static void dwmac1000_dma_operation_mode(void __iomem *ioaddr, int channel, int txmode, int rxmode) { u32 csr6 = readl(ioaddr + (channel * 0x100) + DMA_CONTROL); if (txmode == SF_DMA_MODE) { CHIP_DBG(KERN_DEBUG "GMAC: enable TX store and forward mode\n"); /* Transmit COE type 2 cannot be done in cut-through mode. */ csr6 |= DMA_CONTROL_TSF; /* Operating on second frame increase the performance * especially when transmit store-and-forward is used.*/ /* TOE don't support "Operating on second frame", * so if tx_coe enable, we should clear this bit. */ csr6 &= ~DMA_CONTROL_OSF; } else { CHIP_DBG(KERN_DEBUG "GMAC: disabling TX store and forward mode" " (threshold = %d)\n", txmode); csr6 &= ~DMA_CONTROL_TSF; csr6 &= DMA_CONTROL_TC_TX_MASK; /* Set the transmit threshold */ if (txmode <= 32) csr6 |= DMA_CONTROL_TTC_32; else if (txmode <= 64) csr6 |= DMA_CONTROL_TTC_64; else if (txmode <= 128) csr6 |= DMA_CONTROL_TTC_128; else if (txmode <= 192) csr6 |= DMA_CONTROL_TTC_192; else csr6 |= DMA_CONTROL_TTC_256; } if (rxmode == SF_DMA_MODE) { CHIP_DBG(KERN_DEBUG "GMAC: enable RX store and forward mode\n"); csr6 |= DMA_CONTROL_RSF; /* Disable flushing of received frames, required by TNK */ csr6 |= DMA_CONTROL_DFF; } else { CHIP_DBG(KERN_DEBUG "GMAC: disabling RX store and forward mode" " (threshold = %d)\n", rxmode); csr6 &= ~DMA_CONTROL_RSF; csr6 &= DMA_CONTROL_TC_RX_MASK; if (rxmode <= 32) csr6 |= DMA_CONTROL_RTC_32; else if (rxmode <= 64) csr6 |= DMA_CONTROL_RTC_64; else if (rxmode <= 96) csr6 |= DMA_CONTROL_RTC_96; else csr6 |= DMA_CONTROL_RTC_128; } writel(csr6, ioaddr + (channel * 0x100) + DMA_CONTROL); }
static void dwmac1000_dma_operation_mode(void __iomem *ioaddr, int txmode, int rxmode) { u32 csr6 = readl(ioaddr + DMA_CONTROL); if (txmode == SF_DMA_MODE) { CHIP_DBG(KERN_DEBUG "GMAC: enable TX store and forward mode\n"); /* Transmit COE type 2 cannot be done in cut-through mode. */ csr6 |= DMA_CONTROL_TSF; /* Operating on second frame increase the performance * especially when transmit store-and-forward is used.*/ csr6 |= DMA_CONTROL_OSF; } else { CHIP_DBG(KERN_DEBUG "GMAC: disabling TX store and forward mode" " (threshold = %d)\n", txmode); csr6 &= ~DMA_CONTROL_TSF; csr6 &= DMA_CONTROL_TC_TX_MASK; /* Set the transmit threshold */ if (txmode <= 32) csr6 |= DMA_CONTROL_TTC_32; else if (txmode <= 64) csr6 |= DMA_CONTROL_TTC_64; else if (txmode <= 128) csr6 |= DMA_CONTROL_TTC_128; else if (txmode <= 192) csr6 |= DMA_CONTROL_TTC_192; else csr6 |= DMA_CONTROL_TTC_256; } if (rxmode == SF_DMA_MODE) { CHIP_DBG(KERN_DEBUG "GMAC: enable RX store and forward mode\n"); csr6 |= DMA_CONTROL_RSF; } else { CHIP_DBG(KERN_DEBUG "GMAC: disabling RX store and forward mode" " (threshold = %d)\n", rxmode); csr6 &= ~DMA_CONTROL_RSF; csr6 &= DMA_CONTROL_TC_RX_MASK; if (rxmode <= 32) csr6 |= DMA_CONTROL_RTC_32; else if (rxmode <= 64) csr6 |= DMA_CONTROL_RTC_64; else if (rxmode <= 96) csr6 |= DMA_CONTROL_RTC_96; else csr6 |= DMA_CONTROL_RTC_128; } writel(csr6, ioaddr + DMA_CONTROL); }
static void dwmac1000_set_filter(struct net_device *dev, int id) { void __iomem *ioaddr = (void __iomem *) dev->base_addr; unsigned int value = 0; unsigned int perfect_addr_number; CHIP_DBG(KERN_INFO "%s: # mcasts %d, # unicast %d\n", __func__, netdev_mc_count(dev), netdev_uc_count(dev)); if (dev->flags & IFF_PROMISC) value = GMAC_FRAME_FILTER_PR; else if ((netdev_mc_count(dev) > HASH_TABLE_SIZE) || (dev->flags & IFF_ALLMULTI)) { value = GMAC_FRAME_FILTER_PM; /* pass all multi */ writel(0xffffffff, ioaddr + GMAC_HASH_HIGH); writel(0xffffffff, ioaddr + GMAC_HASH_LOW); } else if (!netdev_mc_empty(dev)) { u32 mc_filter[2]; struct netdev_hw_addr *ha; /* Hash filter for multicast */ value = GMAC_FRAME_FILTER_HMC; memset(mc_filter, 0, sizeof(mc_filter)); netdev_for_each_mc_addr(ha, dev) { /* The upper 6 bits of the calculated CRC are used to index the contens of the hash table */ int bit_nr = bitrev32(~crc32_le(~0, ha->addr, 6)) >> 26; /* The most significant bit determines the register to * use (H/L) while the other 5 bits determine the bit * within the register. */ mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); }
static int enh_desc_coe_rdes0(int ipc_err, int type, int payload_err) { int ret = good_frame; u32 status = (type << 2 | ipc_err << 1 | payload_err) & 0x7; /* bits 5 7 0 | Frame status * ---------------------------------------------------------- * 0 0 0 | IEEE 802.3 Type frame (length < 1536 octects) * 1 0 0 | IPv4/6 No CSUM errorS. * 1 0 1 | IPv4/6 CSUM PAYLOAD error * 1 1 0 | IPv4/6 CSUM IP HR error * 1 1 1 | IPv4/6 IP PAYLOAD AND HEADER errorS * 0 0 1 | IPv4/6 unsupported IP PAYLOAD * 0 1 1 | COE bypassed.. no IPv4/6 frame * 0 1 0 | Reserved. */ if (status == 0x0) { CHIP_DBG(KERN_INFO "RX Des0 status: IEEE 802.3 Type frame.\n"); ret = good_frame; } else if (status == 0x4) { CHIP_DBG(KERN_INFO "RX Des0 status: IPv4/6 No CSUM errorS.\n"); ret = good_frame; } else if (status == 0x5) { CHIP_DBG(KERN_ERR "RX Des0 status: IPv4/6 Payload Error.\n"); ret = csum_none; } else if (status == 0x6) { CHIP_DBG(KERN_ERR "RX Des0 status: IPv4/6 Header Error.\n"); ret = csum_none; } else if (status == 0x7) { CHIP_DBG(KERN_ERR "RX Des0 status: IPv4/6 Header and Payload Error.\n"); ret = csum_none; } else if (status == 0x1) { CHIP_DBG(KERN_ERR "RX Des0 status: IPv4/6 unsupported IP PAYLOAD.\n"); ret = discard_frame; } else if (status == 0x3) { CHIP_DBG(KERN_ERR "RX Des0 status: No IPv4, IPv6 frame.\n"); ret = discard_frame; } return ret; }
static int ndesc_get_tx_status(void *data, struct stmmac_extra_stats *x, struct dma_desc *p, void __iomem *ioaddr) { int ret = 0; struct net_device_stats *stats = (struct net_device_stats *)data; if (unlikely(p->des01.tx.error_summary)) { if (unlikely(p->des01.tx.underflow_error)) { x->tx_underflow++; stats->tx_fifo_errors++; } if (unlikely(p->des01.tx.no_carrier)) { x->tx_carrier++; stats->tx_carrier_errors++; } if (unlikely(p->des01.tx.loss_carrier)) { x->tx_losscarrier++; stats->tx_carrier_errors++; } if (unlikely((p->des01.tx.excessive_deferral) || (p->des01.tx.excessive_collisions) || (p->des01.tx.late_collision))) stats->collisions += p->des01.tx.collision_count; ret = -1; } if (p->des01.etx.vlan_frame) { CHIP_DBG(KERN_INFO "GMAC TX status: VLAN frame\n"); x->tx_vlan++; } if (unlikely(p->des01.tx.deferred)) x->tx_deferred++; return ret; }
static int enh_desc_get_tx_status(void *data, struct stmmac_extra_stats *x, struct dma_desc *p, unsigned long ioaddr) { int ret = 0; struct net_device_stats *stats = (struct net_device_stats *)data; if (unlikely(p->des01.etx.error_summary)) { CHIP_DBG(KERN_ERR "GMAC TX error... 0x%08x\n", p->des01.etx); if (unlikely(p->des01.etx.jabber_timeout)) { CHIP_DBG(KERN_ERR "\tjabber_timeout error\n"); x->tx_jabber++; } if (unlikely(p->des01.etx.frame_flushed)) { CHIP_DBG(KERN_ERR "\tframe_flushed error\n"); x->tx_frame_flushed++; dwmac_dma_flush_tx_fifo(ioaddr); } if (unlikely(p->des01.etx.loss_carrier)) { CHIP_DBG(KERN_ERR "\tloss_carrier error\n"); x->tx_losscarrier++; stats->tx_carrier_errors++; } if (unlikely(p->des01.etx.no_carrier)) { CHIP_DBG(KERN_ERR "\tno_carrier error\n"); x->tx_carrier++; stats->tx_carrier_errors++; } if (unlikely(p->des01.etx.late_collision)) { CHIP_DBG(KERN_ERR "\tlate_collision error\n"); stats->collisions += p->des01.etx.collision_count; } if (unlikely(p->des01.etx.excessive_collisions)) { CHIP_DBG(KERN_ERR "\texcessive_collisions\n"); stats->collisions += p->des01.etx.collision_count; } if (unlikely(p->des01.etx.excessive_deferral)) { CHIP_DBG(KERN_INFO "\texcessive tx_deferral\n"); x->tx_deferred++; } if (unlikely(p->des01.etx.underflow_error)) { CHIP_DBG(KERN_ERR "\tunderflow error\n"); dwmac_dma_flush_tx_fifo(ioaddr); x->tx_underflow++; } if (unlikely(p->des01.etx.ip_header_error)) { CHIP_DBG(KERN_ERR "\tTX IP header csum error\n"); x->tx_ip_header_error++; } if (unlikely(p->des01.etx.payload_error)) { CHIP_DBG(KERN_ERR "\tAddr/Payload csum error\n"); x->tx_payload_error++; dwmac_dma_flush_tx_fifo(ioaddr); } ret = -1; } if (unlikely(p->des01.etx.deferred)) { CHIP_DBG(KERN_INFO "GMAC TX status: tx deferred\n"); x->tx_deferred++; } #ifdef STMMAC_VLAN_TAG_USED if (p->des01.etx.vlan_frame) { CHIP_DBG(KERN_INFO "GMAC TX status: VLAN frame\n"); x->tx_vlan++; } #endif return ret; }
static int enh_desc_get_rx_status(void *data, struct stmmac_extra_stats *x, struct dma_desc *p) { int ret = good_frame; struct net_device_stats *stats = (struct net_device_stats *)data; if (unlikely(p->des01.erx.error_summary)) { CHIP_DBG(KERN_ERR "GMAC RX Error Summary 0x%08x\n", p->des01.erx); if (unlikely(p->des01.erx.descriptor_error)) { CHIP_DBG(KERN_ERR "\tdescriptor error\n"); x->rx_desc++; stats->rx_length_errors++; } if (unlikely(p->des01.erx.overflow_error)) { CHIP_DBG(KERN_ERR "\toverflow error\n"); x->rx_gmac_overflow++; } if (unlikely(p->des01.erx.ipc_csum_error)) CHIP_DBG(KERN_ERR "\tIPC Csum Error/Giant frame\n"); if (unlikely(p->des01.erx.late_collision)) { CHIP_DBG(KERN_ERR "\tlate_collision error\n"); stats->collisions++; stats->collisions++; } if (unlikely(p->des01.erx.receive_watchdog)) { CHIP_DBG(KERN_ERR "\treceive_watchdog error\n"); x->rx_watchdog++; } if (unlikely(p->des01.erx.error_gmii)) { CHIP_DBG(KERN_ERR "\tReceive Error\n"); x->rx_mii++; } if (unlikely(p->des01.erx.crc_error)) { CHIP_DBG(KERN_ERR "\tCRC error\n"); x->rx_crc++; stats->rx_crc_errors++; } ret = discard_frame; } /* After a payload csum error, the ES bit is set. * It doesn't match with the information reported into the databook. * At any rate, we need to understand if the CSUM hw computation is ok * and report this info to the upper layers. */ ret = enh_desc_coe_rdes0(p->des01.erx.ipc_csum_error, p->des01.erx.frame_type, p->des01.erx.payload_csum_error); if (unlikely(p->des01.erx.dribbling)) { CHIP_DBG(KERN_ERR "GMAC RX: dribbling error\n"); ret = discard_frame; } if (unlikely(p->des01.erx.sa_filter_fail)) { CHIP_DBG(KERN_ERR "GMAC RX : Source Address filter fail\n"); x->sa_rx_filter_fail++; ret = discard_frame; } if (unlikely(p->des01.erx.da_filter_fail)) { CHIP_DBG(KERN_ERR "GMAC RX : Dest Address filter fail\n"); x->da_rx_filter_fail++; ret = discard_frame; } if (unlikely(p->des01.erx.length_error)) { CHIP_DBG(KERN_ERR "GMAC RX: length_error error\n"); x->rx_length++; ret = discard_frame; } #ifdef STMMAC_VLAN_TAG_USED if (p->des01.erx.vlan_tag) { CHIP_DBG(KERN_INFO "GMAC RX: VLAN frame tagged\n"); x->rx_vlan++; } #endif return ret; }