コード例 #1
0
ファイル: IPLConvolve.cpp プロジェクト: WangDequan/cs4670
void InstantiateConvolutionOf(CImageOf<T> img)
{
    CFloatImage kernel;
    Convolve(img, img, kernel);
    ConvolveSeparable(img, img, kernel, kernel, 1);
}
コード例 #2
0
ファイル: Feature.cpp プロジェクト: actionfarsi/cv-pj4
Feature 
HOGFeatureExtractor::operator()(const CByteImage& img_) const
{
	/******** BEGIN TODO ********/
	// Compute the Histogram of Oriented Gradients feature
	// Steps are:
	// 1) Compute gradients in x and y directions. We provide the 
	//    derivative kernel proposed in the paper in _kernelDx and
	//    _kernelDy.
	// 2) Compute gradient magnitude and orientation
	// 3) Add contribution each pixel to HOG cells whose
	//    support overlaps with pixel. Each cell has a support of size
	//    _cellSize and each histogram has _nAngularBins.
	// 4) Normalize HOG for each cell. One simple strategy that is
	//    is also used in the SIFT descriptor is to first threshold
	//    the bin values so that no bin value is larger than some
	//    threshold (we leave it up to you do find this value) and
	//    then re-normalize the histogram so that it has norm 1. A more 
	//    elaborate normalization scheme is proposed in Dalal & Triggs
	//    paper but we leave that as extra credit.
	// 
	// Useful functions:
	// convertRGB2GrayImage, TypeConvert, WarpGlobal, Convolve

	
	int xCells = ceil(1.*img_.Shape().width  / _cellSize);
	int yCells = ceil(1.*img_.Shape().height / _cellSize);

	CFloatImage HOGHist(xCells, yCells, _nAngularBins);
	HOGHist.ClearPixels();

	CByteImage gray(img_.Shape());
	CFloatImage grayF(img_.Shape().width, img_.Shape().height, 1);

	convertRGB2GrayImage(img_, gray);
	TypeConvert(gray, grayF);

	CFloatImage diffX( img_.Shape()), diffY( img_.Shape());

	Convolve(grayF, diffX, _kernelDx);
	Convolve(grayF, diffY, _kernelDy);
	
	CFloatImage grad(grayF.Shape()), grad2(grayF.Shape());
	CFloatImage angl(grayF.Shape()), angl2(grayF.Shape());
	
	for (int y = 0; y <grayF.Shape().height; y++){
		for (int x = 0; x<grayF.Shape().width; x++) {
			grad2.Pixel(x,y,0) = (diffX.Pixel(x,y,0) * diffX.Pixel(x,y,0) +
							     diffY.Pixel(x,y,0) * diffY.Pixel(x,y,0));
			angl2.Pixel(x,y,0) = atan(diffY.Pixel(x,y,0) / abs(diffY.Pixel(x,y,0)));
		}
	}

	// Bilinear Filter
	ConvolveSeparable(grad2, grad, ConvolveKernel_121,ConvolveKernel_121,1);
	ConvolveSeparable(angl2, angl, ConvolveKernel_121,ConvolveKernel_121,1);
	//WriteFile(diffX, "angle.tga");
	//WriteFile(diffY, "angleG.tga");

	for (int y = 0; y <grayF.Shape().height; y++){
		for (int x = 0; x<grayF.Shape().width; x++) {
			// Fit in the bins
			int a = angl.Pixel(x,y,0) / 3.14 * (_nAngularBins) + _nAngularBins/2;		
			// Histogram
			HOGHist.Pixel(floor(1.*x / _cellSize),
						  floor(1.*y / _cellSize),
						  a) += grad.Pixel(x,y,0);
		}
	}
	
	// Normalization 
	float threshold = 0.7;
	for (int y = 0; y < yCells; y++){
		for (int x = 0; x < xCells; x++){
			float total = 0;
			for (int a = 0; a < _nAngularBins; a++) {
				if (HOGHist.Pixel(x,y,a) > threshold)
					HOGHist.Pixel(x,y,a) = threshold;
				// Sum for normalization
				total += HOGHist.Pixel(x,y,a);
			}
			for (int a = 0;a< _nAngularBins; a++) {
				HOGHist.Pixel(x,y,a) /= total;
				
			}
		}
	}
	
	return HOGHist;
	/******** END TODO ********/

}