コード例 #1
0
void FlushSerialRequestResend() {
    pc.printf("Resend: %d\n",(gcode_LastN+1));
    //char cmdbuffer[100]="Resend:";
    //ltoa(gcode_LastN+1, cmdbuffer+7, 10);
    //pc.flush();
    //pc.printf(cmdbuffer);
    ClearToSend();
}
コード例 #2
0
ファイル: gcode.c プロジェクト: emente/Freecut
void FlushSerialRequestResend() {
    printf("Resend:%lu\n", gcode_LastN + 1);
    ClearToSend();
}
コード例 #3
0
void process_commands() {
    unsigned long codenum; //throw away variable

    if (code_seen('N')) {
        gcode_N = code_value_long();
        if (gcode_N != gcode_LastN+1 && (strstr(cmdbuffer, "M110") == NULL) ) {
            gcode_LastN=0;
            pc.printf("ok");
            //if(gcode_N != gcode_LastN+1 && !code_seen("M110") ) {   //Hmm, compile size is different between using this vs the line above even though it should be the same thing. Keeping old method.
            //pc.printf("Serial Error: Line Number is not Last Line Number+1, Last Line:");
            //pc.printf("%d\n",gcode_LastN);
            //FlushSerialRequestResend();
            return;
        }

        if (code_seen('*')) {
            int checksum = 0;
            int count=0;
            while (cmdbuffer[count] != '*') checksum = checksum^cmdbuffer[count++];

            if ( (int)code_value() != checksum) {
                //pc.printf("Error: checksum mismatch, Last Line:");
                //pc.printf("%d\n",gcode_LastN);
                //FlushSerialRequestResend();
                return;
            }
            //if no errors, continue parsing
        } else {
            //pc.printf("Error: No Checksum with line number, Last Line:");
            //pc.printf("%d\n",gcode_LastN);
            //FlushSerialRequestResend();
            return;
        }

        gcode_LastN = gcode_N;
        //if no errors, continue parsing
    } else { // if we don't receive 'N' but still see '*'
        if (code_seen('*')) {
            //pc.printf("Error: No Line Number with checksum, Last Line:");
            //pc.printf("%d\n",gcode_LastN);
            return;
        }
    }

    //continues parsing only if we don't receive any 'N' or '*' or no errors if we do. :)

    if (code_seen('G')) {
        switch ((int)code_value()) {
            case 0: // G0 -> G1
            case 1: // G1
                reset_timers();//avoid timer overflow after 30 seconds
                get_coordinates(); // For X Y Z E F
                x_steps_to_take = abs(destination_x - current_x)*x_steps_per_unit;
                y_steps_to_take = abs(destination_y - current_y)*y_steps_per_unit;
                z_steps_to_take = abs(destination_z - current_z)*z_steps_per_unit;
                e_steps_to_take = abs(destination_e - current_e)*e_steps_per_unit;
                //printf(" x_steps_to_take:%d\n", x_steps_to_take);


                time_for_move = max(X_TIME_FOR_MOVE,Y_TIME_FOR_MOVE);
                time_for_move = max(time_for_move,Z_TIME_FOR_MOVE);
                time_for_move = max(time_for_move,E_TIME_FOR_MOVE);

                if (x_steps_to_take) x_interval = time_for_move/x_steps_to_take;
                if (y_steps_to_take) y_interval = time_for_move/y_steps_to_take;
                if (z_steps_to_take) z_interval = time_for_move/z_steps_to_take;
                if (e_steps_to_take) e_interval = time_for_move/e_steps_to_take;


                x_steps_remaining = x_steps_to_take;
                y_steps_remaining = y_steps_to_take;
                z_steps_remaining = z_steps_to_take;
                e_steps_remaining = e_steps_to_take;


                if (DEBUGGING) {
                    pc.printf("destination_x: %f\n",destination_x);
                    pc.printf("current_x: %f\n",current_x);
                    pc.printf("x_steps_to_take: %d\n",x_steps_to_take);
                    pc.printf("X_TIME_FOR_MOVE: %f\n",X_TIME_FOR_MOVE);
                    pc.printf("x_interval: %f\n\n",x_interval);

                    pc.printf("destination_y: %f\n",destination_y);
                    pc.printf("current_y: %f\n",current_y);
                    pc.printf("y_steps_to_take: %d\n",y_steps_to_take);
                    pc.printf("Y_TIME_FOR_MOVE: %f\n",Y_TIME_FOR_MOVE);
                    pc.printf("y_interval: %f\n\n",y_interval);

                    pc.printf("destination_z: %f\n",destination_z);
                    pc.printf("current_z: %f\n",current_z);
                    pc.printf("z_steps_to_take: %d\n",z_steps_to_take);
                    pc.printf("Z_TIME_FOR_MOVE: %f\n",Z_TIME_FOR_MOVE);
                    pc.printf("z_interval: %f\n\n",z_interval);

                    pc.printf("destination_e: %f\n",destination_e);
                    pc.printf("current_e: %f\n",current_e);
                    pc.printf("e_steps_to_take: %d\n",e_steps_to_take);
                    pc.printf("E_TIME_FOR_MOVE: %f\n",E_TIME_FOR_MOVE);
                    pc.printf("e_interval: %f\n\n",e_interval);
                }

                linear_move(); // make the move
                ClearToSend();
                return;
            case 4: // G4 dwell
                codenum = 0;
                if (code_seen('P')) codenum = code_value(); // milliseconds to wait
                if (code_seen('S')) codenum = code_value()*1000; // seconds to wait
                previous_millis_heater = millis();  // keep track of when we started waiting
                while ((millis() - previous_millis_heater) < codenum ) manage_heater(); //manage heater until time is up
                break;
            case 90: // G90
                relative_mode = false;
                break;
            case 91: // G91
                relative_mode = true;
                break;
            case 92: // G92
                if (code_seen('X')) current_x = code_value();
                if (code_seen('Y')) current_y = code_value();
                if (code_seen('Z')) current_z = code_value();
                if (code_seen('E')) current_e = code_value();
                break;
           case 93: // G93
                pc.printf("previous_micros:%d\n", previous_micros);
                pc.printf("previous_micros_x:%d\n", previous_micros_x);
                pc.printf("previous_micros_y:%d\n", previous_micros_y);
                pc.printf("previous_micros_z:%d\n", previous_micros_z);
                break;

        }
    }

    if (code_seen('M')) {

        switch ( (int)code_value() ) {
            case 104: // M104 - set hot-end temp
                
                if (code_seen('S'))
                {
                     
                    target_raw = temp2analog(code_value());
                    //pc.printf("target_raw: %d\n ", target_raw);
                }
                break;
        case 140: // M140 - set heated-printbed temp
                if (code_seen('S'))
                {
                     
                    target_raw1 = temp2analog(code_value());
                    //pc.printf("target_raw1: %d\n ", target_raw);
                }
                break;                
                
            case 105: // M105
                pc.printf("ok T:");
                if (TEMP_0_PIN != NC) {
                    pc.printf("%f\n", analog2temp( (p_temp0.read_u16())  ));
                } else {
                    pc.printf("0.0\n");
                }
                if (!code_seen('N')) return; // If M105 is sent from generated gcode, then it needs a response.
                break;
            case 109: // M109 - Wait for heater to reach target.
                if (code_seen('S')) target_raw = temp2analog(code_value());
                previous_millis_heater = millis();
                while (current_raw < target_raw) {
                    if ( (millis()-previous_millis_heater) > 1000 ) { //Print Temp Reading every 1 second while heating up.
                        pc.printf("ok T:");
                        if (TEMP_0_PIN != NC) {
                            pc.printf("%f\n", analog2temp(p_temp0.read_u16()));
                        } else {
                            pc.printf("0.0\n");
                        }
                        previous_millis_heater = millis();
                    }
                    manage_heater();
                }
                break;
            case 106: //M106 Fan On
                p_fan = 1;
                break;
            case 107: //M107 Fan Off
                p_fan = 0;
                break;
            case 80: // M81 - ATX Power On
                //if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,OUTPUT); //GND
                break;
            case 81: // M81 - ATX Power Off
                //if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT); //Floating
                break;
            case 82:
                relative_mode_e = false;
                break;
            case 83:
                relative_mode_e = true;
                break;
            case 84:
                disable_x();
                disable_y();
                disable_z();
                disable_e();
                break;
            case 85: // M85
                code_seen('S');
                max_inactive_time = code_value()*1000;
                break;
            case 86: // M86 If Endstop is Not Activated then Abort Print
                if (code_seen('X')) {
                    if (X_MIN_PIN != NC) {
                        if ( p_X_min == ENDSTOPS_INVERTING ) {
                            kill(3);
                        }
                    }
                }
                if (code_seen('Y')) {
                    if (Y_MIN_PIN != NC) {
                        if ( p_Y_min == ENDSTOPS_INVERTING ) {
                            kill(4);
                        }
                    }
                }
                break;
            case 92: // M92
                if (code_seen('X')) x_steps_per_unit = code_value();
                if (code_seen('Y')) y_steps_per_unit = code_value();
                if (code_seen('Z')) z_steps_per_unit = code_value();
                if (code_seen('E')) e_steps_per_unit = code_value();
                break;
        }

    }

    ClearToSend();
}