static void _BezierPatchLowQuality(u8 *&dest, u16 *&indices, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) { const float third = 1.0f / 3.0f; // Fast and easy way - just draw the control points, generate some very basic normal vector subsitutes. // Very inaccurate though but okay for Loco Roco. Maybe should keep it as an option. float u_base = patch.u_index / 3.0f; float v_base = patch.v_index / 3.0f; GEPatchPrimType prim_type = patch.primType; for (int tile_v = 0; tile_v < 3; tile_v++) { for (int tile_u = 0; tile_u < 3; tile_u++) { int point_index = tile_u + tile_v * 4; SimpleVertex v0 = *patch.points[point_index]; SimpleVertex v1 = *patch.points[point_index + 1]; SimpleVertex v2 = *patch.points[point_index + 4]; SimpleVertex v3 = *patch.points[point_index + 5]; // Generate UV. TODO: Do this even if UV specified in control points? if ((origVertType & GE_VTYPE_TC_MASK) == 0) { float u = u_base + tile_u * third; float v = v_base + tile_v * third; v0.uv[0] = u; v0.uv[1] = v; v1.uv[0] = u + third; v1.uv[1] = v; v2.uv[0] = u; v2.uv[1] = v + third; v3.uv[0] = u + third; v3.uv[1] = v + third; } // Generate normal if lighting is enabled (otherwise there's no point). // This is a really poor quality algorithm, we get facet normals. if (patch.computeNormals) { Vec3Packedf norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos); norm.Normalize(); if (patch.patchFacing) norm *= -1.0f; v0.nrm = norm; v1.nrm = norm; v2.nrm = norm; v3.nrm = norm; } int total = patch.index * 3 * 3 * 4; // A patch has 3x3 tiles, and each tiles have 4 vertices. int tile_index = tile_u + tile_v * 3; int idx0 = total + tile_index * 4 + 0; int idx1 = total + tile_index * 4 + 1; int idx2 = total + tile_index * 4 + 2; int idx3 = total + tile_index * 4 + 3; CopyQuad(dest, &v0, &v1, &v2, &v3); CopyQuadIndex(indices, prim_type, idx0, idx1, idx2, idx3); count += 6; } } }
// Prepare mesh of one patch for "Instanced Tessellation". static void TessellateBezierPatchHardware(u8 *&dest, u16 *indices, int &count, int tess_u, int tess_v, GEPatchPrimType primType) { SimpleVertex *&vertices = (SimpleVertex*&)dest; float inv_u = 1.0f / (float)tess_u; float inv_v = 1.0f / (float)tess_v; // Generating simple input vertices for the bezier-computing vertex shader. for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) { for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) { SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u]; vert.pos.x = (float)tile_u * inv_u; vert.pos.y = (float)tile_v * inv_v; } } // Combine the vertices into triangles. for (int tile_v = 0; tile_v < tess_v; ++tile_v) { for (int tile_u = 0; tile_u < tess_u; ++tile_u) { int idx0 = tile_v * (tess_u + 1) + tile_u; int idx1 = tile_v * (tess_u + 1) + tile_u + 1; int idx2 = (tile_v + 1) * (tess_u + 1) + tile_u; int idx3 = (tile_v + 1) * (tess_u + 1) + tile_u + 1; CopyQuadIndex(indices, primType, idx0, idx1, idx2, idx3); count += 6; } } }
// Prepare mesh of one patch for "Instanced Tessellation". static void TessellateSplinePatchHardware(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch) { SimpleVertex *&vertices = (SimpleVertex*&)dest; float inv_u = 1.0f / (float)spatch.tess_u; float inv_v = 1.0f / (float)spatch.tess_v; // Generating simple input vertices for the spline-computing vertex shader. for (int tile_v = 0; tile_v < spatch.tess_v + 1; ++tile_v) { for (int tile_u = 0; tile_u < spatch.tess_u + 1; ++tile_u) { SimpleVertex &vert = vertices[tile_v * (spatch.tess_u + 1) + tile_u]; vert.pos.x = (float)tile_u * inv_u; vert.pos.y = (float)tile_v * inv_v; // TODO: Move to shader uniform and unify this method spline and bezier if necessary. // For compute normal vert.nrm.x = inv_u; vert.nrm.y = inv_v; } } // Combine the vertices into triangles. for (int tile_v = 0; tile_v < spatch.tess_v; ++tile_v) { for (int tile_u = 0; tile_u < spatch.tess_u; ++tile_u) { int idx0 = tile_v * (spatch.tess_u + 1) + tile_u; int idx1 = tile_v * (spatch.tess_u + 1) + tile_u + 1; int idx2 = (tile_v + 1) * (spatch.tess_u + 1) + tile_u; int idx3 = (tile_v + 1) * (spatch.tess_u + 1) + tile_u + 1; CopyQuadIndex(indices, spatch.primType, idx0, idx1, idx2, idx3); count += 6; } } }
static void _BezierPatchHighQuality(u8 *&dest, u16 *&indices, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType, int maxVertices) { const float third = 1.0f / 3.0f; // Downsample until it fits, in case crazy tesselation factors are sent. while ((tess_u + 1) * (tess_v + 1) > maxVertices) { tess_u /= 2; tess_v /= 2; } // First compute all the vertices and put them in an array SimpleVertex *&vertices = (SimpleVertex*&)dest; Vec3Packedf *horiz = new Vec3Packedf[(tess_u + 1) * 4]; Vec3Packedf *horiz2 = horiz + (tess_u + 1) * 1; Vec3Packedf *horiz3 = horiz + (tess_u + 1) * 2; Vec3Packedf *horiz4 = horiz + (tess_u + 1) * 3; Vec3Packedf *derivU1 = new Vec3Packedf[(tess_u + 1) * 4]; Vec3Packedf *derivU2 = derivU1 + (tess_u + 1) * 1; Vec3Packedf *derivU3 = derivU1 + (tess_u + 1) * 2; Vec3Packedf *derivU4 = derivU1 + (tess_u + 1) * 3; bool computeNormals = patch.computeNormals; // Precompute the horizontal curves to we only have to evaluate the vertical ones. for (int i = 0; i < tess_u + 1; i++) { float u = ((float)i / (float)tess_u); horiz[i] = Bernstein3D(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u); horiz2[i] = Bernstein3D(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u); horiz3[i] = Bernstein3D(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u); horiz4[i] = Bernstein3D(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u); if (computeNormals) { derivU1[i] = Bernstein3DDerivative(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u); derivU2[i] = Bernstein3DDerivative(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u); derivU3[i] = Bernstein3DDerivative(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u); derivU4[i] = Bernstein3DDerivative(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u); } } for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) { for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) { float u = ((float)tile_u / (float)tess_u); float v = ((float)tile_v / (float)tess_v); float bu = u; float bv = v; // TODO: Should be able to precompute the four curves per U, then just Bernstein per V. Will benefit large tesselation factors. const Vec3Packedf &pos1 = horiz[tile_u]; const Vec3Packedf &pos2 = horiz2[tile_u]; const Vec3Packedf &pos3 = horiz3[tile_u]; const Vec3Packedf &pos4 = horiz4[tile_u]; SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u]; if (computeNormals) { const Vec3Packedf &derivU1_ = derivU1[tile_u]; const Vec3Packedf &derivU2_ = derivU2[tile_u]; const Vec3Packedf &derivU3_ = derivU3[tile_u]; const Vec3Packedf &derivU4_ = derivU4[tile_u]; Vec3Packedf derivU = Bernstein3D(derivU1_, derivU2_, derivU3_, derivU4_, bv); Vec3Packedf derivV = Bernstein3DDerivative(pos1, pos2, pos3, pos4, bv); vert.nrm = Cross(derivU, derivV).Normalized(); if (patch.patchFacing) vert.nrm *= -1.0f; } else { vert.nrm.SetZero(); } vert.pos = Bernstein3D(pos1, pos2, pos3, pos4, bv); if ((origVertType & GE_VTYPE_TC_MASK) == 0) { // Generate texcoord vert.uv[0] = u + patch.u_index * third; vert.uv[1] = v + patch.v_index * third; } else { // Sample UV from control points patch.sampleTexUV(u, v, vert.uv[0], vert.uv[1]); } if (origVertType & GE_VTYPE_COL_MASK) { patch.sampleColor(u, v, vert.color); } else { memcpy(vert.color, patch.points[0]->color, 4); } } } delete[] derivU1; delete[] horiz; GEPatchPrimType prim_type = patch.primType; // Combine the vertices into triangles. for (int tile_v = 0; tile_v < tess_v; ++tile_v) { for (int tile_u = 0; tile_u < tess_u; ++tile_u) { int total = patch.index * (tess_u + 1) * (tess_v + 1); int idx0 = total + tile_v * (tess_u + 1) + tile_u; int idx1 = total + tile_v * (tess_u + 1) + tile_u + 1; int idx2 = total + (tile_v + 1) * (tess_u + 1) + tile_u; int idx3 = total + (tile_v + 1) * (tess_u + 1) + tile_u + 1; CopyQuadIndex(indices, prim_type, idx0, idx1, idx2, idx3); count += 6; } } dest += (tess_u + 1) * (tess_v + 1) * sizeof(SimpleVertex); }
static void SplinePatchFullQuality(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType, int quality, int maxVertices) { // Full (mostly) correct tessellation of spline patches. // Not very fast. float *knot_u = new float[spatch.count_u + 4]; float *knot_v = new float[spatch.count_v + 4]; spline_knot(spatch.count_u - 1, spatch.type_u, knot_u); spline_knot(spatch.count_v - 1, spatch.type_v, knot_v); // Increase tesselation based on the size. Should be approximately right? int patch_div_s = (spatch.count_u - 3) * spatch.tess_u; int patch_div_t = (spatch.count_v - 3) * spatch.tess_v; if (quality > 1) { patch_div_s /= quality; patch_div_t /= quality; } // Downsample until it fits, in case crazy tesselation factors are sent. while ((patch_div_s + 1) * (patch_div_t + 1) > maxVertices) { patch_div_s /= 2; patch_div_t /= 2; } if (patch_div_s < 2) patch_div_s = 2; if (patch_div_t < 2) patch_div_t = 2; // First compute all the vertices and put them in an array SimpleVertex *&vertices = (SimpleVertex*&)dest; float tu_width = (float)spatch.count_u - 3.0f; float tv_height = (float)spatch.count_v - 3.0f; // int max_idx = spatch.count_u * spatch.count_v; bool computeNormals = spatch.computeNormals; float one_over_patch_div_s = 1.0f / (float)(patch_div_s); float one_over_patch_div_t = 1.0f / (float)(patch_div_t); for (int tile_v = 0; tile_v < patch_div_t + 1; tile_v++) { float v = (float)tile_v * (float)(spatch.count_v - 3) * one_over_patch_div_t; if (v < 0.0f) v = 0.0f; for (int tile_u = 0; tile_u < patch_div_s + 1; tile_u++) { float u = (float)tile_u * (float)(spatch.count_u - 3) * one_over_patch_div_s; if (u < 0.0f) u = 0.0f; SimpleVertex *vert = &vertices[tile_v * (patch_div_s + 1) + tile_u]; Vec4f vert_color(0, 0, 0, 0); Vec3f vert_pos; vert_pos.SetZero(); Vec3f vert_nrm; if (origNrm) { vert_nrm.SetZero(); } if (origCol) { vert_color.SetZero(); } else { memcpy(vert->color, spatch.points[0]->color, 4); } if (origTc) { vert->uv[0] = 0.0f; vert->uv[1] = 0.0f; } else { vert->uv[0] = tu_width * ((float)tile_u * one_over_patch_div_s); vert->uv[1] = tv_height * ((float)tile_v * one_over_patch_div_t); } // Collect influences from surrounding control points. float u_weights[4]; float v_weights[4]; int iu = (int)u; int iv = (int)v; // TODO: Would really like to fix the surrounding logic somehow to get rid of these but I can't quite get it right.. // Without the previous epsilons and with large count_u, we will end up doing an out of bounds access later without these. if (iu >= spatch.count_u - 3) iu = spatch.count_u - 4; if (iv >= spatch.count_v - 3) iv = spatch.count_v - 4; spline_n_4(iu, u, knot_u, u_weights); spline_n_4(iv, v, knot_v, v_weights); // Handle degenerate patches. without this, spatch.points[] may read outside the number of initialized points. int patch_w = std::min(spatch.count_u - iu, 4); int patch_h = std::min(spatch.count_v - iv, 4); for (int ii = 0; ii < patch_w; ++ii) { for (int jj = 0; jj < patch_h; ++jj) { float u_spline = u_weights[ii]; float v_spline = v_weights[jj]; float f = u_spline * v_spline; if (f > 0.0f) { #ifdef _M_SSE Vec4f fv(_mm_set_ps1(f)); #else Vec4f fv = Vec4f::AssignToAll(f); #endif int idx = spatch.count_u * (iv + jj) + (iu + ii); /* if (idx >= max_idx) { char temp[512]; snprintf(temp, sizeof(temp), "count_u: %d count_v: %d patch_w: %d patch_h: %d ii: %d jj: %d iu: %d iv: %d patch_div_s: %d patch_div_t: %d\n", spatch.count_u, spatch.count_v, patch_w, patch_h, ii, jj, iu, iv, patch_div_s, patch_div_t); OutputDebugStringA(temp); DebugBreak(); }*/ SimpleVertex *a = spatch.points[idx]; AccumulateWeighted(vert_pos, a->pos, fv); if (origTc) { vert->uv[0] += a->uv[0] * f; vert->uv[1] += a->uv[1] * f; } if (origCol) { Vec4f a_color = Vec4f::FromRGBA(a->color_32); AccumulateWeighted(vert_color, a_color, fv); } if (origNrm) { AccumulateWeighted(vert_nrm, a->nrm, fv); } } } } vert->pos = vert_pos; if (origNrm) { #ifdef _M_SSE const __m128 normalize = SSENormalizeMultiplier(useSSE4, vert_nrm.vec); vert_nrm.vec = _mm_mul_ps(vert_nrm.vec, normalize); #else vert_nrm.Normalize(); #endif vert->nrm = vert_nrm; } else { vert->nrm.SetZero(); vert->nrm.z = 1.0f; } if (origCol) { vert->color_32 = vert_color.ToRGBA(); } } } delete[] knot_u; delete[] knot_v; // Hacky normal generation through central difference. if (spatch.computeNormals && !origNrm) { #ifdef _M_SSE const __m128 facing = spatch.patchFacing ? _mm_set_ps1(-1.0f) : _mm_set_ps1(1.0f); #endif for (int v = 0; v < patch_div_t + 1; v++) { Vec3f vl_pos = vertices[v * (patch_div_s + 1)].pos; Vec3f vc_pos = vertices[v * (patch_div_s + 1)].pos; for (int u = 0; u < patch_div_s + 1; u++) { const int l = std::max(0, u - 1); const int t = std::max(0, v - 1); const int r = std::min(patch_div_s, u + 1); const int b = std::min(patch_div_t, v + 1); const Vec3f vr_pos = vertices[v * (patch_div_s + 1) + r].pos; #ifdef _M_SSE const __m128 right = _mm_sub_ps(vr_pos.vec, vl_pos.vec); const Vec3f vb_pos = vertices[b * (patch_div_s + 1) + u].pos; const Vec3f vt_pos = vertices[t * (patch_div_s + 1) + u].pos; const __m128 down = _mm_sub_ps(vb_pos.vec, vt_pos.vec); const __m128 crossed = SSECrossProduct(right, down); const __m128 normalize = SSENormalizeMultiplier(useSSE4, crossed); Vec3f finalNrm = _mm_mul_ps(normalize, _mm_mul_ps(crossed, facing)); vertices[v * (patch_div_s + 1) + u].nrm = finalNrm; #else const Vec3Packedf &right = vr_pos - vl_pos; const Vec3Packedf &down = vertices[b * (patch_div_s + 1) + u].pos - vertices[t * (patch_div_s + 1) + u].pos; vertices[v * (patch_div_s + 1) + u].nrm = Cross(right, down).Normalized(); if (spatch.patchFacing) { vertices[v * (patch_div_s + 1) + u].nrm *= -1.0f; } #endif // Rotate for the next one to the right. vl_pos = vc_pos; vc_pos = vr_pos; } } } GEPatchPrimType prim_type = spatch.primType; // Tesselate. for (int tile_v = 0; tile_v < patch_div_t; ++tile_v) { for (int tile_u = 0; tile_u < patch_div_s; ++tile_u) { int idx0 = tile_v * (patch_div_s + 1) + tile_u; int idx1 = tile_v * (patch_div_s + 1) + tile_u + 1; int idx2 = (tile_v + 1) * (patch_div_s + 1) + tile_u; int idx3 = (tile_v + 1) * (patch_div_s + 1) + tile_u + 1; CopyQuadIndex(indices, prim_type, idx0, idx1, idx2, idx3); count += 6; } } }
static void _SplinePatchLowQuality(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType) { // Fast and easy way - just draw the control points, generate some very basic normal vector substitutes. // Very inaccurate but okay for Loco Roco. Maybe should keep it as an option because it's fast. const int tile_min_u = (spatch.type_u & START_OPEN) ? 0 : 1; const int tile_min_v = (spatch.type_v & START_OPEN) ? 0 : 1; const int tile_max_u = (spatch.type_u & END_OPEN) ? spatch.count_u - 1 : spatch.count_u - 2; const int tile_max_v = (spatch.type_v & END_OPEN) ? spatch.count_v - 1 : spatch.count_v - 2; float tu_width = (float)spatch.count_u - 3.0f; float tv_height = (float)spatch.count_v - 3.0f; tu_width /= (float)(tile_max_u - tile_min_u); tv_height /= (float)(tile_max_v - tile_min_v); GEPatchPrimType prim_type = spatch.primType; bool computeNormals = spatch.computeNormals; bool patchFacing = spatch.patchFacing; int i = 0; for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) { for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) { int point_index = tile_u + tile_v * spatch.count_u; SimpleVertex v0 = *spatch.points[point_index]; SimpleVertex v1 = *spatch.points[point_index + 1]; SimpleVertex v2 = *spatch.points[point_index + spatch.count_u]; SimpleVertex v3 = *spatch.points[point_index + spatch.count_u + 1]; // Generate UV. TODO: Do this even if UV specified in control points? if ((origVertType & GE_VTYPE_TC_MASK) == 0) { float u = (tile_u - tile_min_u) * tu_width; float v = (tile_v - tile_min_v) * tv_height; v0.uv[0] = u; v0.uv[1] = v; v1.uv[0] = u + tu_width; v1.uv[1] = v; v2.uv[0] = u; v2.uv[1] = v + tv_height; v3.uv[0] = u + tu_width; v3.uv[1] = v + tv_height; } // Generate normal if lighting is enabled (otherwise there's no point). // This is a really poor quality algorithm, we get facet normals. if (computeNormals) { Vec3Packedf norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos); norm.Normalize(); if (patchFacing) norm *= -1.0f; v0.nrm = norm; v1.nrm = norm; v2.nrm = norm; v3.nrm = norm; } int idx0 = i * 4 + 0; int idx1 = i * 4 + 1; int idx2 = i * 4 + 2; int idx3 = i * 4 + 3; i++; CopyQuad(dest, &v0, &v1, &v2, &v3); CopyQuadIndex(indices, prim_type, idx0, idx1, idx2, idx3); count += 6; } } }
static void _BezierPatchHighQuality(u8 *&dest, u16 *&indices, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) { const float third = 1.0f / 3.0f; // First compute all the vertices and put them in an array SimpleVertex *&vertices = (SimpleVertex*&)dest; PrecomputedCurves<Vec3f> prepos(tess_u + 1); PrecomputedCurves<Vec4f> precol(tess_u + 1); PrecomputedCurves<Math3D::Vec2f> pretex(tess_u + 1); PrecomputedCurves<Vec3f> prederivU(tess_u + 1); const bool computeNormals = patch.computeNormals; const bool sampleColors = (origVertType & GE_VTYPE_COL_MASK) != 0; const bool sampleTexcoords = (origVertType & GE_VTYPE_TC_MASK) != 0; // Precompute the horizontal curves to we only have to evaluate the vertical ones. for (int i = 0; i < tess_u + 1; i++) { float u = ((float)i / (float)tess_u); prepos.horiz1[i] = Bernstein3D(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u); prepos.horiz2[i] = Bernstein3D(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u); prepos.horiz3[i] = Bernstein3D(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u); prepos.horiz4[i] = Bernstein3D(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u); if (sampleColors) { precol.horiz1[i] = Bernstein3D(patch.points[0]->color_32, patch.points[1]->color_32, patch.points[2]->color_32, patch.points[3]->color_32, u); precol.horiz2[i] = Bernstein3D(patch.points[4]->color_32, patch.points[5]->color_32, patch.points[6]->color_32, patch.points[7]->color_32, u); precol.horiz3[i] = Bernstein3D(patch.points[8]->color_32, patch.points[9]->color_32, patch.points[10]->color_32, patch.points[11]->color_32, u); precol.horiz4[i] = Bernstein3D(patch.points[12]->color_32, patch.points[13]->color_32, patch.points[14]->color_32, patch.points[15]->color_32, u); } if (sampleTexcoords) { pretex.horiz1[i] = Bernstein3D(Math3D::Vec2f(patch.points[0]->uv), Math3D::Vec2f(patch.points[1]->uv), Math3D::Vec2f(patch.points[2]->uv), Math3D::Vec2f(patch.points[3]->uv), u); pretex.horiz2[i] = Bernstein3D(Math3D::Vec2f(patch.points[4]->uv), Math3D::Vec2f(patch.points[5]->uv), Math3D::Vec2f(patch.points[6]->uv), Math3D::Vec2f(patch.points[7]->uv), u); pretex.horiz3[i] = Bernstein3D(Math3D::Vec2f(patch.points[8]->uv), Math3D::Vec2f(patch.points[9]->uv), Math3D::Vec2f(patch.points[10]->uv), Math3D::Vec2f(patch.points[11]->uv), u); pretex.horiz4[i] = Bernstein3D(Math3D::Vec2f(patch.points[12]->uv), Math3D::Vec2f(patch.points[13]->uv), Math3D::Vec2f(patch.points[14]->uv), Math3D::Vec2f(patch.points[15]->uv), u); } if (computeNormals) { prederivU.horiz1[i] = Bernstein3DDerivative(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u); prederivU.horiz2[i] = Bernstein3DDerivative(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u); prederivU.horiz3[i] = Bernstein3DDerivative(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u); prederivU.horiz4[i] = Bernstein3DDerivative(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u); } } for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) { for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) { float u = ((float)tile_u / (float)tess_u); float v = ((float)tile_v / (float)tess_v); float bv = v; SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u]; if (computeNormals) { const Vec3f derivU = prederivU.Bernstein3D(tile_u, bv); const Vec3f derivV = prepos.Bernstein3DDerivative(tile_u, bv); vert.nrm = Cross(derivU, derivV).Normalized(); if (patch.patchFacing) vert.nrm *= -1.0f; } else { vert.nrm.SetZero(); } vert.pos = prepos.Bernstein3D(tile_u, bv); if (!sampleTexcoords) { // Generate texcoord vert.uv[0] = u + patch.u_index * third; vert.uv[1] = v + patch.v_index * third; } else { // Sample UV from control points const Math3D::Vec2f res = pretex.Bernstein3D(tile_u, bv); vert.uv[0] = res.x; vert.uv[1] = res.y; } if (sampleColors) { vert.color_32 = precol.Bernstein3D(tile_u, bv).ToRGBA(); } else { memcpy(vert.color, patch.points[0]->color, 4); } } } GEPatchPrimType prim_type = patch.primType; // Combine the vertices into triangles. for (int tile_v = 0; tile_v < tess_v; ++tile_v) { for (int tile_u = 0; tile_u < tess_u; ++tile_u) { int total = patch.index * (tess_u + 1) * (tess_v + 1); int idx0 = total + tile_v * (tess_u + 1) + tile_u; int idx1 = total + tile_v * (tess_u + 1) + tile_u + 1; int idx2 = total + (tile_v + 1) * (tess_u + 1) + tile_u; int idx3 = total + (tile_v + 1) * (tess_u + 1) + tile_u + 1; CopyQuadIndex(indices, prim_type, idx0, idx1, idx2, idx3); count += 6; } } dest += (tess_u + 1) * (tess_v + 1) * sizeof(SimpleVertex); }