コード例 #1
0
ファイル: CheckESD.C プロジェクト: catalinristea/test
Bool_t CheckESD(const char* gAliceFileName = "galice.root", 
		const char* esdFileName = "AliESDs.root")
{
// check the content of the ESD
 
  // check values
  Int_t    checkNGenLow = 1;

  Double_t checkEffLow = 0.5;
  Double_t checkEffSigma = 3;
  Double_t checkFakeHigh = 0.5;
  Double_t checkFakeSigma = 3;

  Double_t checkResPtInvHigh = 5;
  Double_t checkResPtInvSigma = 3;
  Double_t checkResPhiHigh = 10;
  Double_t checkResPhiSigma = 3;
  Double_t checkResThetaHigh = 10;
  Double_t checkResThetaSigma = 3;

  Double_t checkPIDEffLow = 0.5;
  Double_t checkPIDEffSigma = 3;
  Double_t checkResTOFHigh = 500;
  Double_t checkResTOFSigma = 3;

  Double_t checkPHOSNLow = 5;
  Double_t checkPHOSEnergyLow = 0.3;
  Double_t checkPHOSEnergyHigh = 1.0;
  Double_t checkEMCALNLow = 50;
  Double_t checkEMCALEnergyLow = 0.05;
  Double_t checkEMCALEnergyHigh = 1.0;

  Double_t checkMUONNLow = 1;
  Double_t checkMUONPtLow = 0.5;
  Double_t checkMUONPtHigh = 10.;

  Double_t cutPtV0 = 0.3;
  Double_t checkV0EffLow = 0.02;
  Double_t checkV0EffSigma = 3;
  Double_t cutPtCascade = 0.5;
  Double_t checkCascadeEffLow = 0.01;
  Double_t checkCascadeEffSigma = 3;

  // open run loader and load gAlice, kinematics and header
  AliRunLoader* runLoader = AliRunLoader::Open(gAliceFileName);
  if (!runLoader) {
    Error("CheckESD", "getting run loader from file %s failed", 
	    gAliceFileName);
    return kFALSE;
  }
  runLoader->LoadgAlice();
  gAlice = runLoader->GetAliRun();
  if (!gAlice) {
    Error("CheckESD", "no galice object found");
    return kFALSE;
  }
  runLoader->LoadKinematics();
  runLoader->LoadHeader();

  // open the ESD file
  TFile* esdFile = TFile::Open(esdFileName);
  if (!esdFile || !esdFile->IsOpen()) {
    Error("CheckESD", "opening ESD file %s failed", esdFileName);
    return kFALSE;
  }
  AliESDEvent * esd = new AliESDEvent;
  TTree* tree = (TTree*) esdFile->Get("esdTree");
  if (!tree) {
    Error("CheckESD", "no ESD tree found");
    return kFALSE;
  }
  esd->ReadFromTree(tree);

  // efficiency and resolution histograms
  Int_t nBinsPt = 15;
  Float_t minPt = 0.1;
  Float_t maxPt = 3.1;
  TH1F* hGen = CreateHisto("hGen", "generated tracks", 
			   nBinsPt, minPt, maxPt, "p_{t} [GeV/c]", "N");
  TH1F* hRec = CreateHisto("hRec", "reconstructed tracks", 
			   nBinsPt, minPt, maxPt, "p_{t} [GeV/c]", "N");
  Int_t nGen = 0;
  Int_t nRec = 0;
  Int_t nFake = 0;

  TH1F* hResPtInv = CreateHisto("hResPtInv", "", 100, -10, 10, 
           "(p_{t,rec}^{-1}-p_{t,sim}^{-1}) / p_{t,sim}^{-1} [%]", "N");
  TH1F* hResPhi = CreateHisto("hResPhi", "", 100, -20, 20, 
			      "#phi_{rec}-#phi_{sim} [mrad]", "N");
  TH1F* hResTheta = CreateHisto("hResTheta", "", 100, -20, 20, 
				"#theta_{rec}-#theta_{sim} [mrad]", "N");

  // PID
  Int_t partCode[AliPID::kSPECIES] = 
    {kElectron, kMuonMinus, kPiPlus, kKPlus, kProton};
  const char* partName[AliPID::kSPECIES+1] = 
    {"electron", "muon", "pion", "kaon", "proton", "other"};
  Double_t partFrac[AliPID::kSPECIES] = 
    {0.01, 0.01, 0.85, 0.10, 0.05};
  Int_t identified[AliPID::kSPECIES+1][AliPID::kSPECIES];
  for (Int_t iGen = 0; iGen < AliPID::kSPECIES+1; iGen++) {
    for (Int_t iRec = 0; iRec < AliPID::kSPECIES; iRec++) {
      identified[iGen][iRec] = 0;
    }
  }
  Int_t nIdentified = 0;

  // dE/dx and TOF
  TH2F* hDEdxRight = new TH2F("hDEdxRight", "", 300, 0, 3, 100, 0, 400);
  hDEdxRight->SetStats(kFALSE);
  hDEdxRight->GetXaxis()->SetTitle("p [GeV/c]");
  hDEdxRight->GetYaxis()->SetTitle("dE/dx_{TPC}");
  hDEdxRight->SetMarkerStyle(kFullCircle);
  hDEdxRight->SetMarkerSize(0.4);
  TH2F* hDEdxWrong = new TH2F("hDEdxWrong", "", 300, 0, 3, 100, 0, 400);
  hDEdxWrong->SetStats(kFALSE);
  hDEdxWrong->GetXaxis()->SetTitle("p [GeV/c]");
  hDEdxWrong->GetYaxis()->SetTitle("dE/dx_{TPC}");
  hDEdxWrong->SetMarkerStyle(kFullCircle);
  hDEdxWrong->SetMarkerSize(0.4);
  hDEdxWrong->SetMarkerColor(kRed);
  TH1F* hResTOFRight = CreateHisto("hResTOFRight", "", 100, -1000, 1000, 
				   "t_{TOF}-t_{track} [ps]", "N");
  TH1F* hResTOFWrong = CreateHisto("hResTOFWrong", "", 100, -1000, 1000, 
				   "t_{TOF}-t_{track} [ps]", "N");
  hResTOFWrong->SetLineColor(kRed);

  // calorimeters
  TH1F* hEPHOS = CreateHisto("hEPHOS", "PHOS", 100, 0, 50, "E [GeV]", "N");
  TH1F* hEEMCAL = CreateHisto("hEEMCAL", "EMCAL", 100, 0, 50, "E [GeV]", "N");

  // muons
  TH1F* hPtMUON = CreateHisto("hPtMUON", "MUON", 100, 0, 20, 
			      "p_{t} [GeV/c]", "N");

  // V0s and cascades
  TH1F* hMassK0 = CreateHisto("hMassK0", "K^{0}", 100, 0.4, 0.6, 
			      "M(#pi^{+}#pi^{-}) [GeV/c^{2}]", "N");
  TH1F* hMassLambda = CreateHisto("hMassLambda", "#Lambda", 100, 1.0, 1.2, 
				  "M(p#pi^{-}) [GeV/c^{2}]", "N");
  TH1F* hMassLambdaBar = CreateHisto("hMassLambdaBar", "#bar{#Lambda}", 
				     100, 1.0, 1.2, 
				     "M(#bar{p}#pi^{+}) [GeV/c^{2}]", "N");
  Int_t nGenV0s = 0;
  Int_t nRecV0s = 0;
  TH1F* hMassXi = CreateHisto("hMassXi", "#Xi", 100, 1.2, 1.5, 
			      "M(#Lambda#pi) [GeV/c^{2}]", "N");
  TH1F* hMassOmega = CreateHisto("hMassOmega", "#Omega", 100, 1.5, 1.8, 
				 "M(#LambdaK) [GeV/c^{2}]", "N");
  Int_t nGenCascades = 0;
  Int_t nRecCascades = 0;

  // loop over events
  for (Int_t iEvent = 0; iEvent < runLoader->GetNumberOfEvents(); iEvent++) {
    runLoader->GetEvent(iEvent);

    // select simulated primary particles, V0s and cascades
    AliStack* stack = runLoader->Stack();
    Int_t nParticles = stack->GetNtrack();
    TArrayF vertex(3);
    runLoader->GetHeader()->GenEventHeader()->PrimaryVertex(vertex);
    TObjArray selParticles;
    TObjArray selV0s;
    TObjArray selCascades;
    for (Int_t iParticle = 0; iParticle < nParticles; iParticle++) {
      TParticle* particle = stack->Particle(iParticle);
      if (!particle) continue;
      if (particle->Pt() < 0.001) continue;
      if (TMath::Abs(particle->Eta()) > 0.9) continue;
      TVector3 dVertex(particle->Vx() - vertex[0], 
		       particle->Vy() - vertex[1],
		       particle->Vz() - vertex[2]);
      if (dVertex.Mag() > 0.0001) continue;

      switch (TMath::Abs(particle->GetPdgCode())) {
      case kElectron:
      case kMuonMinus:
      case kPiPlus:
      case kKPlus:
      case kProton: {
	if (particle->Pt() > minPt) {
	  selParticles.Add(particle);
	  nGen++;
	  hGen->Fill(particle->Pt());
	}
	break;
      }
      case kK0Short:
      case kLambda0: {
	if (particle->Pt() > cutPtV0) {
	  nGenV0s++;
	  selV0s.Add(particle);
	}
	break;
      }
      case kXiMinus:
      case kOmegaMinus: {
	if (particle->Pt() > cutPtCascade) {
	  nGenCascades++;
	  selCascades.Add(particle);
	}
	break;
      }
      default: break;
      }
    }

    // get the event summary data
    tree->GetEvent(iEvent);
    if (!esd) {
      Error("CheckESD", "no ESD object found for event %d", iEvent);
      return kFALSE;
    }

    // loop over tracks
    for (Int_t iTrack = 0; iTrack < esd->GetNumberOfTracks(); iTrack++) {
      AliESDtrack* track = esd->GetTrack(iTrack);

      // select tracks of selected particles
      Int_t label = TMath::Abs(track->GetLabel());
      if (label > stack->GetNtrack()) continue;     // background
      TParticle* particle = stack->Particle(label);
      if (!selParticles.Contains(particle)) continue;
      if ((track->GetStatus() & AliESDtrack::kITSrefit) == 0) continue;
      if (track->GetConstrainedChi2() > 1e9) continue;
      selParticles.Remove(particle);   // don't count multiple tracks

      nRec++;
      hRec->Fill(particle->Pt());
      if (track->GetLabel() < 0) nFake++;

      // resolutions
      hResPtInv->Fill(100. * (TMath::Abs(track->GetSigned1Pt()) - 1./particle->Pt()) * 
		      particle->Pt());
      hResPhi->Fill(1000. * (track->Phi() - particle->Phi()));
      hResTheta->Fill(1000. * (track->Theta() - particle->Theta()));

      // PID
      if ((track->GetStatus() & AliESDtrack::kESDpid) == 0) continue;
      Int_t iGen = 5;
      for (Int_t i = 0; i < AliPID::kSPECIES; i++) {
	if (TMath::Abs(particle->GetPdgCode()) == partCode[i]) iGen = i;
      }
      Double_t probability[AliPID::kSPECIES];
      track->GetESDpid(probability);
      Double_t pMax = 0;
      Int_t iRec = 0;
      for (Int_t i = 0; i < AliPID::kSPECIES; i++) {
	probability[i] *= partFrac[i];
	if (probability[i] > pMax) {
	  pMax = probability[i];
	  iRec = i;
	}
      }
      identified[iGen][iRec]++;
      if (iGen == iRec) nIdentified++;

      // dE/dx and TOF
      Double_t time[AliPID::kSPECIES];
      track->GetIntegratedTimes(time);
      if (iGen == iRec) {
	hDEdxRight->Fill(particle->P(), track->GetTPCsignal());
        if ((track->GetStatus() & AliESDtrack::kTOFpid) != 0) {
	  hResTOFRight->Fill(track->GetTOFsignal() - time[iRec]);
	}
      } else {
	hDEdxWrong->Fill(particle->P(), track->GetTPCsignal());
        if ((track->GetStatus() & AliESDtrack::kTOFpid) != 0) {
	  hResTOFWrong->Fill(track->GetTOFsignal() - time[iRec]);
	}
      }
    }

    // loop over muon tracks
    {
    for (Int_t iTrack = 0; iTrack < esd->GetNumberOfMuonTracks(); iTrack++) {
      AliESDMuonTrack* muonTrack = esd->GetMuonTrack(iTrack);
      Double_t ptInv = TMath::Abs(muonTrack->GetInverseBendingMomentum());
      if (ptInv > 0.001) {
	hPtMUON->Fill(1./ptInv);
      }
    }
    }

    // loop over V0s
    for (Int_t iV0 = 0; iV0 < esd->GetNumberOfV0s(); iV0++) {
      AliESDv0* v0 = esd->GetV0(iV0);
      if (v0->GetOnFlyStatus()) continue;
      v0->ChangeMassHypothesis(kK0Short);
      hMassK0->Fill(v0->GetEffMass());
      v0->ChangeMassHypothesis(kLambda0);
      hMassLambda->Fill(v0->GetEffMass());
      v0->ChangeMassHypothesis(kLambda0Bar);
      hMassLambdaBar->Fill(v0->GetEffMass());

      Int_t negLabel = TMath::Abs(esd->GetTrack(v0->GetNindex())->GetLabel());
      if (negLabel > stack->GetNtrack()) continue;     // background
      Int_t negMother = stack->Particle(negLabel)->GetMother(0);
      if (negMother < 0) continue;
      Int_t posLabel = TMath::Abs(esd->GetTrack(v0->GetPindex())->GetLabel());
      if (posLabel > stack->GetNtrack()) continue;     // background
      Int_t posMother = stack->Particle(posLabel)->GetMother(0);
      if (negMother != posMother) continue;
      TParticle* particle = stack->Particle(negMother);
      if (!selV0s.Contains(particle)) continue;
      selV0s.Remove(particle);
      nRecV0s++;
    }

    // loop over Cascades
    for (Int_t iCascade = 0; iCascade < esd->GetNumberOfCascades(); 
	 iCascade++) {
      AliESDcascade* cascade = esd->GetCascade(iCascade);
      Double_t v0q;
      cascade->ChangeMassHypothesis(v0q,kXiMinus);
      hMassXi->Fill(cascade->GetEffMassXi());
      cascade->ChangeMassHypothesis(v0q,kOmegaMinus);
      hMassOmega->Fill(cascade->GetEffMassXi());

      Int_t negLabel = TMath::Abs(esd->GetTrack(cascade->GetNindex())
				  ->GetLabel());
      if (negLabel > stack->GetNtrack()) continue;     // background
      Int_t negMother = stack->Particle(negLabel)->GetMother(0);
      if (negMother < 0) continue;
      Int_t posLabel = TMath::Abs(esd->GetTrack(cascade->GetPindex())
				  ->GetLabel());
      if (posLabel > stack->GetNtrack()) continue;     // background
      Int_t posMother = stack->Particle(posLabel)->GetMother(0);
      if (negMother != posMother) continue;
      Int_t v0Mother = stack->Particle(negMother)->GetMother(0);
      if (v0Mother < 0) continue;
      Int_t bacLabel = TMath::Abs(esd->GetTrack(cascade->GetBindex())
				  ->GetLabel());
      if (bacLabel > stack->GetNtrack()) continue;     // background
      Int_t bacMother = stack->Particle(bacLabel)->GetMother(0);
      if (v0Mother != bacMother) continue;
      TParticle* particle = stack->Particle(v0Mother);
      if (!selCascades.Contains(particle)) continue;
      selCascades.Remove(particle);
      nRecCascades++;
    }

    // loop over the clusters
    {
      for (Int_t iCluster=0; iCluster<esd->GetNumberOfCaloClusters(); iCluster++) {
	AliESDCaloCluster * clust = esd->GetCaloCluster(iCluster);
	if (clust->IsPHOS()) hEPHOS->Fill(clust->E());
	if (clust->IsEMCAL()) hEEMCAL->Fill(clust->E());
      }
    }

  }

  // perform checks
  if (nGen < checkNGenLow) {
    Warning("CheckESD", "low number of generated particles: %d", Int_t(nGen));
  }

  TH1F* hEff = CreateEffHisto(hGen, hRec);

  Info("CheckESD", "%d out of %d tracks reconstructed including %d "
	 "fake tracks", nRec, nGen, nFake);
  if (nGen > 0) {
    // efficiency
    Double_t eff = nRec*1./nGen;
    Double_t effError = TMath::Sqrt(eff*(1.-eff) / nGen);
    Double_t fake = nFake*1./nGen;
    Double_t fakeError = TMath::Sqrt(fake*(1.-fake) / nGen);
    Info("CheckESD", "eff = (%.1f +- %.1f) %%  fake = (%.1f +- %.1f) %%",
	 100.*eff, 100.*effError, 100.*fake, 100.*fakeError);

    if (eff < checkEffLow - checkEffSigma*effError) {
      Warning("CheckESD", "low efficiency: (%.1f +- %.1f) %%", 
	      100.*eff, 100.*effError);
    }
    if (fake > checkFakeHigh + checkFakeSigma*fakeError) {
      Warning("CheckESD", "high fake: (%.1f +- %.1f) %%", 
	      100.*fake, 100.*fakeError);
    }

    // resolutions
    Double_t res, resError;
    if (FitHisto(hResPtInv, res, resError)) {
      Info("CheckESD", "relative inverse pt resolution = (%.1f +- %.1f) %%",
	   res, resError);
      if (res > checkResPtInvHigh + checkResPtInvSigma*resError) {
	Warning("CheckESD", "bad pt resolution: (%.1f +- %.1f) %%", 
		res, resError);
      }
    }

    if (FitHisto(hResPhi, res, resError)) {
      Info("CheckESD", "phi resolution = (%.1f +- %.1f) mrad", res, resError);
      if (res > checkResPhiHigh + checkResPhiSigma*resError) {
	Warning("CheckESD", "bad phi resolution: (%.1f +- %.1f) mrad", 
		res, resError);
      }
    }

    if (FitHisto(hResTheta, res, resError)) {
      Info("CheckESD", "theta resolution = (%.1f +- %.1f) mrad", 
	   res, resError);
      if (res > checkResThetaHigh + checkResThetaSigma*resError) {
	Warning("CheckESD", "bad theta resolution: (%.1f +- %.1f) mrad", 
		res, resError);
      }
    }

    // PID
    if (nRec > 0) {
      Double_t eff = nIdentified*1./nRec;
      Double_t effError = TMath::Sqrt(eff*(1.-eff) / nRec);
      Info("CheckESD", "PID eff = (%.1f +- %.1f) %%", 
	   100.*eff, 100.*effError);
      if (eff < checkPIDEffLow - checkPIDEffSigma*effError) {
	Warning("CheckESD", "low PID efficiency: (%.1f +- %.1f) %%", 
		100.*eff, 100.*effError);
      }
    }

    printf("%9s:", "gen\\rec");
    for (Int_t iRec = 0; iRec < AliPID::kSPECIES; iRec++) {
      printf("%9s", partName[iRec]);
    }
    printf("\n");
    for (Int_t iGen = 0; iGen < AliPID::kSPECIES+1; iGen++) {
      printf("%9s:", partName[iGen]);
      for (Int_t iRec = 0; iRec < AliPID::kSPECIES; iRec++) {
	printf("%9d", identified[iGen][iRec]);
      }
      printf("\n");
    }

    if (FitHisto(hResTOFRight, res, resError)) {
      Info("CheckESD", "TOF resolution = (%.1f +- %.1f) ps", res, resError);
      if (res > checkResTOFHigh + checkResTOFSigma*resError) {
	Warning("CheckESD", "bad TOF resolution: (%.1f +- %.1f) ps", 
		res, resError);
      }
    }

    // calorimeters
    if (hEPHOS->Integral() < checkPHOSNLow) {
      Warning("CheckESD", "low number of PHOS particles: %d", 
	      Int_t(hEPHOS->Integral()));
    } else {
      Double_t mean = hEPHOS->GetMean();
      if (mean < checkPHOSEnergyLow) {
	Warning("CheckESD", "low mean PHOS energy: %.1f GeV", mean);
      } else if (mean > checkPHOSEnergyHigh) {
	Warning("CheckESD", "high mean PHOS energy: %.1f GeV", mean);
      }
    }

    if (hEEMCAL->Integral() < checkEMCALNLow) {
      Warning("CheckESD", "low number of EMCAL particles: %d", 
	      Int_t(hEEMCAL->Integral()));
    } else {
      Double_t mean = hEEMCAL->GetMean();
      if (mean < checkEMCALEnergyLow) {
	Warning("CheckESD", "low mean EMCAL energy: %.1f GeV", mean);
      } else if (mean > checkEMCALEnergyHigh) {
	Warning("CheckESD", "high mean EMCAL energy: %.1f GeV", mean);
      }
    }

    // muons
    if (hPtMUON->Integral() < checkMUONNLow) {
      Warning("CheckESD", "low number of MUON particles: %d", 
	      Int_t(hPtMUON->Integral()));
    } else {
      Double_t mean = hPtMUON->GetMean();
      if (mean < checkMUONPtLow) {
	Warning("CheckESD", "low mean MUON pt: %.1f GeV/c", mean);
      } else if (mean > checkMUONPtHigh) {
	Warning("CheckESD", "high mean MUON pt: %.1f GeV/c", mean);
      }
    }

    // V0s
    if (nGenV0s > 0) {
      Double_t eff = nRecV0s*1./nGenV0s;
      Double_t effError = TMath::Sqrt(eff*(1.-eff) / nGenV0s);
      if (effError == 0) effError = checkV0EffLow / TMath::Sqrt(1.*nGenV0s);
      Info("CheckESD", "V0 eff = (%.1f +- %.1f) %%", 
	   100.*eff, 100.*effError);
      if (eff < checkV0EffLow - checkV0EffSigma*effError) {
	Warning("CheckESD", "low V0 efficiency: (%.1f +- %.1f) %%", 
		100.*eff, 100.*effError);
      }
    }

    // Cascades
    if (nGenCascades > 0) {
      Double_t eff = nRecCascades*1./nGenCascades;
      Double_t effError = TMath::Sqrt(eff*(1.-eff) / nGenCascades);
      if (effError == 0) effError = checkV0EffLow / 
			   TMath::Sqrt(1.*nGenCascades);
      Info("CheckESD", "Cascade eff = (%.1f +- %.1f) %%", 
	   100.*eff, 100.*effError);
      if (eff < checkCascadeEffLow - checkCascadeEffSigma*effError) {
	Warning("CheckESD", "low Cascade efficiency: (%.1f +- %.1f) %%", 
		100.*eff, 100.*effError);
      }
    }
  }

  // draw the histograms if not in batch mode
  if (!gROOT->IsBatch()) {
    new TCanvas;
    hEff->DrawCopy();
    new TCanvas;
    hResPtInv->DrawCopy("E");
    new TCanvas;
    hResPhi->DrawCopy("E");
    new TCanvas;
    hResTheta->DrawCopy("E");
    new TCanvas;
    hDEdxRight->DrawCopy();
    hDEdxWrong->DrawCopy("SAME");
    new TCanvas;
    hResTOFRight->DrawCopy("E");
    hResTOFWrong->DrawCopy("SAME");
    new TCanvas;
    hEPHOS->DrawCopy("E");
    new TCanvas;
    hEEMCAL->DrawCopy("E");
    new TCanvas;
    hPtMUON->DrawCopy("E");
    new TCanvas;
    hMassK0->DrawCopy("E");
    new TCanvas;
    hMassLambda->DrawCopy("E");
    new TCanvas;
    hMassLambdaBar->DrawCopy("E");
    new TCanvas;
    hMassXi->DrawCopy("E");
    new TCanvas;
    hMassOmega->DrawCopy("E");
  }

  // write the output histograms to a file
  TFile* outputFile = TFile::Open("check.root", "recreate");
  if (!outputFile || !outputFile->IsOpen()) {
    Error("CheckESD", "opening output file check.root failed");
    return kFALSE;
  }
  hEff->Write();
  hResPtInv->Write();
  hResPhi->Write();
  hResTheta->Write();
  hDEdxRight->Write();
  hDEdxWrong->Write();
  hResTOFRight->Write();
  hResTOFWrong->Write();
  hEPHOS->Write();
  hEEMCAL->Write();
  hPtMUON->Write();
  hMassK0->Write();
  hMassLambda->Write();
  hMassLambdaBar->Write();
  hMassXi->Write();
  hMassOmega->Write();
  outputFile->Close();
  delete outputFile;

  // clean up
  delete hGen;
  delete hRec;
  delete hEff;
  delete hResPtInv;
  delete hResPhi;
  delete hResTheta;
  delete hDEdxRight;
  delete hDEdxWrong;
  delete hResTOFRight;
  delete hResTOFWrong;
  delete hEPHOS;
  delete hEEMCAL;
  delete hPtMUON;
  delete hMassK0;
  delete hMassLambda;
  delete hMassLambdaBar;
  delete hMassXi;
  delete hMassOmega;

  delete esd;
  esdFile->Close();
  delete esdFile;

  runLoader->UnloadHeader();
  runLoader->UnloadKinematics();
  delete runLoader;

  // result of check
  Info("CheckESD", "check of ESD was successfull");
  return kTRUE;
}
コード例 #2
0
ファイル: CalibrateTreeTime.C プロジェクト: werthm/CaLib
//______________________________________________________________________________
void CalibrateTreeTime(Int_t run)
{
    // Main method.

    //
    // configuration
    //

    // CB
    //const Bool_t doFit        = kTRUE;
    //const Char_t* treeName    = "CaLib_CB_Time_Tree";
    //const Int_t nPar          = 720;
    //const Char_t* data_off    = "Data.CB.T0";
    //const Char_t* data_gain   = 0;
    //const Char_t* calibration = "LH2_Dec_14";
    //const Double_t time_limit = 0.1;
    //const Double_t bad_frac   = 0.05;
    //gIsTAPS                   = kFALSE;

    // TAPS
    const Bool_t doFit        = kTRUE;
    const Char_t* treeName    = "CaLib_TAPS_Time_Tree";
    const Int_t nPar          = 438;
    const Char_t* data_off    = "Data.TAPS.T0";
    const Char_t* data_gain   = "Data.TAPS.T1";
    const Char_t* calibration = "LH2_Dec_14";
    const Double_t time_limit = 0.1;
    const Double_t bad_frac   = 0.05;
    gIsTAPS                   = kTRUE;

    // read TAPS config from config file
    gMaxTAPS = TCReadConfig::GetReader()->GetConfigInt("TAPS.Elements");

    // read calibration parameters
    gOff = new Double_t[nPar];
    gGain = new Double_t[nPar];
    Int_t set = TCMySQLManager::GetManager()->GetSetForRun(data_off, calibration, run);
    printf("Reading set %d for run %d of data '%s' for calibration '%s'\n", set, run, data_off, calibration);
    TCMySQLManager::GetManager()->ReadParameters(data_off, calibration, set, gOff, nPar);
    if (data_gain)
    {
        TCMySQLManager::GetManager()->ReadParameters(data_gain, calibration, set, gGain, nPar);
    }
    else
    {
        for (Int_t i = 0; i < nPar; i++)
            gGain[i] = 0.11771;
    }

    // debug
    //for (Int_t i = 0; i < nPar; i++)
    //    printf("%3d  %f   %f\n", i, gOff[i], gGain[i]);

    // open the file
    Int_t r[1] = { run };
    TCARFileLoader file_loader(1, r);
    if (!file_loader.LoadFiles())
        gSystem->Exit(1);
    TFile* f = file_loader.GetFiles()[0];
    if (!f)
        gSystem->Exit(1);

    // load tree
    TTree* tree = (TTree*) f->Get(treeName);
    gEntries = tree->GetEntries();

    // reserve memory
    gElem_1 = new Short_t[gEntries];
    gElem_2 = new Short_t[gEntries];
    gRaw_Time_1 = new Float_t[gEntries];
    gRaw_Time_2 = new Float_t[gEntries];

    // create tree reader
    TTreeReader reader(tree);

    // configure reader
    TTreeReaderValue<Short_t> elem_1(reader, "elem_1");
    TTreeReaderValue<Short_t> elem_2(reader, "elem_2");
    TTreeReaderValue<Float_t> raw_time_1(reader, "raw_time_1");
    TTreeReaderValue<Float_t> raw_time_2(reader, "raw_time_2");

    // read tree
    printf("Reading tree\n");
    Long64_t n = 0;
    while (reader.Next())
    {
        // user info
        if (n && n % 100000 == 0)
            printf("%lld events processed (%.1f%%)\n", n, 100*(Double_t)n/(Double_t)gEntries);

        // skip PWO
        if (gIsTAPS)
        {
            if (TCUtils::IsTAPSPWO(*elem_1, gMaxTAPS) ||
                TCUtils::IsTAPSPWO(*elem_2, gMaxTAPS)) continue;
        }

        gElem_1[n] = *elem_1;
        gElem_2[n] = *elem_2;
        gRaw_Time_1[n] = *raw_time_1;
        gRaw_Time_2[n] = *raw_time_2;
        n++;
    }

    // update number of entries
    gEntries = n;

    // create histogram
    TH2* hBefore = CreateHisto("before", nPar, gOff);

    // perform calibration
    TStopwatch watch;
    watch.Start();
    if (doFit)
    {
        printf("Calibrating using fitting\n");
        CalibrateFit(nPar, time_limit, bad_frac);
    }
    else
    {
        printf("Calibrating using minimization\n");
        CalibrateMinimize(nPar);
    }
    watch.Stop();
    watch.Print();

    // create histogram
    TH2* hAfter = CreateHisto("after", nPar, gOff);

    // save histograms
    TFile* fout = new TFile(TString::Format("tree_calib_%d.root", run).Data(), "recreate");
    hBefore->Write();
    hAfter->Write();
    delete fout;

    // save parameters
    FILE* fout_a = fopen(TString::Format("tree_calib_%d.dat", run).Data(), "w");
    for (Int_t i = 0; i < nPar; i++)
        fprintf(fout_a, "%lf\n", gOff[i]);
    fclose(fout_a);

    // clean-up
    //delete f;
    //delete tree;
    delete [] gOff;
    delete [] gGain;

    gSystem->Exit(0);
}
コード例 #3
0
int CreateComparisonPlots(ElectronEnergyScaleAdv_t &sf, const std::vector<std::vector<double>*> &massMC, const std::vector<std::vector<double>*> &massExp, std::vector<std::string> &html_lines, RooRealVar &mass, ScaledSmearedDataAux_t &aux, std::vector<RooAddPdf*> &mcModelV, std::vector<RooDataSet*> &expModelV, const std::vector<std::vector<int>*> &combine, const std::vector<TString> &combination_names) {
  int expect_count=sf.ExpectCount();
  int massBinCount=DYTools::NumberOfMassBins();
  double *massBins=DYTools::getMassBins();

  std::vector<mithep::myHistoClass_t*> unsmearedMCHV,unscaledExpHV;
  std::vector<mithep::myHistoClass_t*> smearedMCHV,scaledExpHV;

  std::cout << "aux.fitModel=" << aux.fitModel << "\n";
  std::cout << "calling sf.PrepareScaledSmearedData(0,0)" << std::endl;
  if (!sf.PrepareScaledSmearedData(massMC,massExp,massBinCount,massBins,unsmearedMCHV,unscaledExpHV,"NoSF",0,0)) {
    std::cout << "failed with unprocessed data collections\n";
    return 0;
  }
  std::cout << "passed" << std::endl;
  if (0 && (sf.FitModelKind()==_ESFModel_gauss)) {
    html_lines.push_back("<br />Using per-event smearing<br>\n");
    if (sf.FitModelKind()==_ESFModel_gauss) {
      if (!sf.PrepareScaledSmearedData(massMC,massExp,massBinCount,massBins,smearedMCHV,scaledExpHV,"SF",1,1)) {
	std::cout << "failed with basic data collections\n";
	return 0;
      }
    }
  }
  else {
    html_lines.push_back("<br />Using template smearing<br>\n");
    char buf[50];
    mithep::myHistoClass_t *hbase=new mithep::myHistoClass_t("hbase","hbase",massBinCount,massBins);
    hbase->GetXaxis()->SetTitle("mass");
    hbase->GetYaxis()->SetTitle("count");
    hbase->GetYaxis()->SetTitleOffset(1.6);
    smearedMCHV.reserve(expect_count); scaledExpHV.reserve(expect_count);
    for (int i=0; i<expect_count; ++i) {
      if (i<10) sprintf(buf,"smearedMC_0%d",i); else sprintf(buf,"smearedMC_%d",i);
      mithep::myHistoClass_t *hmc=NULL;
      if (massMC[i]->size()>0) {
	hmc=CreateHisto(*mcModelV[i],buf,&mass,massBinCount,massBins,hbase);
	double scale=unsmearedMCHV[i]->Integral()/hmc->Integral();
	hmc->Scale(scale);
      }
      else {
	std::cout << "ScanAndScale: data contains no points. Creating an empty histo for " << buf << "\n";
	hmc=(mithep::myHistoClass_t*)hbase->Clone(buf);
      }
      smearedMCHV.push_back(hmc);
    }
    for (int i=0; i<expect_count; ++i) {
      if (i<10) sprintf(buf,"smearedExp_0%d",i); else sprintf(buf,"smearedExp_%d",i);
      mithep::myHistoClass_t *hexp=ConvertToHisto(*expModelV[i],buf,hbase);
      scaledExpHV.push_back(hexp);
    }
    delete hbase;
  }

  std::string file_tag="cmp";
  const int print_discrepancy_table=0;
  const int print_descriptions_separately=0;
  if (!PrepareComparisonTablesAndPlots(file_tag.c_str(),unsmearedMCHV,unscaledExpHV,smearedMCHV,scaledExpHV, combine,combination_names, print_discrepancy_table, print_descriptions_separately, histoDir_USER.c_str(), html_lines)) {
    std::cout << "failed in PrepareComparisonTablesAndPlots\n";
    return 0;
  }
  return 1;
}
コード例 #4
0
ファイル: CalibrateTreeTime.C プロジェクト: werthm/CaLib
//______________________________________________________________________________
void CalibrateFit(Int_t nPar, Double_t time_limit, Double_t bad_frac)
{
    // Calibrate using iterative fitting.

    const Double_t convergence_factor = 0.05;

    // iterate calibrations
    for (Int_t i = 0; i >= 0; i++)
    {
        // create new histogram
        TH2* h = CreateHisto("fit_histo", nPar, gOff);

        // user info
        printf("Calibration iteration %d\n", i+1);

        // loop over elements
        Int_t n = 0;
        Int_t outside_n = 0;
        for (Int_t j = 0; j < nPar; j++)
        {
            // create projection
            TH1* hProj = (TH1*) h->ProjectionX(TString::Format("Proj_%d", j).Data(), j+1, j+1, "e");

            // check for filled histograms
            if (hProj->GetEntries())
            {
                // create fitting function
                TF1* func = new TF1(TString::Format("Func_%d", j).Data(), "gaus", -5, 5);
                func->SetParameter(0, 1);
                func->SetParameter(1, hProj->GetXaxis()->GetBinCenter(hProj->GetMaximumBin()));
                func->SetParameter(2, 0.1);

                // fit histogram
                hProj->GetXaxis()->SetRangeUser(-5, 5);
                hProj->Fit(func, "0Q");
                Double_t mean = func->GetParameter(1);

                // update offset
                gOff[j] = gOff[j] + convergence_factor * mean / gGain[j];
                n++;
                if (TMath::Abs(mean) > time_limit)
                    outside_n++;

                // clean-up
                delete func;
            }

            // clean-up
            delete hProj;
        }

        // clean-up
        delete h;

        // user info
        Double_t outside_frac = (Double_t)outside_n/(Double_t)n;
        printf("Element outside limits: %.1f%%\n", outside_frac*100.);
        if (outside_frac < bad_frac)
            break;
    }
}