コード例 #1
0
static void
_get_local_tolerance(const cs_real_t   vtx_coords[],
                     double            vtx_tolerance[],
                     const cs_int_t    n_faces,
                     const cs_int_t    face_vtx_idx[],
                     const cs_int_t    face_vtx_lst[],
                     double            fraction)
{
  cs_lnum_t  j, k, start, end, face_id, vtx_id1, vtx_id2;
  cs_real_t  length, tolerance;
  cs_real_t  a[3], b[3];

  for (face_id = 0; face_id < n_faces; face_id++) {

    start = face_vtx_idx[face_id];
    end = face_vtx_idx[face_id + 1];

    /* Loop on the vertices of the face */

    for (j = start; j < end - 1; j++) {

      vtx_id1 = face_vtx_lst[j];
      vtx_id2 = face_vtx_lst[j+1];

      for (k = 0; k < 3; k++) {
        a[k] = vtx_coords[3*vtx_id1 + k];
        b[k] = vtx_coords[3*vtx_id2 + k];
      }

      length = _compute_distance(a, b);
      tolerance = length * fraction;
      vtx_tolerance[vtx_id1] = CS_MIN(vtx_tolerance[vtx_id1], tolerance);
      vtx_tolerance[vtx_id2] = CS_MIN(vtx_tolerance[vtx_id2], tolerance);

    }

    /* Case end - start */

    vtx_id1 = face_vtx_lst[end-1];
    vtx_id2 = face_vtx_lst[start];

    for (k = 0; k < 3; k++) {
      a[k] = vtx_coords[3*vtx_id1 + k];
      b[k] = vtx_coords[3*vtx_id2 + k];
    }

    length = _compute_distance(a, b);
    tolerance = length * fraction;
    vtx_tolerance[vtx_id1] = CS_MIN(vtx_tolerance[vtx_id1], tolerance);
    vtx_tolerance[vtx_id2] = CS_MIN(vtx_tolerance[vtx_id2], tolerance);

  } /* End of loop on faces */

}
コード例 #2
0
ファイル: cs_updown.c プロジェクト: Aharobot/mrpt
/* sparse Cholesky update/downdate, L*L' + sigma*w*w' (sigma = +1 or -1) */
int cs_updown (cs *L, int sigma, const cs *C, const int *parent)
{
    int n, p, f, j, *Lp, *Li, *Cp, *Ci ;
    double *Lx, *Cx, alpha, beta = 1, delta, gamma, w1, w2, *w, beta2 = 1 ;
    if (!CS_CSC (L) || !CS_CSC (C) || !parent) return (0) ;  /* check inputs */
    Lp = L->p ; Li = L->i ; Lx = L->x ; n = L->n ;
    Cp = C->p ; Ci = C->i ; Cx = C->x ;
    if ((p = Cp [0]) >= Cp [1]) return (1) ;        /* return if C empty */
    w = cs_malloc (n, sizeof (double)) ;            /* get workspace */
    if (!w) return (0) ;                            /* out of memory */
    f = Ci [p] ;
    for ( ; p < Cp [1] ; p++) f = CS_MIN (f, Ci [p]) ;  /* f = min (find (C)) */
    for (j = f ; j != -1 ; j = parent [j]) w [j] = 0 ;  /* clear workspace w */
    for (p = Cp [0] ; p < Cp [1] ; p++) w [Ci [p]] = Cx [p] ; /* w = C */
    for (j = f ; j != -1 ; j = parent [j])          /* walk path f up to root */
    {
        p = Lp [j] ;
        alpha = w [j] / Lx [p] ;                    /* alpha = w(j) / L(j,j) */
        beta2 = beta*beta + sigma*alpha*alpha ;
        if (beta2 <= 0) break ;                     /* not positive definite */
        beta2 = sqrt (beta2) ;
        delta = (sigma > 0) ? (beta / beta2) : (beta2 / beta) ;
        gamma = sigma * alpha / (beta2 * beta) ;
        Lx [p] = delta * Lx [p] + ((sigma > 0) ? (gamma * w [j]) : 0) ;
        beta = beta2 ;
        for (p++ ; p < Lp [j+1] ; p++)
        {
            w1 = w [Li [p]] ;
            w [Li [p]] = w2 = w1 - alpha * Lx [p] ;
            Lx [p] = delta * Lx [p] + gamma * ((sigma > 0) ? w1 : w2) ;
        }
    }
    cs_free (w) ;
    return (beta2 > 0) ;
}
コード例 #3
0
static void
_compute_minmax(cs_int_t            n_vals,
                const cs_real_t     var[],
                cs_real_t          *min,
                cs_real_t          *max)
{
  cs_int_t  i;
  cs_real_t  _min = DBL_MAX, _max = -DBL_MAX;

  for (i = 0; i < n_vals; i++) {
    _min = CS_MIN(_min, var[i]);
    _max = CS_MAX(_max, var[i]);
  }

#if defined(HAVE_MPI)

  if (cs_glob_n_ranks > 1) {
    MPI_Allreduce(&_min, min, 1, CS_MPI_REAL, MPI_MIN,
                  cs_glob_mpi_comm);

    MPI_Allreduce(&_max, max, 1, CS_MPI_REAL, MPI_MAX,
                  cs_glob_mpi_comm);
  }

#endif

  if (cs_glob_n_ranks == 1) {
    *min = _min;
    *max = _max;
  }
}
コード例 #4
0
ファイル: cs_lusol_mex.c プロジェクト: Al-th/matlab
/* cs_lusol: solve A*x=b using a sparse LU factorization */
void mexFunction
(
    int nargout,
    mxArray *pargout [ ],
    int nargin,
    const mxArray *pargin [ ]
)
{
    double tol ;
    CS_INT order ;
    if (nargout > 1 || nargin < 2 || nargin > 4)
    {
        mexErrMsgTxt ("Usage: x = cs_lusol(A,b,order,tol)") ;
    }
    order = (nargin < 3) ? 2 : mxGetScalar (pargin [2]) ;
    order = CS_MAX (order, 0) ;
    order = CS_MIN (order, 3) ;
    if (nargin == 2)
    {
        tol = 1 ;                           /* normal partial pivoting */
    }
    else if (nargin == 3)
    {
        tol = (order == 1) ? 0.001 : 1 ;    /* tol = 0.001 for amd(A+A') */
    }
    else
    {
        tol = mxGetScalar (pargin [3]) ;
    }
    if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1]))
    {
#ifndef NCOMPLEX
        cs_cl *A, Amatrix ;
        cs_complex_t *x ;
        A = cs_cl_mex_get_sparse (&Amatrix, 1, pargin [0]) ;    /* get A */
        x = cs_cl_mex_get_double (A->n, pargin [1]) ;           /* x = b */
        if (!cs_cl_lusol (order, A, x, tol))                    /* x = A\x */
        {
            mexErrMsgTxt ("failed (singular or out of memory)") ;
        }
        cs_cl_free (A->x) ;     /* complex copy no longer needed */
        pargout [0] = cs_cl_mex_put_double (A->n, x) ;          /* return x */
#else
        mexErrMsgTxt ("complex matrices not supported") ;
#endif
    }
    else
    {
        cs_dl *A, Amatrix ;
        double *x, *b ;
        A = cs_dl_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ;    /* get A */
        b = cs_dl_mex_get_double (A->n, pargin [1]) ;           /* get b */
        x = cs_dl_mex_put_double (A->n, b, &(pargout [0])) ;    /* x = b */
        if (!cs_dl_lusol (order, A, x, tol))                    /* x = A\x */
        {
            mexErrMsgTxt ("failed (singular or out of memory)") ;
        }
    }
}
コード例 #5
0
ファイル: cs_counts.c プロジェクト: jiapei100/mrpt
static void init_ata (cs *AT, const int *post, int *w, int **head, int **next)
{
    int i, k, p, m = AT->n, n = AT->m, *ATp = AT->p, *ATi = AT->i ;
    *head = w+4*n, *next = w+5*n+1 ;
    for (k = 0 ; k < n ; k++) w [post [k]] = k ;    /* invert post */
    for (i = 0 ; i < m ; i++)
    {
        for (k = n, p = ATp[i] ; p < ATp[i+1] ; p++) k = CS_MIN (k, w [ATi[p]]);
        (*next) [i] = (*head) [k] ;     /* place row i in linked list k */
        (*head) [k] = i ;
    }
}
コード例 #6
0
ファイル: cs_qrsol_mex.c プロジェクト: Al-th/matlab
/* cs_qrsol: solve least squares or underdetermined problem */
void mexFunction
(
    int nargout,
    mxArray *pargout [ ],
    int nargin,
    const mxArray *pargin [ ]
)
{
    CS_INT k, order ;
    if (nargout > 1 || nargin < 2 || nargin > 3)
    {
        mexErrMsgTxt ("Usage: x = cs_qrsol(A,b,order)") ;
    }
    order = (nargin < 3) ? 3 : mxGetScalar (pargin [2]) ;
    order = CS_MAX (order, 0) ;
    order = CS_MIN (order, 3) ;

    if (mxIsComplex (pargin [0]) || mxIsComplex (pargin [1]))
    {
#ifndef NCOMPLEX
        cs_cl *A, Amatrix ;
        cs_complex_t *x, *b ;
        A = cs_cl_mex_get_sparse (&Amatrix, 0, pargin [0]) ;    /* get A */
        b = cs_cl_mex_get_double (A->m, pargin [1]) ;           /* get b */
        x = cs_dl_calloc (CS_MAX (A->m, A->n), sizeof (cs_complex_t)) ;
        for (k = 0 ; k < A->m ; k++) x [k] = b [k] ;            /* x = b */
        cs_free (b) ;
        if (!cs_cl_qrsol (order, A, x))                         /* x = A\x */
        {
            mexErrMsgTxt ("QR solve failed") ;
        }
        pargout [0] = cs_cl_mex_put_double (A->n, x) ;          /* return x */
#else
        mexErrMsgTxt ("complex matrices not supported") ;
#endif
    }
    else
    {
        cs_dl *A, Amatrix ;
        double *x, *b ;
        A = cs_dl_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ;     /* get A */
        b = cs_dl_mex_get_double (A->m, pargin [1]) ;               /* get b */
        x = cs_dl_calloc (CS_MAX (A->m, A->n), sizeof (double)) ;   /* x = b */
        for (k = 0 ; k < A->m ; k++) x [k] = b [k] ;
        if (!cs_dl_qrsol (order, A, x))                         /* x = A\x */
        {
            mexErrMsgTxt ("QR solve failed") ;
        }
        cs_dl_mex_put_double (A->n, x, &(pargout [0])) ;        /* return x */
        cs_free (x) ;
    }
}
コード例 #7
0
ファイル: cs_maxtrans.c プロジェクト: Insomnia-/mrpt
/* find a maximum transveral */
int *cs_maxtrans (const cs *A, int seed)  /*[jmatch [0..m-1]; imatch [0..n-1]]*/
{
    int i, j, k, n, m, p, n2 = 0, m2 = 0, *Ap, *jimatch, *w, *cheap, *js, *is,
        *ps, *Ai, *Cp, *jmatch, *imatch, *q ;
    cs *C ;
    if (!CS_CSC (A)) return (NULL) ;                /* check inputs */
    n = A->n ; m = A->m ; Ap = A->p ; Ai = A->i ;
    w = jimatch = cs_calloc (m+n, sizeof (int)) ;   /* allocate result */
    if (!jimatch) return (NULL) ;
    for (k = 0, j = 0 ; j < n ; j++)    /* count nonempty rows and columns */
    {
        n2 += (Ap [j] < Ap [j+1]) ;
        for (p = Ap [j] ; p < Ap [j+1] ; p++)
        {
            w [Ai [p]] = 1 ;
            k += (j == Ai [p]) ;        /* count entries already on diagonal */
        }
    }
    if (k == CS_MIN (m,n))              /* quick return if diagonal zero-free */
    {
        jmatch = jimatch ; imatch = jimatch + m ;
        for (i = 0 ; i < k ; i++) jmatch [i] = i ;
        for (      ; i < m ; i++) jmatch [i] = -1 ;
        for (j = 0 ; j < k ; j++) imatch [j] = j ;
        for (      ; j < n ; j++) imatch [j] = -1 ;
        return (cs_idone (jimatch, NULL, NULL, 1)) ;
    }
    for (i = 0 ; i < m ; i++) m2 += w [i] ;
    C = (m2 < n2) ? cs_transpose (A,0) : ((cs *) A) ; /* transpose if needed */
    if (!C) return (cs_idone (jimatch, (m2 < n2) ? C : NULL, NULL, 0)) ;
    n = C->n ; m = C->m ; Cp = C->p ;
    jmatch = (m2 < n2) ? jimatch + n : jimatch ;
    imatch = (m2 < n2) ? jimatch : jimatch + m ;
    w = cs_malloc (5*n, sizeof (int)) ;             /* get workspace */
    if (!w) return (cs_idone (jimatch, (m2 < n2) ? C : NULL, w, 0)) ;
    cheap = w + n ; js = w + 2*n ; is = w + 3*n ; ps = w + 4*n ;
    for (j = 0 ; j < n ; j++) cheap [j] = Cp [j] ;  /* for cheap assignment */
    for (j = 0 ; j < n ; j++) w [j] = -1 ;          /* all columns unflagged */
    for (i = 0 ; i < m ; i++) jmatch [i] = -1 ;     /* nothing matched yet */
    q = cs_randperm (n, seed) ;                     /* q = random permutation */
    for (k = 0 ; k < n ; k++)   /* augment, starting at column q[k] */
    {
        cs_augment (q ? q [k]: k, C, jmatch, cheap, w, js, is, ps) ;
    }
    cs_free (q) ;
    for (j = 0 ; j < n ; j++) imatch [j] = -1 ;     /* find row match */
    for (i = 0 ; i < m ; i++) if (jmatch [i] >= 0) imatch [jmatch [i]] = i ;
    return (cs_idone (jimatch, (m2 < n2) ? C : NULL, w, 1)) ;
}
コード例 #8
0
/* sparse Cholesky update/downdate, L*L' + sigma*w*w' (sigma = +1 or -1) */
CS_INT cs_updown (cs *L, CS_INT sigma, const cs *C, const CS_INT *parent)
{
    CS_INT n, p, f, j, *Lp, *Li, *Cp, *Ci ;
    CS_ENTRY *Lx, *Cx, alpha, gamma, w1, w2, *w ;
    double beta = 1, beta2 = 1, delta ;
#ifdef CS_COMPLEX
    cs_complex_t phase ;
#endif
    if (!CS_CSC (L) || !CS_CSC (C) || !parent) return (0) ;  /* check inputs */
    Lp = L->p ; Li = L->i ; Lx = L->x ; n = L->n ;
    Cp = C->p ; Ci = C->i ; Cx = C->x ;
    if ((p = Cp [0]) >= Cp [1]) return (1) ;        /* return if C empty */
    w = cs_malloc (n, sizeof (CS_ENTRY)) ;          /* get workspace */
    if (!w) return (0) ;                            /* out of memory */
    f = Ci [p] ;
    for ( ; p < Cp [1] ; p++) f = CS_MIN (f, Ci [p]) ;  /* f = min (find (C)) */
    for (j = f ; j != -1 ; j = parent [j]) w [j] = 0 ;  /* clear workspace w */
    for (p = Cp [0] ; p < Cp [1] ; p++) w [Ci [p]] = Cx [p] ; /* w = C */
    for (j = f ; j != -1 ; j = parent [j])          /* walk path f up to root */
    {
        p = Lp [j] ;
        alpha = w [j] / Lx [p] ;                    /* alpha = w(j) / L(j,j) */
        beta2 = beta*beta + sigma*alpha*CS_CONJ(alpha) ;
        if (beta2 <= 0) break ;                     /* not positive definite */
        beta2 = sqrt (beta2) ;
        delta = (sigma > 0) ? (beta / beta2) : (beta2 / beta) ;
        gamma = sigma * CS_CONJ(alpha) / (beta2 * beta) ;
        Lx [p] = delta * Lx [p] + ((sigma > 0) ? (gamma * w [j]) : 0) ;
        beta = beta2 ;
#ifdef CS_COMPLEX
        phase = CS_ABS (Lx [p]) / Lx [p] ;  /* phase = abs(L(j,j))/L(j,j)*/
        Lx [p] *= phase ;                   /* L(j,j) = L(j,j) * phase */
#endif
        for (p++ ; p < Lp [j+1] ; p++)
        {
            w1 = w [Li [p]] ;
            w [Li [p]] = w2 = w1 - alpha * Lx [p] ;
            Lx [p] = delta * Lx [p] + gamma * ((sigma > 0) ? w1 : w2) ;
#ifdef CS_COMPLEX
            Lx [p] *= phase ;               /* L(i,j) = L(i,j) * phase */
#endif
        }
    }
    cs_free (w) ;
    return (beta2 > 0) ;
}
コード例 #9
0
ファイル: csparse.c プロジェクト: chrfilip/Spice
cs *cs_symperm(const cs *A, const int *pinv, int values) {

	int i, j, p, q, i2, j2, n, *Ap, *Ai, *Cp, *Ci, *w;
	double *Cx, *Ax;
	cs *C;
	if (!CS_CSC (A))
		return (NULL); /* check inputs */
	n = A->n;
	Ap = A->p;
	Ai = A->i;
	Ax = A->x;
	C = cs_spalloc(n, n, Ap[n], values && (Ax != NULL), 0); /* alloc result*/
	w = (int *) cs_calloc(n, sizeof(int)); /* get workspace */
	if (!C || !w)
		return (cs_done(C, w, NULL, 0)); /* out of memory */
	Cp = C->p;
	Ci = C->i;
	Cx = C->x;
	for (j = 0; j < n; j++) /* count entries in each column of C */
	{
		j2 = pinv ? pinv[j] : j; /* column j of A is column j2 of C */
		for (p = Ap[j]; p < Ap[j + 1]; p++) {
			i = Ai[p];
			if (i > j)
				continue; /* skip lower triangular part of A */
			i2 = pinv ? pinv[i] : i; /* row i of A is row i2 of C */
			w[CS_MAX (i2, j2)]++; /* column count of C */
		}
	}
	cs_cumsum(Cp, w, n); /* compute column pointers of C */
	for (j = 0; j < n; j++) {
		j2 = pinv ? pinv[j] : j; /* column j of A is column j2 of C */
		for (p = Ap[j]; p < Ap[j + 1]; p++) {
			i = Ai[p];
			if (i > j)
				continue; /* skip lower triangular part of A*/
			i2 = pinv ? pinv[i] : i; /* row i of A is row i2 of C */
			Ci[q = w[CS_MAX (i2, j2)]++] = CS_MIN (i2, j2);
			if (Cx)
				Cx[q] = Ax[p];
		}
	}
	return (cs_done(C, w, NULL, 1)); /* success; free workspace, return C */
}
コード例 #10
0
ファイル: cs_thumb_mex.c プロジェクト: Ascronia/fieldtrip
void mexFunction
(
    int nargout,
    mxArray *pargout [ ],
    int nargin,
    const mxArray *pargin [ ]
)
{
    cs Amatrix, *A ;
    int m, n, mn, m2, n2, k, s, j, ij, sj, si, p, *Ap, *Ai ;
    double aij, *S, *Ax ;
    if (nargout > 1 || nargin < 1 || nargin > 2)
    {
        mexErrMsgTxt ("Usage: S = cs_thumb(A,k)") ;
    }
    A = cs_mex_get_sparse (&Amatrix, 0, 1, pargin [0]) ;    /* get A */
    m = A->m ;
    n = A->n ;
    mn = CS_MAX (m,n) ;
    k = (nargin == 1) ? 256 : mxGetScalar (pargin [1]) ;    /* get k */
    /* s = size of each submatrix; A(1:s,1:s) maps to S(1,1) */
    s = (mn < k) ? 1 : (int) ceil ((double) mn / (double) k) ;
    m2 = (int) ceil ((double) m / (double) s) ;
    n2 = (int) ceil ((double) n / (double) s) ;
    /* create S */
    pargout [0] = mxCreateDoubleMatrix (m2, n2, mxREAL) ;
    S = mxGetPr (pargout [0]) ;
    Ap = A->p ;
    Ai = A->i ;
    Ax = A->x ;
    for (j = 0 ; j < n ; j++)
    {
        sj = j/s ;
        for (p = Ap [j] ; p < Ap [j+1] ; p++)
        {
            si = Ai [p] / s ;
            ij = INDEX (si,sj,m2) ;
            aij = fabs (Ax [p]) ;
            if (ISNAN (aij)) aij = BIG_VALUE ;
            aij = CS_MIN (BIG_VALUE, aij) ;
            S [ij] = CS_MAX (S [ij], aij) ;
        }
    }
}
コード例 #11
0
/* symbolic ordering and analysis for LU */
css *csr_sqr (int order, const csr *A )
{
    int n, ok = 1;
    css *S ;
    if (!CS_CSC (A)) return (NULL) ;        /* check inputs */
    n = A->n ;
    S = (css*)calloc(1, sizeof (css)) ;       /* allocate result S */
    if (!S) return (NULL) ;                 /* out of memory */
    S->q = csr_amd (order, A) ;             /* fill-reducing ordering */
    if (!S->q)
    {
        printf(" csr_sqr error no permutation\n");
    }
    if (order && !S->q) return (csr_sfree (S)) ;

    /* LU factorization */
    S->unz = (double) CS_MIN(4*(A->p [n]) + n, n * n );
    S->lnz = S->unz ;                       /* guess nnz(L) and nnz(U) */
    return (ok ? S : csr_sfree (S)) ;        /* return result S */
}
コード例 #12
0
ファイル: cs_amd_mex.c プロジェクト: Ascronia/fieldtrip
/* cs_amd: approximate minimum degree ordering */
void mexFunction
(
    int nargout,
    mxArray *pargout [ ],
    int nargin,
    const mxArray *pargin [ ]
)
{
    cs Amatrix, *A ;
    int *P, order ;
    if (nargout > 1 || nargin < 1 || nargin > 2)
    {
        mexErrMsgTxt ("Usage: p = cs_amd(A,order)") ;
    }
    A = cs_mex_get_sparse (&Amatrix, 0, 0, pargin [0]) ;    /* get A */
    order = (nargin > 1) ? mxGetScalar (pargin [1]) : 1 ;   /* get ordering */
    order = CS_MAX (order, 1) ;
    order = CS_MIN (order, 3) ;
    P = cs_amd (order, A) ;                         /* min. degree ordering */
    pargout [0] = cs_mex_put_int (P, A->n, 1, 1) ;  /* return P */
}
コード例 #13
0
ファイル: cs_lusol_mex.c プロジェクト: Al-th/matlab
/* cs_lusol: solve A*x=b using a sparse LU factorization */
void mexFunction
(
    int nargout,
    mxArray *pargout [ ],
    int nargin,
    const mxArray *pargin [ ]
)
{
    cs *A, Amatrix ;
    csi order ;
    double *x, *b, tol ;
    if (nargout > 1 || nargin < 2 || nargin > 4)
    {
        mexErrMsgTxt ("Usage: x = cs_lusol(A,b,order,tol)") ;
    }
    A = cs_mex_get_sparse (&Amatrix, 1, 1, pargin [0]) ;    /* get A */
    b = cs_mex_get_double (A->n, pargin [1]) ;              /* get b */
    x = cs_mex_put_double (A->n, b, &(pargout [0])) ;       /* x = b */
    order = (nargin < 3) ? 2 : mxGetScalar (pargin [2]) ;
    order = CS_MAX (order, 0) ;
    order = CS_MIN (order, 3) ;
    if (nargin == 2)
    {
        tol = 1 ;                           /* normal partial pivoting */
    }
    else if (nargin == 3)
    {
        tol = (order == 1) ? 0.001 : 1 ;    /* tol = 0.001 for amd(A+A') */
    }
    else
    {
        tol = mxGetScalar (pargin [3]) ;
    }
    if (!cs_lusol (order, A, x, tol))                       /* x = A\x */
    {
        mexErrMsgTxt ("LU factorization failed (singular or out of memory)") ;
    }
}
コード例 #14
0
/* p = amd(A+A') if symmetric is true, or amd(A'A) otherwise */
CS_INT *cs_amd (CS_INT order, const cs *A)  /* order 0:natural, 1:Chol, 2:LU, 3:QR */
{
    cs *C, *A2, *AT ;
    CS_INT *Cp, *Ci, *last, *W, *len, *nv, *next, *P, *head, *elen, *degree, *w,
        *hhead, *ATp, *ATi, d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1,
        k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi,
        ok, cnz, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, n, m, t ;
    unsigned CS_INT h ;
    /* --- Construct matrix C ----------------------------------------------- */
    if (!CS_CSC (A) || order <= 0 || order > 3) return (NULL) ; /* check */
    AT = cs_transpose (A, 0) ;              /* compute A' */
    if (!AT) return (NULL) ;
    m = A->m ; n = A->n ;
    dense = CS_MAX (16, 10 * sqrt ((double) n)) ;   /* find dense threshold */
    dense = CS_MIN (n-2, dense) ;
    if (order == 1 && n == m)
    {
        C = cs_add (A, AT, 0, 0) ;          /* C = A+A' */
    }
    else if (order == 2)
    {
        ATp = AT->p ;                       /* drop dense columns from AT */
        ATi = AT->i ;
        for (p2 = 0, j = 0 ; j < m ; j++)
        {
            p = ATp [j] ;                   /* column j of AT starts here */
            ATp [j] = p2 ;                  /* new column j starts here */
            if (ATp [j+1] - p > dense) continue ;   /* skip dense col j */
            for ( ; p < ATp [j+1] ; p++) ATi [p2++] = ATi [p] ;
        }
        ATp [m] = p2 ;                      /* finalize AT */
        A2 = cs_transpose (AT, 0) ;         /* A2 = AT' */
        C = A2 ? cs_multiply (AT, A2) : NULL ;  /* C=A'*A with no dense rows */
        cs_spfree (A2) ;
    }
    else
    {
        C = cs_multiply (AT, A) ;           /* C=A'*A */
    }
    cs_spfree (AT) ;
    if (!C) return (NULL) ;
    cs_fkeep (C, &cs_diag, NULL) ;          /* drop diagonal entries */
    Cp = C->p ;
    cnz = Cp [n] ;
    P = cs_malloc (n+1, sizeof (CS_INT)) ;     /* allocate result */
    W = cs_malloc (8*(n+1), sizeof (CS_INT)) ; /* get workspace */
    t = cnz + cnz/5 + 2*n ;                 /* add elbow room to C */
    if (!P || !W || !cs_sprealloc (C, t)) return (cs_idone (P, C, W, 0)) ;
    len  = W           ; nv     = W +   (n+1) ; next   = W + 2*(n+1) ;
    head = W + 3*(n+1) ; elen   = W + 4*(n+1) ; degree = W + 5*(n+1) ;
    w    = W + 6*(n+1) ; hhead  = W + 7*(n+1) ;
    last = P ;                              /* use P as workspace for last */
    /* --- Initialize quotient graph ---------------------------------------- */
    for (k = 0 ; k < n ; k++) len [k] = Cp [k+1] - Cp [k] ;
    len [n] = 0 ;
    nzmax = C->nzmax ;
    Ci = C->i ;
    for (i = 0 ; i <= n ; i++)
    {
        head [i] = -1 ;                     /* degree list i is empty */
        last [i] = -1 ;
        next [i] = -1 ;
        hhead [i] = -1 ;                    /* hash list i is empty */
        nv [i] = 1 ;                        /* node i is just one node */
        w [i] = 1 ;                         /* node i is alive */
        elen [i] = 0 ;                      /* Ek of node i is empty */
        degree [i] = len [i] ;              /* degree of node i */
    }
    mark = cs_wclear (0, 0, w, n) ;         /* clear w */
    elen [n] = -2 ;                         /* n is a dead element */
    Cp [n] = -1 ;                           /* n is a root of assembly tree */
    w [n] = 0 ;                             /* n is a dead element */
    /* --- Initialize degree lists ------------------------------------------ */
    for (i = 0 ; i < n ; i++)
    {
        d = degree [i] ;
        if (d == 0)                         /* node i is empty */
        {
            elen [i] = -2 ;                 /* element i is dead */
            nel++ ;
            Cp [i] = -1 ;                   /* i is a root of assembly tree */
            w [i] = 0 ;
        }
        else if (d > dense)                 /* node i is dense */
        {
            nv [i] = 0 ;                    /* absorb i into element n */
            elen [i] = -1 ;                 /* node i is dead */
            nel++ ;
            Cp [i] = CS_FLIP (n) ;
            nv [n]++ ;
        }
        else
        {
            if (head [d] != -1) last [head [d]] = i ;
            next [i] = head [d] ;           /* put node i in degree list d */
            head [d] = i ;
        }
    }
    while (nel < n)                         /* while (selecting pivots) do */
    {
        /* --- Select node of minimum approximate degree -------------------- */
        for (k = -1 ; mindeg < n && (k = head [mindeg]) == -1 ; mindeg++) ;
        if (next [k] != -1) last [next [k]] = -1 ;
        head [mindeg] = next [k] ;          /* remove k from degree list */
        elenk = elen [k] ;                  /* elenk = |Ek| */
        nvk = nv [k] ;                      /* # of nodes k represents */
        nel += nvk ;                        /* nv[k] nodes of A eliminated */
        /* --- Garbage collection ------------------------------------------- */
        if (elenk > 0 && cnz + mindeg >= nzmax)
        {
            for (j = 0 ; j < n ; j++)
            {
                if ((p = Cp [j]) >= 0)      /* j is a live node or element */
                {
                    Cp [j] = Ci [p] ;       /* save first entry of object */
                    Ci [p] = CS_FLIP (j) ;  /* first entry is now CS_FLIP(j) */
                }
            }
            for (q = 0, p = 0 ; p < cnz ; ) /* scan all of memory */
            {
                if ((j = CS_FLIP (Ci [p++])) >= 0)  /* found object j */
                {
                    Ci [q] = Cp [j] ;       /* restore first entry of object */
                    Cp [j] = q++ ;          /* new pointer to object j */
                    for (k3 = 0 ; k3 < len [j]-1 ; k3++) Ci [q++] = Ci [p++] ;
                }
            }
            cnz = q ;                       /* Ci [cnz...nzmax-1] now free */
        }
        /* --- Construct new element ---------------------------------------- */
        dk = 0 ;
        nv [k] = -nvk ;                     /* flag k as in Lk */
        p = Cp [k] ;
        pk1 = (elenk == 0) ? p : cnz ;      /* do in place if elen[k] == 0 */
        pk2 = pk1 ;
        for (k1 = 1 ; k1 <= elenk + 1 ; k1++)
        {
            if (k1 > elenk)
            {
                e = k ;                     /* search the nodes in k */
                pj = p ;                    /* list of nodes starts at Ci[pj]*/
                ln = len [k] - elenk ;      /* length of list of nodes in k */
            }
            else
            {
                e = Ci [p++] ;              /* search the nodes in e */
                pj = Cp [e] ;
                ln = len [e] ;              /* length of list of nodes in e */
            }
            for (k2 = 1 ; k2 <= ln ; k2++)
            {
                i = Ci [pj++] ;
                if ((nvi = nv [i]) <= 0) continue ; /* node i dead, or seen */
                dk += nvi ;                 /* degree[Lk] += size of node i */
                nv [i] = -nvi ;             /* negate nv[i] to denote i in Lk*/
                Ci [pk2++] = i ;            /* place i in Lk */
                if (next [i] != -1) last [next [i]] = last [i] ;
                if (last [i] != -1)         /* remove i from degree list */
                {
                    next [last [i]] = next [i] ;
                }
                else
                {
                    head [degree [i]] = next [i] ;
                }
            }
            if (e != k)
            {
                Cp [e] = CS_FLIP (k) ;      /* absorb e into k */
                w [e] = 0 ;                 /* e is now a dead element */
            }
        }
        if (elenk != 0) cnz = pk2 ;         /* Ci [cnz...nzmax] is free */
        degree [k] = dk ;                   /* external degree of k - |Lk\i| */
        Cp [k] = pk1 ;                      /* element k is in Ci[pk1..pk2-1] */
        len [k] = pk2 - pk1 ;
        elen [k] = -2 ;                     /* k is now an element */
        /* --- Find set differences ----------------------------------------- */
        mark = cs_wclear (mark, lemax, w, n) ;  /* clear w if necessary */
        for (pk = pk1 ; pk < pk2 ; pk++)    /* scan 1: find |Le\Lk| */
        {
            i = Ci [pk] ;
            if ((eln = elen [i]) <= 0) continue ;/* skip if elen[i] empty */
            nvi = -nv [i] ;                      /* nv [i] was negated */
            wnvi = mark - nvi ;
            for (p = Cp [i] ; p <= Cp [i] + eln - 1 ; p++)  /* scan Ei */
            {
                e = Ci [p] ;
                if (w [e] >= mark)
                {
                    w [e] -= nvi ;          /* decrement |Le\Lk| */
                }
                else if (w [e] != 0)        /* ensure e is a live element */
                {
                    w [e] = degree [e] + wnvi ; /* 1st time e seen in scan 1 */
                }
            }
        }
        /* --- Degree update ------------------------------------------------ */
        for (pk = pk1 ; pk < pk2 ; pk++)    /* scan2: degree update */
        {
            i = Ci [pk] ;                   /* consider node i in Lk */
            p1 = Cp [i] ;
            p2 = p1 + elen [i] - 1 ;
            pn = p1 ;
            for (h = 0, d = 0, p = p1 ; p <= p2 ; p++)    /* scan Ei */
            {
                e = Ci [p] ;
                if (w [e] != 0)             /* e is an unabsorbed element */
                {
                    dext = w [e] - mark ;   /* dext = |Le\Lk| */
                    if (dext > 0)
                    {
                        d += dext ;         /* sum up the set differences */
                        Ci [pn++] = e ;     /* keep e in Ei */
                        h += e ;            /* compute the hash of node i */
                    }
                    else
                    {
                        Cp [e] = CS_FLIP (k) ;  /* aggressive absorb. e->k */
                        w [e] = 0 ;             /* e is a dead element */
                    }
                }
            }
            elen [i] = pn - p1 + 1 ;        /* elen[i] = |Ei| */
            p3 = pn ;
            p4 = p1 + len [i] ;
            for (p = p2 + 1 ; p < p4 ; p++) /* prune edges in Ai */
            {
                j = Ci [p] ;
                if ((nvj = nv [j]) <= 0) continue ; /* node j dead or in Lk */
                d += nvj ;                  /* degree(i) += |j| */
                Ci [pn++] = j ;             /* place j in node list of i */
                h += j ;                    /* compute hash for node i */
            }
            if (d == 0)                     /* check for mass elimination */
            {
                Cp [i] = CS_FLIP (k) ;      /* absorb i into k */
                nvi = -nv [i] ;
                dk -= nvi ;                 /* |Lk| -= |i| */
                nvk += nvi ;                /* |k| += nv[i] */
                nel += nvi ;
                nv [i] = 0 ;
                elen [i] = -1 ;             /* node i is dead */
            }
            else
            {
                degree [i] = CS_MIN (degree [i], d) ;   /* update degree(i) */
                Ci [pn] = Ci [p3] ;         /* move first node to end */
                Ci [p3] = Ci [p1] ;         /* move 1st el. to end of Ei */
                Ci [p1] = k ;               /* add k as 1st element in of Ei */
                len [i] = pn - p1 + 1 ;     /* new len of adj. list of node i */
                h %= n ;                    /* finalize hash of i */
                next [i] = hhead [h] ;      /* place i in hash bucket */
                hhead [h] = i ;
                last [i] = h ;              /* save hash of i in last[i] */
            }
        }                                   /* scan2 is done */
        degree [k] = dk ;                   /* finalize |Lk| */
        lemax = CS_MAX (lemax, dk) ;
        mark = cs_wclear (mark+lemax, lemax, w, n) ;    /* clear w */
        /* --- Supernode detection ------------------------------------------ */
        for (pk = pk1 ; pk < pk2 ; pk++)
        {
            i = Ci [pk] ;
            if (nv [i] >= 0) continue ;         /* skip if i is dead */
            h = last [i] ;                      /* scan hash bucket of node i */
            i = hhead [h] ;
            hhead [h] = -1 ;                    /* hash bucket will be empty */
            for ( ; i != -1 && next [i] != -1 ; i = next [i], mark++)
            {
                ln = len [i] ;
                eln = elen [i] ;
                for (p = Cp [i]+1 ; p <= Cp [i] + ln-1 ; p++) w [Ci [p]] = mark;
                jlast = i ;
                for (j = next [i] ; j != -1 ; ) /* compare i with all j */
                {
                    ok = (len [j] == ln) && (elen [j] == eln) ;
                    for (p = Cp [j] + 1 ; ok && p <= Cp [j] + ln - 1 ; p++)
                    {
                        if (w [Ci [p]] != mark) ok = 0 ;    /* compare i and j*/
                    }
                    if (ok)                     /* i and j are identical */
                    {
                        Cp [j] = CS_FLIP (i) ;  /* absorb j into i */
                        nv [i] += nv [j] ;
                        nv [j] = 0 ;
                        elen [j] = -1 ;         /* node j is dead */
                        j = next [j] ;          /* delete j from hash bucket */
                        next [jlast] = j ;
                    }
                    else
                    {
                        jlast = j ;             /* j and i are different */
                        j = next [j] ;
                    }
                }
            }
        }
        /* --- Finalize new element------------------------------------------ */
        for (p = pk1, pk = pk1 ; pk < pk2 ; pk++)   /* finalize Lk */
        {
            i = Ci [pk] ;
            if ((nvi = -nv [i]) <= 0) continue ;/* skip if i is dead */
            nv [i] = nvi ;                      /* restore nv[i] */
            d = degree [i] + dk - nvi ;         /* compute external degree(i) */
            d = CS_MIN (d, n - nel - nvi) ;
            if (head [d] != -1) last [head [d]] = i ;
            next [i] = head [d] ;               /* put i back in degree list */
            last [i] = -1 ;
            head [d] = i ;
            mindeg = CS_MIN (mindeg, d) ;       /* find new minimum degree */
            degree [i] = d ;
            Ci [p++] = i ;                      /* place i in Lk */
        }
        nv [k] = nvk ;                      /* # nodes absorbed into k */
        if ((len [k] = p-pk1) == 0)         /* length of adj list of element k*/
        {
            Cp [k] = -1 ;                   /* k is a root of the tree */
            w [k] = 0 ;                     /* k is now a dead element */
        }
        if (elenk != 0) cnz = p ;           /* free unused space in Lk */
    }
    /* --- Postordering ----------------------------------------------------- */
    for (i = 0 ; i < n ; i++) Cp [i] = CS_FLIP (Cp [i]) ;/* fix assembly tree */
    for (j = 0 ; j <= n ; j++) head [j] = -1 ;
    for (j = n ; j >= 0 ; j--)              /* place unordered nodes in lists */
    {
        if (nv [j] > 0) continue ;          /* skip if j is an element */
        next [j] = head [Cp [j]] ;          /* place j in list of its parent */
        head [Cp [j]] = j ;
    }
    for (e = n ; e >= 0 ; e--)              /* place elements in lists */
    {
        if (nv [e] <= 0) continue ;         /* skip unless e is an element */
        if (Cp [e] != -1)
        {
            next [e] = head [Cp [e]] ;      /* place e in list of its parent */
            head [Cp [e]] = e ;
        }
    }
    for (k = 0, i = 0 ; i <= n ; i++)       /* postorder the assembly tree */
    {
        if (Cp [i] == -1) k = cs_tdfs (i, k, head, next, P, w) ;
    }
    return (cs_idone (P, C, W, 1)) ;
}
コード例 #15
0
static cs_real_t
_unwarping_mvt(cs_mesh_t            *mesh,
               cs_real_t            *i_face_norm,
               cs_real_t            *b_face_norm,
               cs_real_t            *i_face_cog,
               cs_real_t            *b_face_cog,
               cs_real_t            *loc_vtx_mvt,
               cs_real_t            *i_face_warp,
               cs_real_t            *b_face_warp,
               cs_real_t            *vtx_tolerance,
               double                frac)
{
  cs_lnum_t face_id, i;
  int coord_id;
  cs_lnum_t start_id, end_id, vtx;
  cs_real_t lambda;
  cs_real_t max_vtxtol = 0.;
  cs_real_t maxwarp = 0.;

  for (face_id = 0; face_id < mesh->n_i_faces; face_id++)
    if (maxwarp < i_face_warp[face_id])
      maxwarp = i_face_warp[face_id];
  for (face_id = 0; face_id < mesh->n_b_faces; face_id++)
    if (maxwarp < b_face_warp[face_id])
      maxwarp = b_face_warp[face_id];

  for (i = 0; i < mesh->n_vertices*3; i++)
    loc_vtx_mvt[i] = 0.0;
  for (i = 0; i < mesh->n_vertices; i++)
    if (vtx_tolerance[i] > max_vtxtol)
      max_vtxtol = vtx_tolerance[i];

#if defined(HAVE_MPI)
  if (cs_glob_n_ranks > 1) {
    cs_real_t maxpar[2];
    cs_real_t _maxpar[2];
    maxpar[0] = maxwarp;
    maxpar[1] = max_vtxtol;

    MPI_Allreduce(maxpar, _maxpar, 2, CS_MPI_REAL,
                  MPI_MAX, cs_glob_mpi_comm);

    maxwarp = _maxpar[0];
    max_vtxtol = _maxpar[1];
  }
#endif

  for (face_id = 0; face_id < mesh->n_b_faces; face_id++) {
    start_id = mesh->b_face_vtx_idx[face_id];
    end_id = mesh->b_face_vtx_idx[face_id + 1];
    for (i = start_id; i < end_id; i++) {
      vtx = mesh->b_face_vtx_lst[i];
      lambda = 0.0;
      for (coord_id = 0; coord_id < 3; coord_id++)
        lambda +=  (mesh->vtx_coord[3*vtx + coord_id]
                    - b_face_cog[3*face_id + coord_id])
                    * b_face_norm[3*face_id + coord_id];

      for (coord_id = 0; coord_id < 3; coord_id++) {
        loc_vtx_mvt[vtx*3 + coord_id] -=
          lambda * b_face_norm[3*face_id + coord_id]
                 * UNWARPING_MVT * (b_face_warp[face_id]/maxwarp)
                 * (vtx_tolerance[vtx]/(max_vtxtol*frac));
      }
    }
  }


  for (face_id = 0; face_id < mesh->n_i_faces; face_id++) {
    if (mesh->i_face_cells[face_id][0] < mesh->n_cells) {
      start_id = mesh->i_face_vtx_idx[face_id];
      end_id = mesh->i_face_vtx_idx[face_id + 1];
      for (i = start_id; i < end_id; i++) {
        vtx = mesh->i_face_vtx_lst[i];
        lambda = 0.0;
        for (coord_id = 0; coord_id < 3; coord_id++)
          lambda += (mesh->vtx_coord[3*vtx + coord_id]
                     - i_face_cog[3*face_id + coord_id])
                     * i_face_norm[3*face_id + coord_id];

        for (coord_id = 0; coord_id < 3; coord_id++) {
          loc_vtx_mvt[vtx*3 + coord_id] -=
            lambda * i_face_norm[3*face_id + coord_id]
                   * UNWARPING_MVT * (i_face_warp[face_id]/maxwarp)
                   * (vtx_tolerance[vtx]/(max_vtxtol*frac));
        }
      }
    }
  }

  if (mesh->vtx_interfaces != NULL) { /* Parallel or periodic treatment */
    cs_interface_set_sum(mesh->vtx_interfaces,
                         mesh->n_vertices,
                         3,
                         true,
                         CS_REAL_TYPE,
                         loc_vtx_mvt);
  }

  for (i = 0; i < mesh->n_vertices; i++)
    for (coord_id = 0; coord_id < 3; coord_id++)
      loc_vtx_mvt[3*i + coord_id] = CS_MIN(loc_vtx_mvt[3*i + coord_id],
                                           vtx_tolerance[i]);

  return maxwarp;
}
コード例 #16
0
static void
_get_global_tolerance(cs_mesh_t            *mesh,
                      cs_real_t            *vtx_tolerance)
{
  cs_int_t  i, rank, vtx_id, block_size, shift;
  cs_gnum_t  first_vtx_gnum;

  cs_lnum_t n_vertices = mesh->n_vertices;
  double  *g_vtx_tolerance = NULL, *send_list = NULL, *recv_list = NULL;
  cs_int_t  *send_count = NULL, *recv_count = NULL;
  cs_int_t  *send_shift = NULL, *recv_shift = NULL;
  cs_gnum_t  *send_glist = NULL, *recv_glist = NULL;
  cs_gnum_t  n_g_vertices = mesh->n_g_vertices;
  const cs_gnum_t  *io_gnum = mesh->global_vtx_num;

  MPI_Comm  mpi_comm = cs_glob_mpi_comm;
  const int  local_rank = CS_MAX(cs_glob_rank_id, 0);
  const int  n_ranks = cs_glob_n_ranks;

  /* Define a fvm_io_num_t structure on vertices */

  block_size = n_g_vertices / n_ranks;
  if (n_g_vertices % n_ranks > 0)
    block_size += 1;

  /* Count the number of vertices to send to each rank */
  /* ------------------------------------------------- */

  BFT_MALLOC(send_count, n_ranks, int);
  BFT_MALLOC(recv_count, n_ranks, int);
  BFT_MALLOC(send_shift, n_ranks + 1, int);
  BFT_MALLOC(recv_shift, n_ranks + 1, int);

  send_shift[0] = 0;
  recv_shift[0] = 0;

  for (rank = 0; rank < n_ranks; rank++)
    send_count[rank] = 0;

  for (i = 0; i < n_vertices; i++) {
    rank = (io_gnum[i] - 1)/block_size;
    send_count[rank] += 1;
  }

  MPI_Alltoall(send_count, 1, MPI_INT, recv_count, 1, MPI_INT, mpi_comm);

  for (rank = 0; rank < n_ranks; rank++) {
    send_shift[rank + 1] = send_shift[rank] + send_count[rank];
    recv_shift[rank + 1] = recv_shift[rank] + recv_count[rank];
  }

  assert(send_shift[n_ranks] == n_vertices);

  /* Send the global numbering for each vertex */
  /* ----------------------------------------- */

  BFT_MALLOC(send_glist, n_vertices, cs_gnum_t);
  BFT_MALLOC(recv_glist, recv_shift[n_ranks], cs_gnum_t);

  for (rank = 0; rank < n_ranks; rank++)
    send_count[rank] = 0;

  for (i = 0; i < n_vertices; i++) {
    rank = (io_gnum[i] - 1)/block_size;
    shift = send_shift[rank] + send_count[rank];
    send_count[rank] += 1;
    send_glist[shift] = io_gnum[i];
  }

  MPI_Alltoallv(send_glist, send_count, send_shift, CS_MPI_GNUM,
                recv_glist, recv_count, recv_shift, CS_MPI_GNUM, mpi_comm);

  /* Send the vertex tolerance for each vertex */
  /* ----------------------------------------- */

  BFT_MALLOC(send_list, n_vertices, double);
  BFT_MALLOC(recv_list, recv_shift[n_ranks], double);

  for (rank = 0; rank < n_ranks; rank++)
    send_count[rank] = 0;

  for (i = 0; i < n_vertices; i++) {
    rank = (io_gnum[i] - 1)/block_size;
    shift = send_shift[rank] + send_count[rank];
    send_count[rank] += 1;
    send_list[shift] = vtx_tolerance[i];
  }

  MPI_Alltoallv(send_list, send_count, send_shift, MPI_DOUBLE,
                recv_list, recv_count, recv_shift, MPI_DOUBLE, mpi_comm);

  /* Define the global tolerance array */

  BFT_MALLOC(g_vtx_tolerance, block_size, double);

  for (i = 0; i < block_size; i++)
    g_vtx_tolerance[i] = DBL_MAX;

  first_vtx_gnum = block_size * local_rank + 1;

  for (i = 0; i < recv_shift[n_ranks]; i++) {
    vtx_id = recv_glist[i] - first_vtx_gnum;
    g_vtx_tolerance[vtx_id] = CS_MIN(g_vtx_tolerance[vtx_id], recv_list[i]);
  }

  /* Replace local vertex tolerance by the new computed global tolerance */

  for (i = 0; i < recv_shift[n_ranks]; i++) {
    vtx_id = recv_glist[i] - first_vtx_gnum;
    recv_list[i] = g_vtx_tolerance[vtx_id];
  }

  MPI_Alltoallv(recv_list, recv_count, recv_shift, MPI_DOUBLE,
                send_list, send_count, send_shift, MPI_DOUBLE, mpi_comm);

  for (rank = 0; rank < n_ranks; rank++)
    send_count[rank] = 0;

  for (i = 0; i < n_vertices; i++) {
    rank = (io_gnum[i] - 1)/block_size;
    shift = send_shift[rank] + send_count[rank];
    send_count[rank] += 1;
    vtx_tolerance[i] = send_list[shift];
  }

  /* Free memory */

  BFT_FREE(recv_glist);
  BFT_FREE(send_glist);
  BFT_FREE(send_list);
  BFT_FREE(recv_list);
  BFT_FREE(recv_count);
  BFT_FREE(send_count);
  BFT_FREE(recv_shift);
  BFT_FREE(send_shift);
  BFT_FREE(g_vtx_tolerance);
}