count = 2; char szTmp[64]; RTStrPrintf(szTmp, sizeof(szTmp), "vboxVer_%u.%u.%u", RTBldCfgVersionMajor(), RTBldCfgVersionMinor(), RTBldCfgVersionBuild()); READCFGSTRDEF(pOEMStrings->u8VBoxVersion, "DmiOEMVBoxVer", szTmp); RTStrPrintf(szTmp, sizeof(szTmp), "vboxRev_%u", RTBldCfgRevision()); READCFGSTRDEF(pOEMStrings->u8VBoxRevision, "DmiOEMVBoxRev", szTmp); TERM_STRUCT; /************************************* * DMI OEM specific table (Type 128) * ************************************/ PDMIOEMSPECIFIC pOEMSpecific = (PDMIOEMSPECIFIC)pszStr; CHECKSIZE(sizeof(*pOEMSpecific)); START_STRUCT(pOEMSpecific); pOEMSpecific->header.u8Type = 0x80; /* OEM specific */ pOEMSpecific->header.u8Length = sizeof(*pOEMSpecific); pOEMSpecific->header.u16Handle = 0x0008; /* Just next free handle */ pOEMSpecific->u32CpuFreqKHz = RT_H2LE_U32((uint32_t)((uint64_t)TMCpuTicksPerSecond(PDMDevHlpGetVM(pDevIns)) / 1000)); TERM_STRUCT; /* End-of-table marker - includes padding to account for fixed table size. */ PDMIHDR pEndOfTable = (PDMIHDR)pszStr; pszStr = (char *)(pEndOfTable + 1); pEndOfTable->u8Type = 0x7f; pEndOfTable->u8Length = sizeof(*pEndOfTable); pEndOfTable->u16Handle = 0xFEFF; *pcbDmiTables = ((uintptr_t)pszStr - (uintptr_t)pTable) + 2; /* We currently plant 10 DMI tables. Update this if tables number changed. */ *pcNumDmiTables = 10; /* If more fields are added here, fix the size check in READCFGSTR */ /* Success! */ break; } #undef READCFGSTR #undef READCFGINT #undef CHECKSIZE return VINF_SUCCESS; }
int main() { /* * Init runtime. */ RTR3InitExeNoArguments(RTR3INIT_FLAGS_SUPLIB); /* * Create empty VM structure and init SSM. */ PVM pVM; int rc = SUPR3Init(NULL); if (RT_SUCCESS(rc)) rc = SUPR3PageAlloc(RT_ALIGN_Z(sizeof(*pVM), PAGE_SIZE) >> PAGE_SHIFT, (void **)&pVM); if (RT_FAILURE(rc)) { RTPrintf("Fatal error: SUP Failure! rc=%Rrc\n", rc); return 1; } static UVM s_UVM; PUVM pUVM = &s_UVM; pUVM->pVM = pVM; pVM->pUVM = pUVM; rc = STAMR3InitUVM(pUVM); if (RT_FAILURE(rc)) { RTPrintf("FAILURE: STAMR3Init failed. rc=%Rrc\n", rc); return 1; } rc = MMR3InitUVM(pUVM); if (RT_FAILURE(rc)) { RTPrintf("FAILURE: STAMR3Init failed. rc=%Rrc\n", rc); return 1; } rc = CFGMR3Init(pVM, NULL, NULL); if (RT_FAILURE(rc)) { RTPrintf("FAILURE: CFGMR3Init failed. rc=%Rrc\n", rc); return 1; } if (!CFGMR3GetRoot(pVM)) { RTPrintf("FAILURE: CFGMR3GetRoot failed\n"); return 1; } /* integer */ uint64_t u64; rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &u64); if (RT_FAILURE(rc)) { RTPrintf("FAILURE: CFGMR3QueryU64(,\"RamSize\",) failed. rc=%Rrc\n", rc); return 1; } size_t cb; rc = CFGMR3QuerySize(CFGMR3GetRoot(pVM), "RamSize", &cb); if (RT_FAILURE(rc)) { RTPrintf("FAILURE: CFGMR3QuerySize(,\"RamSize\",) failed. rc=%Rrc\n", rc); return 1; } if (cb != sizeof(uint64_t)) { RTPrintf("FAILURE: Incorrect valuesize %d for \"RamSize\" value.\n", cb); return 1; } /* string */ char *pszName = NULL; rc = CFGMR3QueryStringAlloc(CFGMR3GetRoot(pVM), "Name", &pszName); if (RT_FAILURE(rc)) { RTPrintf("FAILURE: CFGMR3QueryStringAlloc(,\"Name\" failed. rc=%Rrc\n", rc); return 1; } rc = CFGMR3QuerySize(CFGMR3GetRoot(pVM), "Name", &cb); if (RT_FAILURE(rc)) { RTPrintf("FAILURE: CFGMR3QuerySize(,\"RamSize\",) failed. rc=%Rrc\n", rc); return 1; } if (cb != strlen(pszName) + 1) { RTPrintf("FAILURE: Incorrect valuesize %d for \"Name\" value '%s'.\n", cb, pszName); return 1; } MMR3HeapFree(pszName); /* test multilevel node creation */ PCFGMNODE pChild = NULL; rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "First/Second/Third//Final", &pChild); if (RT_FAILURE(rc)) { RTPrintf("FAILURE: CFGMR3InsertNode(,\"First/Second/Third//Final\" failed. rc=%Rrc\n", rc); return 1; } rc = CFGMR3InsertInteger(pChild, "BoolValue", 1); if (RT_FAILURE(rc)) { RTPrintf("FAILURE: CFGMR3InsertInteger(,\"BoolValue\", 1) failed. rc=%Rrc\n", rc); return 1; } PCFGMNODE pNode = CFGMR3GetChild(CFGMR3GetRoot(pVM), "First/Second/Third/Final"); if (pNode != pChild) { RTPrintf("FAILURE: CFGMR3GetChild(,\"First/Second/Third/Final/BoolValue\") failed. pNode=%p expected %p\n", pNode, pChild); return 1; } bool f = false; rc = CFGMR3QueryBool(pNode, "BoolValue", &f); if (RT_FAILURE(rc) || !f) { RTPrintf("FAILURE: CFGMR3QueryBool(,\"BoolValue\",) failed. rc=%Rrc f=%d\n", rc, f); return 1; } /* done */ rc = CFGMR3Term(pVM); if (RT_FAILURE(rc)) { RTPrintf("FAILURE: CFGMR3QueryU64(,\"RamSize\" failed. rc=%Rrc\n", rc); return 1; } RTPrintf("tstCFGM: SUCCESS\n"); return rc; }
/** * Construct the DMI table. * * @returns VBox status code. * @param pDevIns The device instance. * @param pTable Where to create the DMI table. * @param cbMax The maximum size of the DMI table. * @param pUuid Pointer to the UUID to use if the DmiUuid * configuration string isn't present. * @param pCfg The handle to our config node. */ int FwCommonPlantDMITable(PPDMDEVINS pDevIns, uint8_t *pTable, unsigned cbMax, PCRTUUID pUuid, PCFGMNODE pCfg) { #define CHECKSIZE(cbWant) \ { \ size_t cbNeed = (size_t)(pszStr + cbWant - (char *)pTable) + 5; /* +1 for strtab terminator +4 for end-of-table entry */ \ if (cbNeed > cbMax) \ { \ if (fHideErrors) \ { \ LogRel(("One of the DMI strings is too long -- using default DMI data!\n")); \ continue; \ } \ return PDMDevHlpVMSetError(pDevIns, VERR_TOO_MUCH_DATA, RT_SRC_POS, \ N_("One of the DMI strings is too long. Check all bios/Dmi* configuration entries. At least %zu bytes are needed but there is no space for more than %d bytes"), cbNeed, cbMax); \ } \ } #define READCFGSTRDEF(variable, name, default_value) \ { \ if (fForceDefault) \ pszTmp = default_value; \ else \ { \ rc = CFGMR3QueryStringDef(pCfg, name, szBuf, sizeof(szBuf), default_value); \ if (RT_FAILURE(rc)) \ { \ if (fHideErrors) \ { \ LogRel(("Configuration error: Querying \"" name "\" as a string failed -- using default DMI data!\n")); \ continue; \ } \ return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, \ N_("Configuration error: Querying \"" name "\" as a string failed")); \ } \ else if (!strcmp(szBuf, "<EMPTY>")) \ pszTmp = ""; \ else \ pszTmp = szBuf; \ } \ if (!pszTmp[0]) \ variable = 0; /* empty string */ \ else \ { \ variable = iStrNr++; \ size_t cStr = strlen(pszTmp) + 1; \ CHECKSIZE(cStr); \ memcpy(pszStr, pszTmp, cStr); \ pszStr += cStr ; \ } \ } #define READCFGSTR(variable, name) \ READCFGSTRDEF(variable, # name, s_szDef ## name) #define READCFGINT(variable, name) \ { \ if (fForceDefault) \ variable = s_iDef ## name; \ else \ { \ rc = CFGMR3QueryS32Def(pCfg, # name, & variable, s_iDef ## name); \ if (RT_FAILURE(rc)) \ { \ if (fHideErrors) \ { \ LogRel(("Configuration error: Querying \"" # name "\" as an int failed -- using default DMI data!\n")); \ continue; \ } \ return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, \ N_("Configuration error: Querying \"" # name "\" as an int failed")); \ } \ } \ } #define START_STRUCT(tbl) \ pszStr = (char *)(tbl + 1); \ iStrNr = 1; #define TERM_STRUCT \ { \ *pszStr++ = '\0'; /* terminate set of text strings */ \ if (iStrNr == 1) \ *pszStr++ = '\0'; /* terminate a structure without strings */ \ } bool fForceDefault = false; #ifdef VBOX_BIOS_DMI_FALLBACK /* * There will be two passes. If an error occurs during the first pass, a * message will be written to the release log and we fall back to default * DMI data and start a second pass. */ bool fHideErrors = true; #else /* * There will be one pass, every error is fatal and will prevent the VM * from starting. */ bool fHideErrors = false; #endif uint8_t fDmiUseHostInfo; int rc = CFGMR3QueryU8Def(pCfg, "DmiUseHostInfo", &fDmiUseHostInfo, 0); if (RT_FAILURE (rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"DmiUseHostInfo\"")); /* Sync up with host default DMI values */ if (fDmiUseHostInfo) fwCommonUseHostDMIStrings(); uint8_t fDmiExposeMemoryTable; rc = CFGMR3QueryU8Def(pCfg, "DmiExposeMemoryTable", &fDmiExposeMemoryTable, 0); if (RT_FAILURE (rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"DmiExposeMemoryTable\"")); for (;; fForceDefault = true, fHideErrors = false) { int iStrNr; char szBuf[256]; char *pszStr = (char *)pTable; char szDmiSystemUuid[64]; char *pszDmiSystemUuid; const char *pszTmp; if (fForceDefault) pszDmiSystemUuid = NULL; else { rc = CFGMR3QueryString(pCfg, "DmiSystemUuid", szDmiSystemUuid, sizeof(szDmiSystemUuid)); if (rc == VERR_CFGM_VALUE_NOT_FOUND) pszDmiSystemUuid = NULL; else if (RT_FAILURE(rc)) { if (fHideErrors) { LogRel(("Configuration error: Querying \"DmiSystemUuid\" as a string failed, using default DMI data\n")); continue; } return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, N_("Configuration error: Querying \"DmiSystemUuid\" as a string failed")); } else pszDmiSystemUuid = szDmiSystemUuid; } /********************************* * DMI BIOS information (Type 0) * *********************************/ PDMIBIOSINF pBIOSInf = (PDMIBIOSINF)pszStr; CHECKSIZE(sizeof(*pBIOSInf)); pszStr = (char *)&pBIOSInf->u8ReleaseMajor; pBIOSInf->header.u8Length = RT_OFFSETOF(DMIBIOSINF, u8ReleaseMajor); /* don't set these fields by default for legacy compatibility */ int iDmiBIOSReleaseMajor, iDmiBIOSReleaseMinor; READCFGINT(iDmiBIOSReleaseMajor, DmiBIOSReleaseMajor); READCFGINT(iDmiBIOSReleaseMinor, DmiBIOSReleaseMinor); if (iDmiBIOSReleaseMajor != 0 || iDmiBIOSReleaseMinor != 0) { pszStr = (char *)&pBIOSInf->u8FirmwareMajor; pBIOSInf->header.u8Length = RT_OFFSETOF(DMIBIOSINF, u8FirmwareMajor); pBIOSInf->u8ReleaseMajor = iDmiBIOSReleaseMajor; pBIOSInf->u8ReleaseMinor = iDmiBIOSReleaseMinor; int iDmiBIOSFirmwareMajor, iDmiBIOSFirmwareMinor; READCFGINT(iDmiBIOSFirmwareMajor, DmiBIOSFirmwareMajor); READCFGINT(iDmiBIOSFirmwareMinor, DmiBIOSFirmwareMinor); if (iDmiBIOSFirmwareMajor != 0 || iDmiBIOSFirmwareMinor != 0) { pszStr = (char *)(pBIOSInf + 1); pBIOSInf->header.u8Length = sizeof(DMIBIOSINF); pBIOSInf->u8FirmwareMajor = iDmiBIOSFirmwareMajor; pBIOSInf->u8FirmwareMinor = iDmiBIOSFirmwareMinor; } } iStrNr = 1; pBIOSInf->header.u8Type = 0; /* BIOS Information */ pBIOSInf->header.u16Handle = 0x0000; READCFGSTR(pBIOSInf->u8Vendor, DmiBIOSVendor); READCFGSTR(pBIOSInf->u8Version, DmiBIOSVersion); pBIOSInf->u16Start = 0xE000; READCFGSTR(pBIOSInf->u8Release, DmiBIOSReleaseDate); pBIOSInf->u8ROMSize = 1; /* 128K */ pBIOSInf->u64Characteristics = RT_BIT(4) /* ISA is supported */ | RT_BIT(7) /* PCI is supported */ | RT_BIT(15) /* Boot from CD is supported */ | RT_BIT(16) /* Selectable Boot is supported */ | RT_BIT(27) /* Int 9h, 8042 Keyboard services supported */ | RT_BIT(30) /* Int 10h, CGA/Mono Video Services supported */ /* any more?? */ ; pBIOSInf->u8CharacteristicsByte1 = RT_BIT(0) /* ACPI is supported */ /* any more?? */ ; pBIOSInf->u8CharacteristicsByte2 = 0 /* any more?? */ ; TERM_STRUCT; /*********************************** * DMI system information (Type 1) * ***********************************/ PDMISYSTEMINF pSystemInf = (PDMISYSTEMINF)pszStr; CHECKSIZE(sizeof(*pSystemInf)); pszStr = (char *)(pSystemInf + 1); iStrNr = 1; pSystemInf->header.u8Type = 1; /* System Information */ pSystemInf->header.u8Length = sizeof(*pSystemInf); pSystemInf->header.u16Handle = 0x0001; READCFGSTR(pSystemInf->u8Manufacturer, DmiSystemVendor); READCFGSTR(pSystemInf->u8ProductName, DmiSystemProduct); READCFGSTR(pSystemInf->u8Version, DmiSystemVersion); READCFGSTR(pSystemInf->u8SerialNumber, DmiSystemSerial); RTUUID uuid; if (pszDmiSystemUuid) { rc = RTUuidFromStr(&uuid, pszDmiSystemUuid); if (RT_FAILURE(rc)) { if (fHideErrors) { LogRel(("Configuration error: Invalid UUID for DMI tables specified, using default DMI data\n")); continue; } return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, N_("Configuration error: Invalid UUID for DMI tables specified")); } uuid.Gen.u32TimeLow = RT_H2BE_U32(uuid.Gen.u32TimeLow); uuid.Gen.u16TimeMid = RT_H2BE_U16(uuid.Gen.u16TimeMid); uuid.Gen.u16TimeHiAndVersion = RT_H2BE_U16(uuid.Gen.u16TimeHiAndVersion); pUuid = &uuid; } memcpy(pSystemInf->au8Uuid, pUuid, sizeof(RTUUID)); pSystemInf->u8WakeupType = 6; /* Power Switch */ READCFGSTR(pSystemInf->u8SKUNumber, DmiSystemSKU); READCFGSTR(pSystemInf->u8Family, DmiSystemFamily); TERM_STRUCT; /******************************************** * DMI System Enclosure or Chassis (Type 3) * ********************************************/ PDMICHASSIS pChassis = (PDMICHASSIS)pszStr; CHECKSIZE(sizeof(*pChassis)); pszStr = (char*)&pChassis->u32OEMdefined; iStrNr = 1; #ifdef VBOX_WITH_DMI_CHASSIS pChassis->header.u8Type = 3; /* System Enclosure or Chassis */ #else pChassis->header.u8Type = 0x7e; /* inactive */ #endif pChassis->header.u8Length = RT_OFFSETOF(DMICHASSIS, u32OEMdefined); pChassis->header.u16Handle = 0x0003; READCFGSTR(pChassis->u8Manufacturer, DmiChassisVendor); pChassis->u8Type = 0x01; /* ''other'', no chassis lock present */ READCFGSTR(pChassis->u8Version, DmiChassisVersion); READCFGSTR(pChassis->u8SerialNumber, DmiChassisSerial); READCFGSTR(pChassis->u8AssetTag, DmiChassisAssetTag); pChassis->u8BootupState = 0x03; /* safe */ pChassis->u8PowerSupplyState = 0x03; /* safe */ pChassis->u8ThermalState = 0x03; /* safe */ pChassis->u8SecurityStatus = 0x03; /* none XXX */ # if 0 /* v2.3+, currently not supported */ pChassis->u32OEMdefined = 0; pChassis->u8Height = 0; /* unspecified */ pChassis->u8NumPowerChords = 0; /* unspecified */ pChassis->u8ContElems = 0; /* no contained elements */ pChassis->u8ContElemRecLen = 0; /* no contained elements */ # endif TERM_STRUCT; if (fDmiExposeMemoryTable) { /*************************************** * DMI Physical Memory Array (Type 16) * ***************************************/ uint64_t u64RamSize; rc = CFGMR3QueryU64(pCfg, "RamSize", &u64RamSize); if (RT_FAILURE (rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to read \"RamSize\"")); PDMIRAMARRAY pMemArray = (PDMIRAMARRAY)pszStr; CHECKSIZE(sizeof(*pMemArray)); START_STRUCT(pMemArray); pMemArray->header.u8Type = 16; /* Physical Memory Array */ pMemArray->header.u8Length = sizeof(*pMemArray); pMemArray->header.u16Handle = 0x0005; pMemArray->u8Location = 0x03; /* Motherboard */ pMemArray->u8Use = 0x03; /* System memory */ pMemArray->u8MemErrorCorrection = 0x01; /* Other */ uint32_t u32RamSizeK = (uint32_t)(u64RamSize / _1K); pMemArray->u32MaxCapacity = u32RamSizeK; /* RAM size in K */ pMemArray->u16MemErrorHandle = 0xfffe; /* No error info structure */ pMemArray->u16NumberOfMemDevices = 1; TERM_STRUCT; /*************************************** * DMI Memory Device (Type 17) * ***************************************/ PDMIMEMORYDEV pMemDev = (PDMIMEMORYDEV)pszStr; CHECKSIZE(sizeof(*pMemDev)); START_STRUCT(pMemDev); pMemDev->header.u8Type = 17; /* Memory Device */ pMemDev->header.u8Length = sizeof(*pMemDev); pMemDev->header.u16Handle = 0x0006; pMemDev->u16PhysMemArrayHandle = 0x0005; /* handle of array we belong to */ pMemDev->u16MemErrHandle = 0xfffe; /* system doesn't provide this information */ pMemDev->u16TotalWidth = 0xffff; /* Unknown */ pMemDev->u16DataWidth = 0xffff; /* Unknown */ int16_t u16RamSizeM = (uint16_t)(u64RamSize / _1M); if (u16RamSizeM == 0) u16RamSizeM = 0x400; /* 1G */ pMemDev->u16Size = u16RamSizeM; /* RAM size */ pMemDev->u8FormFactor = 0x09; /* DIMM */ pMemDev->u8DeviceSet = 0x00; /* Not part of a device set */ READCFGSTRDEF(pMemDev->u8DeviceLocator, " ", "DIMM 0"); READCFGSTRDEF(pMemDev->u8BankLocator, " ", "Bank 0"); pMemDev->u8MemoryType = 0x03; /* DRAM */ pMemDev->u16TypeDetail = 0; /* Nothing special */ pMemDev->u16Speed = 1600; /* Unknown, shall be speed in MHz */ READCFGSTR(pMemDev->u8Manufacturer, DmiSystemVendor); READCFGSTRDEF(pMemDev->u8SerialNumber, " ", "00000000"); READCFGSTRDEF(pMemDev->u8AssetTag, " ", "00000000"); READCFGSTRDEF(pMemDev->u8PartNumber, " ", "00000000"); pMemDev->u8Attributes = 0; /* Unknown */ TERM_STRUCT; } /***************************** * DMI OEM strings (Type 11) * *****************************/ PDMIOEMSTRINGS pOEMStrings = (PDMIOEMSTRINGS)pszStr; CHECKSIZE(sizeof(*pOEMStrings)); pszStr = (char *)(pOEMStrings + 1); iStrNr = 1; #ifdef VBOX_WITH_DMI_OEMSTRINGS pOEMStrings->header.u8Type = 0xb; /* OEM Strings */ #else pOEMStrings->header.u8Type = 0x7e; /* inactive */ #endif pOEMStrings->header.u8Length = sizeof(*pOEMStrings); pOEMStrings->header.u16Handle = 0x0002; pOEMStrings->u8Count = 2; char szTmp[64]; RTStrPrintf(szTmp, sizeof(szTmp), "vboxVer_%u.%u.%u", RTBldCfgVersionMajor(), RTBldCfgVersionMinor(), RTBldCfgVersionBuild()); READCFGSTRDEF(pOEMStrings->u8VBoxVersion, "DmiOEMVBoxVer", szTmp); RTStrPrintf(szTmp, sizeof(szTmp), "vboxRev_%u", RTBldCfgRevision()); READCFGSTRDEF(pOEMStrings->u8VBoxRevision, "DmiOEMVBoxRev", szTmp); TERM_STRUCT; /* End-of-table marker - includes padding to account for fixed table size. */ PDMIHDR pEndOfTable = (PDMIHDR)pszStr; pEndOfTable->u8Type = 0x7f; pEndOfTable->u8Length = cbMax - ((char *)pszStr - (char *)pTable) - 2; pEndOfTable->u16Handle = 0xFEFF; /* If more fields are added here, fix the size check in READCFGSTR */ /* Success! */ break; } #undef READCFGSTR #undef READCFGINT #undef CHECKSIZE return VINF_SUCCESS; }