/*---------------- * BitmapShouldInitializeSharedState * * The first process to come here and see the state to the BM_INITIAL * will become the leader for the parallel bitmap scan and will be * responsible for populating the TIDBitmap. The other processes will * be blocked by the condition variable until the leader wakes them up. * --------------- */ static bool BitmapShouldInitializeSharedState(ParallelBitmapHeapState *pstate) { SharedBitmapState state; while (1) { SpinLockAcquire(&pstate->mutex); state = pstate->state; if (pstate->state == BM_INITIAL) pstate->state = BM_INPROGRESS; SpinLockRelease(&pstate->mutex); /* Exit if bitmap is done, or if we're the leader. */ if (state != BM_INPROGRESS) break; /* Wait for the leader to wake us up. */ ConditionVariableSleep(&pstate->cv, WAIT_EVENT_PARALLEL_BITMAP_SCAN); } ConditionVariableCancelSleep(); return (state == BM_INITIAL); }
/* * _bt_parallel_seize() -- Begin the process of advancing the scan to a new * page. Other scans must wait until we call bt_parallel_release() or * bt_parallel_done(). * * The return value is true if we successfully seized the scan and false * if we did not. The latter case occurs if no pages remain for the current * set of scankeys. * * If the return value is true, *pageno returns the next or current page * of the scan (depending on the scan direction). An invalid block number * means the scan hasn't yet started, and P_NONE means we've reached the end. * The first time a participating process reaches the last page, it will return * true and set *pageno to P_NONE; after that, further attempts to seize the * scan will return false. * * Callers should ignore the value of pageno if the return value is false. */ bool _bt_parallel_seize(IndexScanDesc scan, BlockNumber *pageno) { BTScanOpaque so = (BTScanOpaque) scan->opaque; BTPS_State pageStatus; bool exit_loop = false; bool status = true; ParallelIndexScanDesc parallel_scan = scan->parallel_scan; BTParallelScanDesc btscan; *pageno = P_NONE; btscan = (BTParallelScanDesc) OffsetToPointer((void *) parallel_scan, parallel_scan->ps_offset); while (1) { SpinLockAcquire(&btscan->btps_mutex); pageStatus = btscan->btps_pageStatus; if (so->arrayKeyCount < btscan->btps_arrayKeyCount) { /* Parallel scan has already advanced to a new set of scankeys. */ status = false; } else if (pageStatus == BTPARALLEL_DONE) { /* * We're done with this set of scankeys. This may be the end, or * there could be more sets to try. */ status = false; } else if (pageStatus != BTPARALLEL_ADVANCING) { /* * We have successfully seized control of the scan for the purpose * of advancing it to a new page! */ btscan->btps_pageStatus = BTPARALLEL_ADVANCING; *pageno = btscan->btps_scanPage; exit_loop = true; } SpinLockRelease(&btscan->btps_mutex); if (exit_loop || !status) break; ConditionVariableSleep(&btscan->btps_cv, WAIT_EVENT_BTREE_PAGE); } ConditionVariableCancelSleep(); return status; }
/* * Prepare to wait on a given condition variable. * * This can optionally be called before entering a test/sleep loop. * Doing so is more efficient if we'll need to sleep at least once. * However, if the first test of the exit condition is likely to succeed, * it's more efficient to omit the ConditionVariablePrepareToSleep call. * See comments in ConditionVariableSleep for more detail. * * Caution: "before entering the loop" means you *must* test the exit * condition between calling ConditionVariablePrepareToSleep and calling * ConditionVariableSleep. If that is inconvenient, omit calling * ConditionVariablePrepareToSleep. */ void ConditionVariablePrepareToSleep(ConditionVariable *cv) { int pgprocno = MyProc->pgprocno; /* * If first time through in this process, create a WaitEventSet, which * we'll reuse for all condition variable sleeps. */ if (cv_wait_event_set == NULL) { WaitEventSet *new_event_set; new_event_set = CreateWaitEventSet(TopMemoryContext, 2); AddWaitEventToSet(new_event_set, WL_LATCH_SET, PGINVALID_SOCKET, MyLatch, NULL); AddWaitEventToSet(new_event_set, WL_EXIT_ON_PM_DEATH, PGINVALID_SOCKET, NULL, NULL); /* Don't set cv_wait_event_set until we have a correct WES. */ cv_wait_event_set = new_event_set; } /* * If some other sleep is already prepared, cancel it; this is necessary * because we have just one static variable tracking the prepared sleep, * and also only one cvWaitLink in our PGPROC. It's okay to do this * because whenever control does return to the other test-and-sleep loop, * its ConditionVariableSleep call will just re-establish that sleep as * the prepared one. */ if (cv_sleep_target != NULL) ConditionVariableCancelSleep(); /* Record the condition variable on which we will sleep. */ cv_sleep_target = cv; /* * Reset my latch before adding myself to the queue, to ensure that we * don't miss a wakeup that occurs immediately. */ ResetLatch(MyLatch); /* Add myself to the wait queue. */ SpinLockAcquire(&cv->mutex); proclist_push_tail(&cv->wakeup, pgprocno, cvWaitLink); SpinLockRelease(&cv->mutex); }
/* * Main entry point for checkpointer process * * This is invoked from AuxiliaryProcessMain, which has already created the * basic execution environment, but not enabled signals yet. */ void CheckpointerMain(void) { sigjmp_buf local_sigjmp_buf; MemoryContext checkpointer_context; CheckpointerShmem->checkpointer_pid = MyProcPid; /* * Properly accept or ignore signals the postmaster might send us * * Note: we deliberately ignore SIGTERM, because during a standard Unix * system shutdown cycle, init will SIGTERM all processes at once. We * want to wait for the backends to exit, whereupon the postmaster will * tell us it's okay to shut down (via SIGUSR2). */ pqsignal(SIGHUP, ChkptSigHupHandler); /* set flag to read config * file */ pqsignal(SIGINT, ReqCheckpointHandler); /* request checkpoint */ pqsignal(SIGTERM, SIG_IGN); /* ignore SIGTERM */ pqsignal(SIGQUIT, chkpt_quickdie); /* hard crash time */ pqsignal(SIGALRM, SIG_IGN); pqsignal(SIGPIPE, SIG_IGN); pqsignal(SIGUSR1, chkpt_sigusr1_handler); pqsignal(SIGUSR2, ReqShutdownHandler); /* request shutdown */ /* * Reset some signals that are accepted by postmaster but not here */ pqsignal(SIGCHLD, SIG_DFL); pqsignal(SIGTTIN, SIG_DFL); pqsignal(SIGTTOU, SIG_DFL); pqsignal(SIGCONT, SIG_DFL); pqsignal(SIGWINCH, SIG_DFL); /* We allow SIGQUIT (quickdie) at all times */ sigdelset(&BlockSig, SIGQUIT); /* * Initialize so that first time-driven event happens at the correct time. */ last_checkpoint_time = last_xlog_switch_time = (pg_time_t) time(NULL); /* * Create a resource owner to keep track of our resources (currently only * buffer pins). */ CurrentResourceOwner = ResourceOwnerCreate(NULL, "Checkpointer"); /* * Create a memory context that we will do all our work in. We do this so * that we can reset the context during error recovery and thereby avoid * possible memory leaks. Formerly this code just ran in * TopMemoryContext, but resetting that would be a really bad idea. */ checkpointer_context = AllocSetContextCreate(TopMemoryContext, "Checkpointer", ALLOCSET_DEFAULT_SIZES); MemoryContextSwitchTo(checkpointer_context); /* * If an exception is encountered, processing resumes here. * * See notes in postgres.c about the design of this coding. */ if (sigsetjmp(local_sigjmp_buf, 1) != 0) { /* Since not using PG_TRY, must reset error stack by hand */ error_context_stack = NULL; /* Prevent interrupts while cleaning up */ HOLD_INTERRUPTS(); /* Report the error to the server log */ EmitErrorReport(); /* * These operations are really just a minimal subset of * AbortTransaction(). We don't have very many resources to worry * about in checkpointer, but we do have LWLocks, buffers, and temp * files. */ LWLockReleaseAll(); ConditionVariableCancelSleep(); pgstat_report_wait_end(); AbortBufferIO(); UnlockBuffers(); /* buffer pins are released here: */ ResourceOwnerRelease(CurrentResourceOwner, RESOURCE_RELEASE_BEFORE_LOCKS, false, true); /* we needn't bother with the other ResourceOwnerRelease phases */ AtEOXact_Buffers(false); AtEOXact_SMgr(); AtEOXact_Files(); AtEOXact_HashTables(false); /* Warn any waiting backends that the checkpoint failed. */ if (ckpt_active) { SpinLockAcquire(&CheckpointerShmem->ckpt_lck); CheckpointerShmem->ckpt_failed++; CheckpointerShmem->ckpt_done = CheckpointerShmem->ckpt_started; SpinLockRelease(&CheckpointerShmem->ckpt_lck); ckpt_active = false; } /* * Now return to normal top-level context and clear ErrorContext for * next time. */ MemoryContextSwitchTo(checkpointer_context); FlushErrorState(); /* Flush any leaked data in the top-level context */ MemoryContextResetAndDeleteChildren(checkpointer_context); /* Now we can allow interrupts again */ RESUME_INTERRUPTS(); /* * Sleep at least 1 second after any error. A write error is likely * to be repeated, and we don't want to be filling the error logs as * fast as we can. */ pg_usleep(1000000L); /* * Close all open files after any error. This is helpful on Windows, * where holding deleted files open causes various strange errors. * It's not clear we need it elsewhere, but shouldn't hurt. */ smgrcloseall(); } /* We can now handle ereport(ERROR) */ PG_exception_stack = &local_sigjmp_buf; /* * Unblock signals (they were blocked when the postmaster forked us) */ PG_SETMASK(&UnBlockSig); /* * Ensure all shared memory values are set correctly for the config. Doing * this here ensures no race conditions from other concurrent updaters. */ UpdateSharedMemoryConfig(); /* * Advertise our latch that backends can use to wake us up while we're * sleeping. */ ProcGlobal->checkpointerLatch = &MyProc->procLatch; /* * Loop forever */ for (;;) { bool do_checkpoint = false; int flags = 0; pg_time_t now; int elapsed_secs; int cur_timeout; int rc; /* Clear any already-pending wakeups */ ResetLatch(MyLatch); /* * Process any requests or signals received recently. */ AbsorbFsyncRequests(); if (got_SIGHUP) { got_SIGHUP = false; ProcessConfigFile(PGC_SIGHUP); /* * Checkpointer is the last process to shut down, so we ask it to * hold the keys for a range of other tasks required most of which * have nothing to do with checkpointing at all. * * For various reasons, some config values can change dynamically * so the primary copy of them is held in shared memory to make * sure all backends see the same value. We make Checkpointer * responsible for updating the shared memory copy if the * parameter setting changes because of SIGHUP. */ UpdateSharedMemoryConfig(); } if (checkpoint_requested) { checkpoint_requested = false; do_checkpoint = true; BgWriterStats.m_requested_checkpoints++; } if (shutdown_requested) { /* * From here on, elog(ERROR) should end with exit(1), not send * control back to the sigsetjmp block above */ ExitOnAnyError = true; /* Close down the database */ ShutdownXLOG(0, 0); /* Normal exit from the checkpointer is here */ proc_exit(0); /* done */ } /* * Force a checkpoint if too much time has elapsed since the last one. * Note that we count a timed checkpoint in stats only when this * occurs without an external request, but we set the CAUSE_TIME flag * bit even if there is also an external request. */ now = (pg_time_t) time(NULL); elapsed_secs = now - last_checkpoint_time; if (elapsed_secs >= CheckPointTimeout) { if (!do_checkpoint) BgWriterStats.m_timed_checkpoints++; do_checkpoint = true; flags |= CHECKPOINT_CAUSE_TIME; } /* * Do a checkpoint if requested. */ if (do_checkpoint) { bool ckpt_performed = false; bool do_restartpoint; /* * Check if we should perform a checkpoint or a restartpoint. As a * side-effect, RecoveryInProgress() initializes TimeLineID if * it's not set yet. */ do_restartpoint = RecoveryInProgress(); /* * Atomically fetch the request flags to figure out what kind of a * checkpoint we should perform, and increase the started-counter * to acknowledge that we've started a new checkpoint. */ SpinLockAcquire(&CheckpointerShmem->ckpt_lck); flags |= CheckpointerShmem->ckpt_flags; CheckpointerShmem->ckpt_flags = 0; CheckpointerShmem->ckpt_started++; SpinLockRelease(&CheckpointerShmem->ckpt_lck); /* * The end-of-recovery checkpoint is a real checkpoint that's * performed while we're still in recovery. */ if (flags & CHECKPOINT_END_OF_RECOVERY) do_restartpoint = false; /* * We will warn if (a) too soon since last checkpoint (whatever * caused it) and (b) somebody set the CHECKPOINT_CAUSE_XLOG flag * since the last checkpoint start. Note in particular that this * implementation will not generate warnings caused by * CheckPointTimeout < CheckPointWarning. */ if (!do_restartpoint && (flags & CHECKPOINT_CAUSE_XLOG) && elapsed_secs < CheckPointWarning) ereport(LOG, (errmsg_plural("checkpoints are occurring too frequently (%d second apart)", "checkpoints are occurring too frequently (%d seconds apart)", elapsed_secs, elapsed_secs), errhint("Consider increasing the configuration parameter \"max_wal_size\"."))); /* * Initialize checkpointer-private variables used during * checkpoint. */ ckpt_active = true; if (do_restartpoint) ckpt_start_recptr = GetXLogReplayRecPtr(NULL); else ckpt_start_recptr = GetInsertRecPtr(); ckpt_start_time = now; ckpt_cached_elapsed = 0; /* * Do the checkpoint. */ if (!do_restartpoint) { CreateCheckPoint(flags); ckpt_performed = true; } else ckpt_performed = CreateRestartPoint(flags); /* * After any checkpoint, close all smgr files. This is so we * won't hang onto smgr references to deleted files indefinitely. */ smgrcloseall(); /* * Indicate checkpoint completion to any waiting backends. */ SpinLockAcquire(&CheckpointerShmem->ckpt_lck); CheckpointerShmem->ckpt_done = CheckpointerShmem->ckpt_started; SpinLockRelease(&CheckpointerShmem->ckpt_lck); if (ckpt_performed) { /* * Note we record the checkpoint start time not end time as * last_checkpoint_time. This is so that time-driven * checkpoints happen at a predictable spacing. */ last_checkpoint_time = now; } else { /* * We were not able to perform the restartpoint (checkpoints * throw an ERROR in case of error). Most likely because we * have not received any new checkpoint WAL records since the * last restartpoint. Try again in 15 s. */ last_checkpoint_time = now - CheckPointTimeout + 15; } ckpt_active = false; } /* Check for archive_timeout and switch xlog files if necessary. */ CheckArchiveTimeout(); /* * Send off activity statistics to the stats collector. (The reason * why we re-use bgwriter-related code for this is that the bgwriter * and checkpointer used to be just one process. It's probably not * worth the trouble to split the stats support into two independent * stats message types.) */ pgstat_send_bgwriter(); /* * Sleep until we are signaled or it's time for another checkpoint or * xlog file switch. */ now = (pg_time_t) time(NULL); elapsed_secs = now - last_checkpoint_time; if (elapsed_secs >= CheckPointTimeout) continue; /* no sleep for us ... */ cur_timeout = CheckPointTimeout - elapsed_secs; if (XLogArchiveTimeout > 0 && !RecoveryInProgress()) { elapsed_secs = now - last_xlog_switch_time; if (elapsed_secs >= XLogArchiveTimeout) continue; /* no sleep for us ... */ cur_timeout = Min(cur_timeout, XLogArchiveTimeout - elapsed_secs); } rc = WaitLatch(MyLatch, WL_LATCH_SET | WL_TIMEOUT | WL_POSTMASTER_DEATH, cur_timeout * 1000L /* convert to ms */, WAIT_EVENT_CHECKPOINTER_MAIN); /* * Emergency bailout if postmaster has died. This is to avoid the * necessity for manual cleanup of all postmaster children. */ if (rc & WL_POSTMASTER_DEATH) exit(1); } }
/* * Find a previously created slot and mark it as used by this backend. */ void ReplicationSlotAcquire(const char *name, bool nowait) { ReplicationSlot *slot; int active_pid; int i; retry: Assert(MyReplicationSlot == NULL); /* * Search for the named slot and mark it active if we find it. If the * slot is already active, we exit the loop with active_pid set to the PID * of the backend that owns it. */ active_pid = 0; slot = NULL; LWLockAcquire(ReplicationSlotControlLock, LW_SHARED); for (i = 0; i < max_replication_slots; i++) { ReplicationSlot *s = &ReplicationSlotCtl->replication_slots[i]; if (s->in_use && strcmp(name, NameStr(s->data.name)) == 0) { /* * This is the slot we want. We don't know yet if it's active, so * get ready to sleep on it in case it is. (We may end up not * sleeping, but we don't want to do this while holding the * spinlock.) */ ConditionVariablePrepareToSleep(&s->active_cv); SpinLockAcquire(&s->mutex); active_pid = s->active_pid; if (active_pid == 0) active_pid = s->active_pid = MyProcPid; SpinLockRelease(&s->mutex); slot = s; break; } } LWLockRelease(ReplicationSlotControlLock); /* If we did not find the slot, error out. */ if (slot == NULL) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_OBJECT), errmsg("replication slot \"%s\" does not exist", name))); /* * If we found the slot but it's already active in another backend, we * either error out or retry after a short wait, as caller specified. */ if (active_pid != MyProcPid) { if (nowait) ereport(ERROR, (errcode(ERRCODE_OBJECT_IN_USE), errmsg("replication slot \"%s\" is active for PID %d", name, active_pid))); /* Wait here until we get signaled, and then restart */ ConditionVariableSleep(&slot->active_cv, WAIT_EVENT_REPLICATION_SLOT_DROP); ConditionVariableCancelSleep(); goto retry; } else ConditionVariableCancelSleep(); /* no sleep needed after all */ /* Let everybody know we've modified this slot */ ConditionVariableBroadcast(&slot->active_cv); /* We made this slot active, so it's ours now. */ MyReplicationSlot = slot; }
/* * Arrive at this barrier, wait for all other attached participants to arrive * too and then return. Increments the current phase. The caller must be * attached. * * While waiting, pg_stat_activity shows a wait_event_class and wait_event * controlled by the wait_event_info passed in, which should be a value from * one of the WaitEventXXX enums defined in pgstat.h. * * Return true in one arbitrarily chosen participant. Return false in all * others. The return code can be used to elect one participant to execute a * phase of work that must be done serially while other participants wait. */ bool BarrierArriveAndWait(Barrier *barrier, uint32 wait_event_info) { bool release = false; bool elected; int start_phase; int next_phase; SpinLockAcquire(&barrier->mutex); start_phase = barrier->phase; next_phase = start_phase + 1; ++barrier->arrived; if (barrier->arrived == barrier->participants) { release = true; barrier->arrived = 0; barrier->phase = next_phase; barrier->elected = next_phase; } SpinLockRelease(&barrier->mutex); /* * If we were the last expected participant to arrive, we can release our * peers and return true to indicate that this backend has been elected to * perform any serial work. */ if (release) { ConditionVariableBroadcast(&barrier->condition_variable); return true; } /* * Otherwise we have to wait for the last participant to arrive and * advance the phase. */ elected = false; ConditionVariablePrepareToSleep(&barrier->condition_variable); for (;;) { /* * We know that phase must either be start_phase, indicating that we * need to keep waiting, or next_phase, indicating that the last * participant that we were waiting for has either arrived or detached * so that the next phase has begun. The phase cannot advance any * further than that without this backend's participation, because * this backend is attached. */ SpinLockAcquire(&barrier->mutex); Assert(barrier->phase == start_phase || barrier->phase == next_phase); release = barrier->phase == next_phase; if (release && barrier->elected != next_phase) { /* * Usually the backend that arrives last and releases the other * backends is elected to return true (see above), so that it can * begin processing serial work while it has a CPU timeslice. * However, if the barrier advanced because someone detached, then * one of the backends that is awoken will need to be elected. */ barrier->elected = barrier->phase; elected = true; } SpinLockRelease(&barrier->mutex); if (release) break; ConditionVariableSleep(&barrier->condition_variable, wait_event_info); } ConditionVariableCancelSleep(); return elected; }
/* * Main entry point for bgwriter process * * This is invoked from AuxiliaryProcessMain, which has already created the * basic execution environment, but not enabled signals yet. */ void BackgroundWriterMain(void) { sigjmp_buf local_sigjmp_buf; MemoryContext bgwriter_context; bool prev_hibernate; WritebackContext wb_context; /* * Properly accept or ignore signals the postmaster might send us. * * bgwriter doesn't participate in ProcSignal signalling, but a SIGUSR1 * handler is still needed for latch wakeups. */ pqsignal(SIGHUP, BgSigHupHandler); /* set flag to read config file */ pqsignal(SIGINT, SIG_IGN); pqsignal(SIGTERM, ReqShutdownHandler); /* shutdown */ pqsignal(SIGQUIT, bg_quickdie); /* hard crash time */ pqsignal(SIGALRM, SIG_IGN); pqsignal(SIGPIPE, SIG_IGN); pqsignal(SIGUSR1, bgwriter_sigusr1_handler); pqsignal(SIGUSR2, SIG_IGN); /* * Reset some signals that are accepted by postmaster but not here */ pqsignal(SIGCHLD, SIG_DFL); pqsignal(SIGTTIN, SIG_DFL); pqsignal(SIGTTOU, SIG_DFL); pqsignal(SIGCONT, SIG_DFL); pqsignal(SIGWINCH, SIG_DFL); /* We allow SIGQUIT (quickdie) at all times */ sigdelset(&BlockSig, SIGQUIT); /* * Create a resource owner to keep track of our resources (currently only * buffer pins). */ CurrentResourceOwner = ResourceOwnerCreate(NULL, "Background Writer"); /* * We just started, assume there has been either a shutdown or * end-of-recovery snapshot. */ last_snapshot_ts = GetCurrentTimestamp(); /* * Create a memory context that we will do all our work in. We do this so * that we can reset the context during error recovery and thereby avoid * possible memory leaks. Formerly this code just ran in * TopMemoryContext, but resetting that would be a really bad idea. */ bgwriter_context = AllocSetContextCreate(TopMemoryContext, "Background Writer", ALLOCSET_DEFAULT_SIZES); MemoryContextSwitchTo(bgwriter_context); WritebackContextInit(&wb_context, &bgwriter_flush_after); /* * If an exception is encountered, processing resumes here. * * See notes in postgres.c about the design of this coding. */ if (sigsetjmp(local_sigjmp_buf, 1) != 0) { /* Since not using PG_TRY, must reset error stack by hand */ error_context_stack = NULL; /* Prevent interrupts while cleaning up */ HOLD_INTERRUPTS(); /* Report the error to the server log */ EmitErrorReport(); /* * These operations are really just a minimal subset of * AbortTransaction(). We don't have very many resources to worry * about in bgwriter, but we do have LWLocks, buffers, and temp files. */ LWLockReleaseAll(); ConditionVariableCancelSleep(); AbortBufferIO(); UnlockBuffers(); /* buffer pins are released here: */ ResourceOwnerRelease(CurrentResourceOwner, RESOURCE_RELEASE_BEFORE_LOCKS, false, true); /* we needn't bother with the other ResourceOwnerRelease phases */ AtEOXact_Buffers(false); AtEOXact_SMgr(); AtEOXact_Files(); AtEOXact_HashTables(false); /* * Now return to normal top-level context and clear ErrorContext for * next time. */ MemoryContextSwitchTo(bgwriter_context); FlushErrorState(); /* Flush any leaked data in the top-level context */ MemoryContextResetAndDeleteChildren(bgwriter_context); /* re-initialize to avoid repeated errors causing problems */ WritebackContextInit(&wb_context, &bgwriter_flush_after); /* Now we can allow interrupts again */ RESUME_INTERRUPTS(); /* * Sleep at least 1 second after any error. A write error is likely * to be repeated, and we don't want to be filling the error logs as * fast as we can. */ pg_usleep(1000000L); /* * Close all open files after any error. This is helpful on Windows, * where holding deleted files open causes various strange errors. * It's not clear we need it elsewhere, but shouldn't hurt. */ smgrcloseall(); /* Report wait end here, when there is no further possibility of wait */ pgstat_report_wait_end(); } /* We can now handle ereport(ERROR) */ PG_exception_stack = &local_sigjmp_buf; /* * Unblock signals (they were blocked when the postmaster forked us) */ PG_SETMASK(&UnBlockSig); /* * Reset hibernation state after any error. */ prev_hibernate = false; /* * Loop forever */ for (;;) { bool can_hibernate; int rc; /* Clear any already-pending wakeups */ ResetLatch(MyLatch); if (got_SIGHUP) { got_SIGHUP = false; ProcessConfigFile(PGC_SIGHUP); } if (shutdown_requested) { /* * From here on, elog(ERROR) should end with exit(1), not send * control back to the sigsetjmp block above */ ExitOnAnyError = true; /* Normal exit from the bgwriter is here */ proc_exit(0); /* done */ } /* * Do one cycle of dirty-buffer writing. */ can_hibernate = BgBufferSync(&wb_context); /* * Send off activity statistics to the stats collector */ pgstat_send_bgwriter(); if (FirstCallSinceLastCheckpoint()) { /* * After any checkpoint, close all smgr files. This is so we * won't hang onto smgr references to deleted files indefinitely. */ smgrcloseall(); } /* * Log a new xl_running_xacts every now and then so replication can * get into a consistent state faster (think of suboverflowed * snapshots) and clean up resources (locks, KnownXids*) more * frequently. The costs of this are relatively low, so doing it 4 * times (LOG_SNAPSHOT_INTERVAL_MS) a minute seems fine. * * We assume the interval for writing xl_running_xacts is * significantly bigger than BgWriterDelay, so we don't complicate the * overall timeout handling but just assume we're going to get called * often enough even if hibernation mode is active. It's not that * important that log_snap_interval_ms is met strictly. To make sure * we're not waking the disk up unnecessarily on an idle system we * check whether there has been any WAL inserted since the last time * we've logged a running xacts. * * We do this logging in the bgwriter as it is the only process that * is run regularly and returns to its mainloop all the time. E.g. * Checkpointer, when active, is barely ever in its mainloop and thus * makes it hard to log regularly. */ if (XLogStandbyInfoActive() && !RecoveryInProgress()) { TimestampTz timeout = 0; TimestampTz now = GetCurrentTimestamp(); timeout = TimestampTzPlusMilliseconds(last_snapshot_ts, LOG_SNAPSHOT_INTERVAL_MS); /* * Only log if enough time has passed and interesting records have * been inserted since the last snapshot. Have to compare with <= * instead of < because GetLastImportantRecPtr() points at the * start of a record, whereas last_snapshot_lsn points just past * the end of the record. */ if (now >= timeout && last_snapshot_lsn <= GetLastImportantRecPtr()) { last_snapshot_lsn = LogStandbySnapshot(); last_snapshot_ts = now; } } /* * Sleep until we are signaled or BgWriterDelay has elapsed. * * Note: the feedback control loop in BgBufferSync() expects that we * will call it every BgWriterDelay msec. While it's not critical for * correctness that that be exact, the feedback loop might misbehave * if we stray too far from that. Hence, avoid loading this process * down with latch events that are likely to happen frequently during * normal operation. */ rc = WaitLatch(MyLatch, WL_LATCH_SET | WL_TIMEOUT | WL_POSTMASTER_DEATH, BgWriterDelay /* ms */ , WAIT_EVENT_BGWRITER_MAIN); /* * If no latch event and BgBufferSync says nothing's happening, extend * the sleep in "hibernation" mode, where we sleep for much longer * than bgwriter_delay says. Fewer wakeups save electricity. When a * backend starts using buffers again, it will wake us up by setting * our latch. Because the extra sleep will persist only as long as no * buffer allocations happen, this should not distort the behavior of * BgBufferSync's control loop too badly; essentially, it will think * that the system-wide idle interval didn't exist. * * There is a race condition here, in that a backend might allocate a * buffer between the time BgBufferSync saw the alloc count as zero * and the time we call StrategyNotifyBgWriter. While it's not * critical that we not hibernate anyway, we try to reduce the odds of * that by only hibernating when BgBufferSync says nothing's happening * for two consecutive cycles. Also, we mitigate any possible * consequences of a missed wakeup by not hibernating forever. */ if (rc == WL_TIMEOUT && can_hibernate && prev_hibernate) { /* Ask for notification at next buffer allocation */ StrategyNotifyBgWriter(MyProc->pgprocno); /* Sleep ... */ rc = WaitLatch(MyLatch, WL_LATCH_SET | WL_TIMEOUT | WL_POSTMASTER_DEATH, BgWriterDelay * HIBERNATE_FACTOR, WAIT_EVENT_BGWRITER_HIBERNATE); /* Reset the notification request in case we timed out */ StrategyNotifyBgWriter(-1); } /* * Emergency bailout if postmaster has died. This is to avoid the * necessity for manual cleanup of all postmaster children. */ if (rc & WL_POSTMASTER_DEATH) exit(1); prev_hibernate = can_hibernate; } }
/* * Main entry point for walwriter process * * This is invoked from AuxiliaryProcessMain, which has already created the * basic execution environment, but not enabled signals yet. */ void WalWriterMain(void) { sigjmp_buf local_sigjmp_buf; MemoryContext walwriter_context; int left_till_hibernate; bool hibernating; /* * Properly accept or ignore signals the postmaster might send us * * We have no particular use for SIGINT at the moment, but seems * reasonable to treat like SIGTERM. */ pqsignal(SIGHUP, WalSigHupHandler); /* set flag to read config file */ pqsignal(SIGINT, WalShutdownHandler); /* request shutdown */ pqsignal(SIGTERM, WalShutdownHandler); /* request shutdown */ pqsignal(SIGQUIT, wal_quickdie); /* hard crash time */ pqsignal(SIGALRM, SIG_IGN); pqsignal(SIGPIPE, SIG_IGN); pqsignal(SIGUSR1, walwriter_sigusr1_handler); pqsignal(SIGUSR2, SIG_IGN); /* not used */ /* * Reset some signals that are accepted by postmaster but not here */ pqsignal(SIGCHLD, SIG_DFL); pqsignal(SIGTTIN, SIG_DFL); pqsignal(SIGTTOU, SIG_DFL); pqsignal(SIGCONT, SIG_DFL); pqsignal(SIGWINCH, SIG_DFL); /* We allow SIGQUIT (quickdie) at all times */ sigdelset(&BlockSig, SIGQUIT); /* * Create a resource owner to keep track of our resources (not clear that * we need this, but may as well have one). */ CurrentResourceOwner = ResourceOwnerCreate(NULL, "Wal Writer"); /* * Create a memory context that we will do all our work in. We do this so * that we can reset the context during error recovery and thereby avoid * possible memory leaks. Formerly this code just ran in * TopMemoryContext, but resetting that would be a really bad idea. */ walwriter_context = AllocSetContextCreate(TopMemoryContext, "Wal Writer", ALLOCSET_DEFAULT_SIZES); MemoryContextSwitchTo(walwriter_context); /* * If an exception is encountered, processing resumes here. * * This code is heavily based on bgwriter.c, q.v. */ if (sigsetjmp(local_sigjmp_buf, 1) != 0) { /* Since not using PG_TRY, must reset error stack by hand */ error_context_stack = NULL; /* Prevent interrupts while cleaning up */ HOLD_INTERRUPTS(); /* Report the error to the server log */ EmitErrorReport(); /* * These operations are really just a minimal subset of * AbortTransaction(). We don't have very many resources to worry * about in walwriter, but we do have LWLocks, and perhaps buffers? */ LWLockReleaseAll(); ConditionVariableCancelSleep(); pgstat_report_wait_end(); AbortBufferIO(); UnlockBuffers(); /* buffer pins are released here: */ ResourceOwnerRelease(CurrentResourceOwner, RESOURCE_RELEASE_BEFORE_LOCKS, false, true); /* we needn't bother with the other ResourceOwnerRelease phases */ AtEOXact_Buffers(false); AtEOXact_SMgr(); AtEOXact_Files(); AtEOXact_HashTables(false); /* * Now return to normal top-level context and clear ErrorContext for * next time. */ MemoryContextSwitchTo(walwriter_context); FlushErrorState(); /* Flush any leaked data in the top-level context */ MemoryContextResetAndDeleteChildren(walwriter_context); /* Now we can allow interrupts again */ RESUME_INTERRUPTS(); /* * Sleep at least 1 second after any error. A write error is likely * to be repeated, and we don't want to be filling the error logs as * fast as we can. */ pg_usleep(1000000L); /* * Close all open files after any error. This is helpful on Windows, * where holding deleted files open causes various strange errors. * It's not clear we need it elsewhere, but shouldn't hurt. */ smgrcloseall(); } /* We can now handle ereport(ERROR) */ PG_exception_stack = &local_sigjmp_buf; /* * Unblock signals (they were blocked when the postmaster forked us) */ PG_SETMASK(&UnBlockSig); /* * Reset hibernation state after any error. */ left_till_hibernate = LOOPS_UNTIL_HIBERNATE; hibernating = false; SetWalWriterSleeping(false); /* * Advertise our latch that backends can use to wake us up while we're * sleeping. */ ProcGlobal->walwriterLatch = &MyProc->procLatch; /* * Loop forever */ for (;;) { long cur_timeout; int rc; /* * Advertise whether we might hibernate in this cycle. We do this * before resetting the latch to ensure that any async commits will * see the flag set if they might possibly need to wake us up, and * that we won't miss any signal they send us. (If we discover work * to do in the last cycle before we would hibernate, the global flag * will be set unnecessarily, but little harm is done.) But avoid * touching the global flag if it doesn't need to change. */ if (hibernating != (left_till_hibernate <= 1)) { hibernating = (left_till_hibernate <= 1); SetWalWriterSleeping(hibernating); } /* Clear any already-pending wakeups */ ResetLatch(MyLatch); /* * Process any requests or signals received recently. */ if (got_SIGHUP) { got_SIGHUP = false; ProcessConfigFile(PGC_SIGHUP); } if (shutdown_requested) { /* Normal exit from the walwriter is here */ proc_exit(0); /* done */ } /* * Do what we're here for; then, if XLogBackgroundFlush() found useful * work to do, reset hibernation counter. */ if (XLogBackgroundFlush()) left_till_hibernate = LOOPS_UNTIL_HIBERNATE; else if (left_till_hibernate > 0) left_till_hibernate--; /* * Sleep until we are signaled or WalWriterDelay has elapsed. If we * haven't done anything useful for quite some time, lengthen the * sleep time so as to reduce the server's idle power consumption. */ if (left_till_hibernate > 0) cur_timeout = WalWriterDelay; /* in ms */ else cur_timeout = WalWriterDelay * HIBERNATE_FACTOR; rc = WaitLatch(MyLatch, WL_LATCH_SET | WL_TIMEOUT | WL_POSTMASTER_DEATH, cur_timeout, WAIT_EVENT_WAL_WRITER_MAIN); /* * Emergency bailout if postmaster has died. This is to avoid the * necessity for manual cleanup of all postmaster children. */ if (rc & WL_POSTMASTER_DEATH) exit(1); } }
/* * Wake up all processes sleeping on the given CV. * * This guarantees to wake all processes that were sleeping on the CV * at time of call, but processes that add themselves to the list mid-call * will typically not get awakened. */ void ConditionVariableBroadcast(ConditionVariable *cv) { int pgprocno = MyProc->pgprocno; PGPROC *proc = NULL; bool have_sentinel = false; /* * In some use-cases, it is common for awakened processes to immediately * re-queue themselves. If we just naively try to reduce the wakeup list * to empty, we'll get into a potentially-indefinite loop against such a * process. The semantics we really want are just to be sure that we have * wakened all processes that were in the list at entry. We can use our * own cvWaitLink as a sentinel to detect when we've finished. * * A seeming flaw in this approach is that someone else might signal the * CV and in doing so remove our sentinel entry. But that's fine: since * CV waiters are always added and removed in order, that must mean that * every previous waiter has been wakened, so we're done. We'll get an * extra "set" on our latch from the someone else's signal, which is * slightly inefficient but harmless. * * We can't insert our cvWaitLink as a sentinel if it's already in use in * some other proclist. While that's not expected to be true for typical * uses of this function, we can deal with it by simply canceling any * prepared CV sleep. The next call to ConditionVariableSleep will take * care of re-establishing the lost state. */ if (cv_sleep_target != NULL) ConditionVariableCancelSleep(); /* * Inspect the state of the queue. If it's empty, we have nothing to do. * If there's exactly one entry, we need only remove and signal that * entry. Otherwise, remove the first entry and insert our sentinel. */ SpinLockAcquire(&cv->mutex); /* While we're here, let's assert we're not in the list. */ Assert(!proclist_contains(&cv->wakeup, pgprocno, cvWaitLink)); if (!proclist_is_empty(&cv->wakeup)) { proc = proclist_pop_head_node(&cv->wakeup, cvWaitLink); if (!proclist_is_empty(&cv->wakeup)) { proclist_push_tail(&cv->wakeup, pgprocno, cvWaitLink); have_sentinel = true; } } SpinLockRelease(&cv->mutex); /* Awaken first waiter, if there was one. */ if (proc != NULL) SetLatch(&proc->procLatch); while (have_sentinel) { /* * Each time through the loop, remove the first wakeup list entry, and * signal it unless it's our sentinel. Repeat as long as the sentinel * remains in the list. * * Notice that if someone else removes our sentinel, we will waken one * additional process before exiting. That's intentional, because if * someone else signals the CV, they may be intending to waken some * third process that added itself to the list after we added the * sentinel. Better to give a spurious wakeup (which should be * harmless beyond wasting some cycles) than to lose a wakeup. */ proc = NULL; SpinLockAcquire(&cv->mutex); if (!proclist_is_empty(&cv->wakeup)) proc = proclist_pop_head_node(&cv->wakeup, cvWaitLink); have_sentinel = proclist_contains(&cv->wakeup, pgprocno, cvWaitLink); SpinLockRelease(&cv->mutex); if (proc != NULL && proc != MyProc) SetLatch(&proc->procLatch); } }