void udf_free_inode(struct inode *inode) { struct super_block *sb = inode->i_sb; struct udf_sb_info *sbi = UDF_SB(sb); /* * Note: we must free any quota before locking the superblock, * as writing the quota to disk may need the lock as well. */ DQUOT_FREE_INODE(inode); DQUOT_DROP(inode); clear_inode(inode); mutex_lock(&sbi->s_alloc_mutex); if (sbi->s_lvid_bh) { struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sbi); if (S_ISDIR(inode->i_mode)) le32_add_cpu(&lvidiu->numDirs, -1); else le32_add_cpu(&lvidiu->numFiles, -1); mark_buffer_dirty(sbi->s_lvid_bh); } mutex_unlock(&sbi->s_alloc_mutex); udf_free_blocks(sb, NULL, UDF_I(inode)->i_location, 0, 1); }
/* quota utility function, call if you've had to abort after calling ** new_inode_init, and have not called reiserfs_new_inode yet. ** This should only be called on inodes that do not have stat data ** inserted into the tree yet. */ static int drop_new_inode(struct inode *inode) { DQUOT_DROP(inode); make_bad_inode(inode) ; inode->i_flags |= S_NOQUOTA; iput(inode) ; return 0 ; }
void udf_free_inode(struct inode * inode) { struct super_block *sb = inode->i_sb; struct udf_sb_info *sbi = UDF_SB(sb); /* * Note: we must free any quota before locking the superblock, * as writing the quota to disk may need the lock as well. */ DQUOT_FREE_INODE(inode); DQUOT_DROP(inode); clear_inode(inode); lock_udf_alloc_sem(sbi); if (sbi->s_lvidbh) { if (S_ISDIR(inode->i_mode)) UDF_SB_LVIDIU(sb)->numDirs = cpu_to_le32(le32_to_cpu(UDF_SB_LVIDIU(sb)->numDirs) - 1); else UDF_SB_LVIDIU(sb)->numFiles = cpu_to_le32(le32_to_cpu(UDF_SB_LVIDIU(sb)->numFiles) - 1); mark_buffer_dirty(sbi->s_lvidbh); } unlock_udf_alloc_sem(sbi); udf_free_blocks(sb, NULL, UDF_I_LOCATION(inode), 0, 1); }
/* * This is called by the filesystem to tell us * that the inode is no longer useful. We just * terminate it with extreme prejudice. */ void clear_inode(struct inode *inode) { if (inode->i_nrpages) truncate_inode_pages(inode, 0); wait_on_inode(inode); if (IS_QUOTAINIT(inode)) DQUOT_DROP(inode); if (inode->i_sb && inode->i_sb->s_op && inode->i_sb->s_op->clear_inode) inode->i_sb->s_op->clear_inode(inode); inode->i_state = 0; }
/* * Truncate a file. * The calling routines must make sure to update the ctime * field and call notify_change. * * XXX Nobody calls this thing? -DaveM * N.B. After this call fhp needs an fh_put */ int nfsd_truncate(struct svc_rqst *rqstp, struct svc_fh *fhp, unsigned long size) { struct dentry *dentry; struct inode *inode; struct iattr newattrs; int err; kernel_cap_t saved_cap; err = fh_verify(rqstp, fhp, S_IFREG, MAY_WRITE | MAY_TRUNC); if (err) goto out; dentry = fhp->fh_dentry; inode = dentry->d_inode; err = get_write_access(inode); if (err) goto out_nfserr; /* Things look sane, lock and do it. */ fh_lock(fhp); DQUOT_INIT(inode); newattrs.ia_size = size; newattrs.ia_valid = ATTR_SIZE | ATTR_CTIME; if (current->fsuid != 0) { saved_cap = current->cap_effective; cap_clear(current->cap_effective); } err = notify_change(dentry, &newattrs); if (current->fsuid != 0) current->cap_effective = saved_cap; if (!err) { vmtruncate(inode, size); if (inode->i_op && inode->i_op->truncate) inode->i_op->truncate(inode); } put_write_access(inode); DQUOT_DROP(inode); fh_unlock(fhp); out_nfserr: if (err) err = nfserrno(-err); out: return err; }
/* * Close a file. */ void nfsd_close(struct file *filp) { struct dentry *dentry = filp->f_dentry; struct inode *inode = dentry->d_inode; if (!inode->i_count) printk(KERN_WARNING "nfsd: inode count == 0!\n"); if (!dentry->d_count) printk(KERN_WARNING "nfsd: wheee, %s/%s d_count == 0!\n", dentry->d_parent->d_name.name, dentry->d_name.name); if (filp->f_op && filp->f_op->release) filp->f_op->release(inode, filp); if (filp->f_mode & FMODE_WRITE) { put_write_access(inode); DQUOT_DROP(inode); } }
void jfs_delete_inode(struct inode *inode) { jfs_info("In jfs_delete_inode, inode = 0x%p", inode); if (test_cflag(COMMIT_Freewmap, inode)) freeZeroLink(inode); diFree(inode); /* * Free the inode from the quota allocation. */ DQUOT_INIT(inode); DQUOT_FREE_INODE(inode); DQUOT_DROP(inode); clear_inode(inode); }
void jfs_delete_inode(struct inode *inode) { jfs_info("In jfs_delete_inode, inode = 0x%p", inode); if (!is_bad_inode(inode) && (JFS_IP(inode)->fileset == FILESYSTEM_I)) { truncate_inode_pages(&inode->i_data, 0); if (test_cflag(COMMIT_Freewmap, inode)) jfs_free_zero_link(inode); diFree(inode); /* * Free the inode from the quota allocation. */ DQUOT_INIT(inode); DQUOT_FREE_INODE(inode); DQUOT_DROP(inode); } clear_inode(inode); }
void udf_free_inode(struct inode * inode) { struct super_block * sb = inode->i_sb; int is_directory; unsigned long ino; ino = inode->i_ino; /* * Note: we must free any quota before locking the superblock, * as writing the quota to disk may need the lock as well. */ DQUOT_FREE_INODE(inode); DQUOT_DROP(inode); lock_super(sb); is_directory = S_ISDIR(inode->i_mode); clear_inode(inode); if (UDF_SB_LVIDBH(sb)) { if (is_directory) UDF_SB_LVIDIU(sb)->numDirs = cpu_to_le32(le32_to_cpu(UDF_SB_LVIDIU(sb)->numDirs) - 1); else UDF_SB_LVIDIU(sb)->numFiles = cpu_to_le32(le32_to_cpu(UDF_SB_LVIDIU(sb)->numFiles) - 1); mark_buffer_dirty(UDF_SB_LVIDBH(sb)); } unlock_super(sb); udf_free_blocks(sb, NULL, UDF_I_LOCATION(inode), 0, 1); }
/* * There are two policies for allocating an inode. If the new inode is * a directory, then a forward search is made for a block group with both * free space and a low directory-to-inode ratio; if that fails, then of * the groups with above-average free space, that group with the fewest * directories already is chosen. * * For other inodes, search forward from the parent directory's block * group to find a free inode. */ struct inode *ext3_new_inode(handle_t *handle, struct inode * dir, int mode) { struct super_block *sb; struct buffer_head *bitmap_bh = NULL; struct buffer_head *bh2; int group; unsigned long ino = 0; struct inode * inode; struct ext3_group_desc * gdp = NULL; struct ext3_super_block * es; struct ext3_inode_info *ei; struct ext3_sb_info *sbi; int err = 0; struct inode *ret; int i; /* Cannot create files in a deleted directory */ if (!dir || !dir->i_nlink) return ERR_PTR(-EPERM); sb = dir->i_sb; inode = new_inode(sb); if (!inode) return ERR_PTR(-ENOMEM); ei = EXT3_I(inode); sbi = EXT3_SB(sb); es = sbi->s_es; if (S_ISDIR(mode)) { if (test_opt (sb, OLDALLOC)) group = find_group_dir(sb, dir); else group = find_group_orlov(sb, dir); } else group = find_group_other(sb, dir); err = -ENOSPC; if (group == -1) goto out; for (i = 0; i < sbi->s_groups_count; i++) { err = -EIO; gdp = ext3_get_group_desc(sb, group, &bh2); if (!gdp) goto fail; brelse(bitmap_bh); bitmap_bh = read_inode_bitmap(sb, group); if (!bitmap_bh) goto fail; ino = 0; repeat_in_this_group: ino = ext3_find_next_zero_bit((unsigned long *) bitmap_bh->b_data, EXT3_INODES_PER_GROUP(sb), ino); if (ino < EXT3_INODES_PER_GROUP(sb)) { BUFFER_TRACE(bitmap_bh, "get_write_access"); err = ext3_journal_get_write_access(handle, bitmap_bh); if (err) goto fail; if (!ext3_set_bit_atomic(sb_bgl_lock(sbi, group), ino, bitmap_bh->b_data)) { /* we won it */ BUFFER_TRACE(bitmap_bh, "call ext3_journal_dirty_metadata"); err = ext3_journal_dirty_metadata(handle, bitmap_bh); if (err) goto fail; goto got; } /* we lost it */ journal_release_buffer(handle, bitmap_bh); if (++ino < EXT3_INODES_PER_GROUP(sb)) goto repeat_in_this_group; } /* * This case is possible in concurrent environment. It is very * rare. We cannot repeat the find_group_xxx() call because * that will simply return the same blockgroup, because the * group descriptor metadata has not yet been updated. * So we just go onto the next blockgroup. */ if (++group == sbi->s_groups_count) group = 0; } err = -ENOSPC; goto out; got: ino += group * EXT3_INODES_PER_GROUP(sb) + 1; if (ino < EXT3_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { ext3_error (sb, "ext3_new_inode", "reserved inode or inode > inodes count - " "block_group = %d, inode=%lu", group, ino); err = -EIO; goto fail; } BUFFER_TRACE(bh2, "get_write_access"); err = ext3_journal_get_write_access(handle, bh2); if (err) goto fail; spin_lock(sb_bgl_lock(sbi, group)); gdp->bg_free_inodes_count = cpu_to_le16(le16_to_cpu(gdp->bg_free_inodes_count) - 1); if (S_ISDIR(mode)) { gdp->bg_used_dirs_count = cpu_to_le16(le16_to_cpu(gdp->bg_used_dirs_count) + 1); } spin_unlock(sb_bgl_lock(sbi, group)); BUFFER_TRACE(bh2, "call ext3_journal_dirty_metadata"); err = ext3_journal_dirty_metadata(handle, bh2); if (err) goto fail; percpu_counter_dec(&sbi->s_freeinodes_counter); if (S_ISDIR(mode)) percpu_counter_inc(&sbi->s_dirs_counter); sb->s_dirt = 1; inode->i_uid = current->fsuid; if (test_opt (sb, GRPID)) inode->i_gid = dir->i_gid; else if (dir->i_mode & S_ISGID) { inode->i_gid = dir->i_gid; if (S_ISDIR(mode)) mode |= S_ISGID; } else inode->i_gid = current->fsgid; inode->i_mode = mode; inode->i_ino = ino; /* This is the optimal IO size (for stat), not the fs block size */ inode->i_blksize = PAGE_SIZE; inode->i_blocks = 0; inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC; memset(ei->i_data, 0, sizeof(ei->i_data)); ei->i_dir_start_lookup = 0; ei->i_disksize = 0; ei->i_flags = EXT3_I(dir)->i_flags & ~EXT3_INDEX_FL; if (S_ISLNK(mode)) ei->i_flags &= ~(EXT3_IMMUTABLE_FL|EXT3_APPEND_FL); /* dirsync only applies to directories */ if (!S_ISDIR(mode)) ei->i_flags &= ~EXT3_DIRSYNC_FL; #ifdef EXT3_FRAGMENTS ei->i_faddr = 0; ei->i_frag_no = 0; ei->i_frag_size = 0; #endif ei->i_file_acl = 0; ei->i_dir_acl = 0; ei->i_dtime = 0; ei->i_block_alloc_info = NULL; ei->i_block_group = group; ext3_set_inode_flags(inode); if (IS_DIRSYNC(inode)) handle->h_sync = 1; insert_inode_hash(inode); spin_lock(&sbi->s_next_gen_lock); inode->i_generation = sbi->s_next_generation++; spin_unlock(&sbi->s_next_gen_lock); ei->i_state = EXT3_STATE_NEW; ei->i_extra_isize = (EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) ? sizeof(struct ext3_inode) - EXT3_GOOD_OLD_INODE_SIZE : 0; ret = inode; if(DQUOT_ALLOC_INODE(inode)) { err = -EDQUOT; goto fail_drop; } err = ext3_init_acl(handle, inode, dir); if (err) goto fail_free_drop; err = ext3_init_security(handle,inode, dir); if (err) goto fail_free_drop; err = ext3_mark_inode_dirty(handle, inode); if (err) { ext3_std_error(sb, err); goto fail_free_drop; } ext3_debug("allocating inode %lu\n", inode->i_ino); goto really_out; fail: ext3_std_error(sb, err); out: iput(inode); ret = ERR_PTR(err); really_out: brelse(bitmap_bh); return ret; fail_free_drop: DQUOT_FREE_INODE(inode); fail_drop: DQUOT_DROP(inode); inode->i_flags |= S_NOQUOTA; inode->i_nlink = 0; iput(inode); brelse(bitmap_bh); return ERR_PTR(err); }
/* * NOTE! When we get the inode, we're the only people * that have access to it, and as such there are no * race conditions we have to worry about. The inode * is not on the hash-lists, and it cannot be reached * through the filesystem because the directory entry * has been deleted earlier. * * HOWEVER: we must make sure that we get no aliases, * which means that we have to call "clear_inode()" * _before_ we mark the inode not in use in the inode * bitmaps. Otherwise a newly created file might use * the same inode number (not actually the same pointer * though), and then we'd have two inodes sharing the * same inode number and space on the harddisk. */ void ufs_free_inode (struct inode * inode) { struct super_block * sb; struct ufs_sb_private_info * uspi; struct ufs_super_block_first * usb1; struct ufs_cg_private_info * ucpi; struct ufs_cylinder_group * ucg; int is_directory; unsigned ino, cg, bit; UFSD("ENTER, ino %lu\n", inode->i_ino); sb = inode->i_sb; uspi = UFS_SB(sb)->s_uspi; usb1 = ubh_get_usb_first(uspi); ino = inode->i_ino; lock_super (sb); if (!((ino > 1) && (ino < (uspi->s_ncg * uspi->s_ipg )))) { ufs_warning(sb, "ufs_free_inode", "reserved inode or nonexistent inode %u\n", ino); unlock_super (sb); return; } cg = ufs_inotocg (ino); bit = ufs_inotocgoff (ino); ucpi = ufs_load_cylinder (sb, cg); if (!ucpi) { unlock_super (sb); return; } ucg = ubh_get_ucg(UCPI_UBH(ucpi)); if (!ufs_cg_chkmagic(sb, ucg)) ufs_panic (sb, "ufs_free_fragments", "internal error, bad cg magic number"); ucg->cg_time = cpu_to_fs32(sb, get_seconds()); is_directory = S_ISDIR(inode->i_mode); DQUOT_FREE_INODE(inode); DQUOT_DROP(inode); clear_inode (inode); if (ubh_isclr (UCPI_UBH(ucpi), ucpi->c_iusedoff, bit)) ufs_error(sb, "ufs_free_inode", "bit already cleared for inode %u", ino); else { ubh_clrbit (UCPI_UBH(ucpi), ucpi->c_iusedoff, bit); if (ino < ucpi->c_irotor) ucpi->c_irotor = ino; fs32_add(sb, &ucg->cg_cs.cs_nifree, 1); uspi->cs_total.cs_nifree++; fs32_add(sb, &UFS_SB(sb)->fs_cs(cg).cs_nifree, 1); if (is_directory) { fs32_sub(sb, &ucg->cg_cs.cs_ndir, 1); uspi->cs_total.cs_ndir--; fs32_sub(sb, &UFS_SB(sb)->fs_cs(cg).cs_ndir, 1); } } ubh_mark_buffer_dirty (USPI_UBH(uspi)); ubh_mark_buffer_dirty (UCPI_UBH(ucpi)); if (sb->s_flags & MS_SYNCHRONOUS) { ubh_ll_rw_block(SWRITE, UCPI_UBH(ucpi)); ubh_wait_on_buffer (UCPI_UBH(ucpi)); } sb->s_dirt = 1; unlock_super (sb); UFSD("EXIT\n"); }
/* * There are two policies for allocating an inode. If the new inode is * a directory, then a forward search is made for a block group with both * free space and a low directory-to-inode ratio; if that fails, then of * the groups with above-average free space, that group with the fewest * directories already is chosen. * * For other inodes, search forward from the parent directory's block * group to find a free inode. */ struct inode * ufs_new_inode(struct inode * dir, int mode) { struct super_block * sb; struct ufs_sb_info * sbi; struct ufs_sb_private_info * uspi; struct ufs_super_block_first * usb1; struct ufs_cg_private_info * ucpi; struct ufs_cylinder_group * ucg; struct inode * inode; unsigned cg, bit, i, j, start; struct ufs_inode_info *ufsi; int err = -ENOSPC; UFSD("ENTER\n"); /* Cannot create files in a deleted directory */ if (!dir || !dir->i_nlink) return ERR_PTR(-EPERM); sb = dir->i_sb; inode = new_inode(sb); if (!inode) return ERR_PTR(-ENOMEM); ufsi = UFS_I(inode); sbi = UFS_SB(sb); uspi = sbi->s_uspi; usb1 = ubh_get_usb_first(uspi); lock_super (sb); /* * Try to place the inode in its parent directory */ i = ufs_inotocg(dir->i_ino); if (sbi->fs_cs(i).cs_nifree) { cg = i; goto cg_found; } /* * Use a quadratic hash to find a group with a free inode */ for ( j = 1; j < uspi->s_ncg; j <<= 1 ) { i += j; if (i >= uspi->s_ncg) i -= uspi->s_ncg; if (sbi->fs_cs(i).cs_nifree) { cg = i; goto cg_found; } } /* * That failed: try linear search for a free inode */ i = ufs_inotocg(dir->i_ino) + 1; for (j = 2; j < uspi->s_ncg; j++) { i++; if (i >= uspi->s_ncg) i = 0; if (sbi->fs_cs(i).cs_nifree) { cg = i; goto cg_found; } } goto failed; cg_found: ucpi = ufs_load_cylinder (sb, cg); if (!ucpi) { err = -EIO; goto failed; } ucg = ubh_get_ucg(UCPI_UBH(ucpi)); if (!ufs_cg_chkmagic(sb, ucg)) ufs_panic (sb, "ufs_new_inode", "internal error, bad cg magic number"); start = ucpi->c_irotor; bit = ubh_find_next_zero_bit (UCPI_UBH(ucpi), ucpi->c_iusedoff, uspi->s_ipg, start); if (!(bit < uspi->s_ipg)) { bit = ubh_find_first_zero_bit (UCPI_UBH(ucpi), ucpi->c_iusedoff, start); if (!(bit < start)) { ufs_error (sb, "ufs_new_inode", "cylinder group %u corrupted - error in inode bitmap\n", cg); err = -EIO; goto failed; } } UFSD("start = %u, bit = %u, ipg = %u\n", start, bit, uspi->s_ipg); if (ubh_isclr (UCPI_UBH(ucpi), ucpi->c_iusedoff, bit)) ubh_setbit (UCPI_UBH(ucpi), ucpi->c_iusedoff, bit); else { ufs_panic (sb, "ufs_new_inode", "internal error"); err = -EIO; goto failed; } if (uspi->fs_magic == UFS2_MAGIC) { u32 initediblk = fs32_to_cpu(sb, ucg->cg_u.cg_u2.cg_initediblk); if (bit + uspi->s_inopb > initediblk && initediblk < fs32_to_cpu(sb, ucg->cg_u.cg_u2.cg_niblk)) ufs2_init_inodes_chunk(sb, ucpi, ucg); } fs32_sub(sb, &ucg->cg_cs.cs_nifree, 1); uspi->cs_total.cs_nifree--; fs32_sub(sb, &sbi->fs_cs(cg).cs_nifree, 1); if (S_ISDIR(mode)) { fs32_add(sb, &ucg->cg_cs.cs_ndir, 1); uspi->cs_total.cs_ndir++; fs32_add(sb, &sbi->fs_cs(cg).cs_ndir, 1); } ubh_mark_buffer_dirty (USPI_UBH(uspi)); ubh_mark_buffer_dirty (UCPI_UBH(ucpi)); if (sb->s_flags & MS_SYNCHRONOUS) { ubh_ll_rw_block(SWRITE, UCPI_UBH(ucpi)); ubh_wait_on_buffer (UCPI_UBH(ucpi)); } sb->s_dirt = 1; inode->i_ino = cg * uspi->s_ipg + bit; inode->i_mode = mode; inode->i_uid = current->fsuid; if (dir->i_mode & S_ISGID) { inode->i_gid = dir->i_gid; if (S_ISDIR(mode)) inode->i_mode |= S_ISGID; } else inode->i_gid = current->fsgid; inode->i_blocks = 0; inode->i_generation = 0; inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC; ufsi->i_flags = UFS_I(dir)->i_flags; ufsi->i_lastfrag = 0; ufsi->i_shadow = 0; ufsi->i_osync = 0; ufsi->i_oeftflag = 0; ufsi->i_dir_start_lookup = 0; memset(&ufsi->i_u1, 0, sizeof(ufsi->i_u1)); insert_inode_hash(inode); mark_inode_dirty(inode); if (uspi->fs_magic == UFS2_MAGIC) { struct buffer_head *bh; struct ufs2_inode *ufs2_inode; /* * setup birth date, we do it here because of there is no sense * to hold it in struct ufs_inode_info, and lose 64 bit */ bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino)); if (!bh) { ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino); err = -EIO; goto fail_remove_inode; } lock_buffer(bh); ufs2_inode = (struct ufs2_inode *)bh->b_data; ufs2_inode += ufs_inotofsbo(inode->i_ino); ufs2_inode->ui_birthtime = cpu_to_fs64(sb, CURRENT_TIME.tv_sec); ufs2_inode->ui_birthnsec = cpu_to_fs32(sb, CURRENT_TIME.tv_nsec); mark_buffer_dirty(bh); unlock_buffer(bh); if (sb->s_flags & MS_SYNCHRONOUS) sync_dirty_buffer(bh); brelse(bh); } unlock_super (sb); if (DQUOT_ALLOC_INODE(inode)) { DQUOT_DROP(inode); err = -EDQUOT; goto fail_without_unlock; } UFSD("allocating inode %lu\n", inode->i_ino); UFSD("EXIT\n"); return inode; fail_remove_inode: unlock_super(sb); fail_without_unlock: inode->i_flags |= S_NOQUOTA; inode->i_nlink = 0; iput(inode); UFSD("EXIT (FAILED): err %d\n", err); return ERR_PTR(err); failed: unlock_super (sb); make_bad_inode(inode); iput (inode); UFSD("EXIT (FAILED): err %d\n", err); return ERR_PTR(err); }
/* * There are two policies for allocating an inode. If the new inode is * a directory, then a forward search is made for a block group with both * free space and a low directory-to-inode ratio; if that fails, then of * the groups with above-average free space, that group with the fewest * directories already is chosen. * * For other inodes, search forward from the parent directory's block * group to find a free inode. */ struct inode * ext3_new_inode (handle_t *handle, const struct inode * dir, int mode) { struct super_block * sb; struct buffer_head * bh; struct buffer_head * bh2; int i, j, avefreei; struct inode * inode; int bitmap_nr; struct ext3_group_desc * gdp; struct ext3_group_desc * tmp; struct ext3_super_block * es; int err = 0; /* Cannot create files in a deleted directory */ if (!dir || !dir->i_nlink) return ERR_PTR(-EPERM); sb = dir->i_sb; inode = new_inode(sb); if (!inode) return ERR_PTR(-ENOMEM); init_rwsem(&inode->u.ext3_i.truncate_sem); lock_super (sb); es = sb->u.ext3_sb.s_es; repeat: gdp = NULL; i = 0; if (S_ISDIR(mode)) { avefreei = le32_to_cpu(es->s_free_inodes_count) / sb->u.ext3_sb.s_groups_count; if (!gdp) { for (j = 0; j < sb->u.ext3_sb.s_groups_count; j++) { struct buffer_head *temp_buffer; tmp = ext3_get_group_desc (sb, j, &temp_buffer); if (tmp && le16_to_cpu(tmp->bg_free_inodes_count) && le16_to_cpu(tmp->bg_free_inodes_count) >= avefreei) { if (!gdp || (le16_to_cpu(tmp->bg_free_blocks_count) > le16_to_cpu(gdp->bg_free_blocks_count))) { i = j; gdp = tmp; bh2 = temp_buffer; } } } } } else { /* * Try to place the inode in its parent directory */ i = dir->u.ext3_i.i_block_group; tmp = ext3_get_group_desc (sb, i, &bh2); if (tmp && le16_to_cpu(tmp->bg_free_inodes_count)) gdp = tmp; else { /* * Use a quadratic hash to find a group with a * free inode */ for (j = 1; j < sb->u.ext3_sb.s_groups_count; j <<= 1) { i += j; if (i >= sb->u.ext3_sb.s_groups_count) i -= sb->u.ext3_sb.s_groups_count; tmp = ext3_get_group_desc (sb, i, &bh2); if (tmp && le16_to_cpu(tmp->bg_free_inodes_count)) { gdp = tmp; break; } } } if (!gdp) { /* * That failed: try linear search for a free inode */ i = dir->u.ext3_i.i_block_group + 1; for (j = 2; j < sb->u.ext3_sb.s_groups_count; j++) { if (++i >= sb->u.ext3_sb.s_groups_count) i = 0; tmp = ext3_get_group_desc (sb, i, &bh2); if (tmp && le16_to_cpu(tmp->bg_free_inodes_count)) { gdp = tmp; break; } } } } err = -ENOSPC; if (!gdp) goto fail; err = -EIO; bitmap_nr = load_inode_bitmap (sb, i); if (bitmap_nr < 0) goto fail; bh = sb->u.ext3_sb.s_inode_bitmap[bitmap_nr]; if ((j = ext3_find_first_zero_bit ((unsigned long *) bh->b_data, EXT3_INODES_PER_GROUP(sb))) < EXT3_INODES_PER_GROUP(sb)) { BUFFER_TRACE(bh, "get_write_access"); err = ext3_journal_get_write_access(handle, bh); if (err) goto fail; if (ext3_set_bit (j, bh->b_data)) { ext3_error (sb, "ext3_new_inode", "bit already set for inode %d", j); goto repeat; } BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); err = ext3_journal_dirty_metadata(handle, bh); if (err) goto fail; } else { if (le16_to_cpu(gdp->bg_free_inodes_count) != 0) { ext3_error (sb, "ext3_new_inode", "Free inodes count corrupted in group %d", i); /* Is it really ENOSPC? */ err = -ENOSPC; if (sb->s_flags & MS_RDONLY) goto fail; BUFFER_TRACE(bh2, "get_write_access"); err = ext3_journal_get_write_access(handle, bh2); if (err) goto fail; gdp->bg_free_inodes_count = 0; BUFFER_TRACE(bh2, "call ext3_journal_dirty_metadata"); err = ext3_journal_dirty_metadata(handle, bh2); if (err) goto fail; } goto repeat; } j += i * EXT3_INODES_PER_GROUP(sb) + 1; if (j < EXT3_FIRST_INO(sb) || j > le32_to_cpu(es->s_inodes_count)) { ext3_error (sb, "ext3_new_inode", "reserved inode or inode > inodes count - " "block_group = %d,inode=%d", i, j); err = -EIO; goto fail; } BUFFER_TRACE(bh2, "get_write_access"); err = ext3_journal_get_write_access(handle, bh2); if (err) goto fail; gdp->bg_free_inodes_count = cpu_to_le16(le16_to_cpu(gdp->bg_free_inodes_count) - 1); if (S_ISDIR(mode)) gdp->bg_used_dirs_count = cpu_to_le16(le16_to_cpu(gdp->bg_used_dirs_count) + 1); BUFFER_TRACE(bh2, "call ext3_journal_dirty_metadata"); err = ext3_journal_dirty_metadata(handle, bh2); if (err) goto fail; BUFFER_TRACE(sb->u.ext3_sb.s_sbh, "get_write_access"); err = ext3_journal_get_write_access(handle, sb->u.ext3_sb.s_sbh); if (err) goto fail; es->s_free_inodes_count = cpu_to_le32(le32_to_cpu(es->s_free_inodes_count) - 1); BUFFER_TRACE(sb->u.ext3_sb.s_sbh, "call ext3_journal_dirty_metadata"); err = ext3_journal_dirty_metadata(handle, sb->u.ext3_sb.s_sbh); sb->s_dirt = 1; if (err) goto fail; inode->i_uid = current->fsuid; if (test_opt (sb, GRPID)) inode->i_gid = dir->i_gid; else if (dir->i_mode & S_ISGID) { inode->i_gid = dir->i_gid; if (S_ISDIR(mode)) mode |= S_ISGID; } else inode->i_gid = current->fsgid; inode->i_mode = mode; inode->i_ino = j; /* This is the optimal IO size (for stat), not the fs block size */ inode->i_blksize = PAGE_SIZE; inode->i_blocks = 0; inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; inode->u.ext3_i.i_flags = dir->u.ext3_i.i_flags & ~EXT3_INDEX_FL; if (S_ISLNK(mode)) inode->u.ext3_i.i_flags &= ~(EXT3_IMMUTABLE_FL|EXT3_APPEND_FL); #ifdef EXT3_FRAGMENTS inode->u.ext3_i.i_faddr = 0; inode->u.ext3_i.i_frag_no = 0; inode->u.ext3_i.i_frag_size = 0; #endif inode->u.ext3_i.i_file_acl = 0; inode->u.ext3_i.i_dir_acl = 0; inode->u.ext3_i.i_dtime = 0; INIT_LIST_HEAD(&inode->u.ext3_i.i_orphan); #ifdef EXT3_PREALLOCATE inode->u.ext3_i.i_prealloc_count = 0; #endif inode->u.ext3_i.i_block_group = i; if (inode->u.ext3_i.i_flags & EXT3_SYNC_FL) inode->i_flags |= S_SYNC; if (IS_SYNC(inode)) handle->h_sync = 1; insert_inode_hash(inode); inode->i_generation = sb->u.ext3_sb.s_next_generation++; inode->u.ext3_i.i_state = EXT3_STATE_NEW; err = ext3_mark_inode_dirty(handle, inode); if (err) goto fail; unlock_super (sb); if(DQUOT_ALLOC_INODE(inode)) { DQUOT_DROP(inode); inode->i_flags |= S_NOQUOTA; inode->i_nlink = 0; iput(inode); return ERR_PTR(-EDQUOT); } ext3_debug ("allocating inode %lu\n", inode->i_ino); return inode; fail: unlock_super(sb); iput(inode); ext3_std_error(sb, err); return ERR_PTR(err); }
/* * There are two policies for allocating an inode. If the new inode is * a directory, then a forward search is made for a block group with both * free space and a low directory-to-inode ratio; if that fails, then of * the groups with above-average free space, that group with the fewest * directories already is chosen. * * For other inodes, search forward from the parent directory's block * group to find a free inode. */ struct inode * ufs_new_inode(struct inode * dir, int mode) { struct super_block * sb; struct ufs_sb_info * sbi; struct ufs_sb_private_info * uspi; struct ufs_super_block_first * usb1; struct ufs_cg_private_info * ucpi; struct ufs_cylinder_group * ucg; struct inode * inode; unsigned cg, bit, i, j, start; struct ufs_inode_info *ufsi; UFSD(("ENTER\n")) /* Cannot create files in a deleted directory */ if (!dir || !dir->i_nlink) return ERR_PTR(-EPERM); sb = dir->i_sb; inode = new_inode(sb); if (!inode) return ERR_PTR(-ENOMEM); ufsi = UFS_I(inode); sbi = UFS_SB(sb); uspi = sbi->s_uspi; usb1 = ubh_get_usb_first(USPI_UBH); lock_super (sb); /* * Try to place the inode in its parent directory */ i = ufs_inotocg(dir->i_ino); if (sbi->fs_cs(i).cs_nifree) { cg = i; goto cg_found; } /* * Use a quadratic hash to find a group with a free inode */ for ( j = 1; j < uspi->s_ncg; j <<= 1 ) { i += j; if (i >= uspi->s_ncg) i -= uspi->s_ncg; if (sbi->fs_cs(i).cs_nifree) { cg = i; goto cg_found; } } /* * That failed: try linear search for a free inode */ i = ufs_inotocg(dir->i_ino) + 1; for (j = 2; j < uspi->s_ncg; j++) { i++; if (i >= uspi->s_ncg) i = 0; if (sbi->fs_cs(i).cs_nifree) { cg = i; goto cg_found; } } goto failed; cg_found: ucpi = ufs_load_cylinder (sb, cg); if (!ucpi) goto failed; ucg = ubh_get_ucg(UCPI_UBH); if (!ufs_cg_chkmagic(sb, ucg)) ufs_panic (sb, "ufs_new_inode", "internal error, bad cg magic number"); start = ucpi->c_irotor; bit = ubh_find_next_zero_bit (UCPI_UBH, ucpi->c_iusedoff, uspi->s_ipg, start); if (!(bit < uspi->s_ipg)) { bit = ubh_find_first_zero_bit (UCPI_UBH, ucpi->c_iusedoff, start); if (!(bit < start)) { ufs_error (sb, "ufs_new_inode", "cylinder group %u corrupted - error in inode bitmap\n", cg); goto failed; } } UFSD(("start = %u, bit = %u, ipg = %u\n", start, bit, uspi->s_ipg)) if (ubh_isclr (UCPI_UBH, ucpi->c_iusedoff, bit)) ubh_setbit (UCPI_UBH, ucpi->c_iusedoff, bit); else { ufs_panic (sb, "ufs_new_inode", "internal error"); goto failed; } fs32_sub(sb, &ucg->cg_cs.cs_nifree, 1); fs32_sub(sb, &usb1->fs_cstotal.cs_nifree, 1); fs32_sub(sb, &sbi->fs_cs(cg).cs_nifree, 1); if (S_ISDIR(mode)) { fs32_add(sb, &ucg->cg_cs.cs_ndir, 1); fs32_add(sb, &usb1->fs_cstotal.cs_ndir, 1); fs32_add(sb, &sbi->fs_cs(cg).cs_ndir, 1); } ubh_mark_buffer_dirty (USPI_UBH); ubh_mark_buffer_dirty (UCPI_UBH); if (sb->s_flags & MS_SYNCHRONOUS) { ubh_wait_on_buffer (UCPI_UBH); ubh_ll_rw_block (WRITE, 1, (struct ufs_buffer_head **) &ucpi); ubh_wait_on_buffer (UCPI_UBH); } sb->s_dirt = 1; inode->i_mode = mode; inode->i_uid = current->fsuid; if (dir->i_mode & S_ISGID) { inode->i_gid = dir->i_gid; if (S_ISDIR(mode)) inode->i_mode |= S_ISGID; } else inode->i_gid = current->fsgid; inode->i_ino = cg * uspi->s_ipg + bit; inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size (for stat), not the fs block size */ inode->i_blocks = 0; inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC; ufsi->i_flags = UFS_I(dir)->i_flags; ufsi->i_lastfrag = 0; ufsi->i_gen = 0; ufsi->i_shadow = 0; ufsi->i_osync = 0; ufsi->i_oeftflag = 0; memset(&ufsi->i_u1, 0, sizeof(ufsi->i_u1)); insert_inode_hash(inode); mark_inode_dirty(inode); unlock_super (sb); if (DQUOT_ALLOC_INODE(inode)) { DQUOT_DROP(inode); inode->i_flags |= S_NOQUOTA; inode->i_nlink = 0; iput(inode); return ERR_PTR(-EDQUOT); } UFSD(("allocating inode %lu\n", inode->i_ino)) UFSD(("EXIT\n")) return inode; failed: unlock_super (sb); make_bad_inode(inode); iput (inode); UFSD(("EXIT (FAILED)\n")) return ERR_PTR(-ENOSPC); }
struct inode *udf_new_inode(struct inode *dir, int mode, int *err) { struct super_block *sb = dir->i_sb; struct udf_sb_info *sbi = UDF_SB(sb); struct inode *inode; int block; uint32_t start = UDF_I(dir)->i_location.logicalBlockNum; struct udf_inode_info *iinfo; struct udf_inode_info *dinfo = UDF_I(dir); inode = new_inode(sb); if (!inode) { *err = -ENOMEM; return NULL; } *err = -ENOSPC; iinfo = UDF_I(inode); iinfo->i_unique = 0; iinfo->i_lenExtents = 0; iinfo->i_next_alloc_block = 0; iinfo->i_next_alloc_goal = 0; iinfo->i_strat4096 = 0; block = udf_new_block(dir->i_sb, NULL, dinfo->i_location.partitionReferenceNum, start, err); if (*err) { iput(inode); return NULL; } mutex_lock(&sbi->s_alloc_mutex); if (sbi->s_lvid_bh) { struct logicalVolIntegrityDesc *lvid = (struct logicalVolIntegrityDesc *) sbi->s_lvid_bh->b_data; struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sbi); struct logicalVolHeaderDesc *lvhd; uint64_t uniqueID; lvhd = (struct logicalVolHeaderDesc *) (lvid->logicalVolContentsUse); if (S_ISDIR(mode)) le32_add_cpu(&lvidiu->numDirs, 1); else le32_add_cpu(&lvidiu->numFiles, 1); iinfo->i_unique = uniqueID = le64_to_cpu(lvhd->uniqueID); if (!(++uniqueID & 0x00000000FFFFFFFFUL)) uniqueID += 16; lvhd->uniqueID = cpu_to_le64(uniqueID); mark_buffer_dirty(sbi->s_lvid_bh); } inode->i_mode = mode; inode->i_uid = current->fsuid; if (dir->i_mode & S_ISGID) { inode->i_gid = dir->i_gid; if (S_ISDIR(mode)) mode |= S_ISGID; } else { inode->i_gid = current->fsgid; } iinfo->i_location.logicalBlockNum = block; iinfo->i_location.partitionReferenceNum = dinfo->i_location.partitionReferenceNum; inode->i_ino = udf_get_lb_pblock(sb, iinfo->i_location, 0); inode->i_blocks = 0; iinfo->i_lenEAttr = 0; iinfo->i_lenAlloc = 0; iinfo->i_use = 0; if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_EXTENDED_FE)) { iinfo->i_efe = 1; if (UDF_VERS_USE_EXTENDED_FE > sbi->s_udfrev) sbi->s_udfrev = UDF_VERS_USE_EXTENDED_FE; iinfo->i_ext.i_data = kzalloc(inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry), GFP_KERNEL); } else { iinfo->i_efe = 0; iinfo->i_ext.i_data = kzalloc(inode->i_sb->s_blocksize - sizeof(struct fileEntry), GFP_KERNEL); } if (!iinfo->i_ext.i_data) { iput(inode); *err = -ENOMEM; mutex_unlock(&sbi->s_alloc_mutex); return NULL; } if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_AD_IN_ICB)) iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; else if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; else iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; inode->i_mtime = inode->i_atime = inode->i_ctime = iinfo->i_crtime = current_fs_time(inode->i_sb); insert_inode_hash(inode); mark_inode_dirty(inode); mutex_unlock(&sbi->s_alloc_mutex); if (DQUOT_ALLOC_INODE(inode)) { DQUOT_DROP(inode); inode->i_flags |= S_NOQUOTA; inode->i_nlink = 0; iput(inode); *err = -EDQUOT; return NULL; } *err = 0; return inode; }
/* * Rename a file * N.B. After this call _both_ ffhp and tfhp need an fh_put */ int nfsd_rename(struct svc_rqst *rqstp, struct svc_fh *ffhp, char *fname, int flen, struct svc_fh *tfhp, char *tname, int tlen) { struct dentry *fdentry, *tdentry, *odentry, *ndentry; struct inode *fdir, *tdir; int err; err = fh_verify(rqstp, ffhp, S_IFDIR, MAY_REMOVE); if (err) goto out; err = fh_verify(rqstp, tfhp, S_IFDIR, MAY_CREATE); if (err) goto out; fdentry = ffhp->fh_dentry; fdir = fdentry->d_inode; tdentry = tfhp->fh_dentry; tdir = tdentry->d_inode; /* N.B. We shouldn't need this ... dentry layer handles it */ err = nfserr_perm; if (!flen || (fname[0] == '.' && (flen == 1 || (flen == 2 && fname[1] == '.'))) || !tlen || (tname[0] == '.' && (tlen == 1 || (tlen == 2 && tname[1] == '.')))) goto out; odentry = lookup_dentry(fname, dget(fdentry), 0); err = PTR_ERR(odentry); if (IS_ERR(odentry)) goto out_nfserr; err = -ENOENT; if (!odentry->d_inode) goto out_dput_old; ndentry = lookup_dentry(tname, dget(tdentry), 0); err = PTR_ERR(ndentry); if (IS_ERR(ndentry)) goto out_dput_old; /* * Lock the parent directories. */ nfsd_double_down(&tdir->i_sem, &fdir->i_sem); err = -ENOENT; /* GAM3 check for parent changes after locking. */ if (check_parent(fdir, odentry) && check_parent(tdir, ndentry)) { err = vfs_rename(fdir, odentry, tdir, ndentry); if (!err && EX_ISSYNC(tfhp->fh_export)) { write_inode_now(fdir); write_inode_now(tdir); } } else dprintk("nfsd: Caught race in nfsd_rename"); DQUOT_DROP(fdir); DQUOT_DROP(tdir); nfsd_double_up(&tdir->i_sem, &fdir->i_sem); dput(ndentry); out_dput_old: dput(odentry); if (err) goto out_nfserr; out: return err; out_nfserr: err = nfserrno(-err); goto out; }
struct inode * udf_new_inode (struct inode *dir, int mode, int * err) { struct super_block *sb; struct inode * inode; int block; Uint32 start = UDF_I_LOCATION(dir).logicalBlockNum; sb = dir->i_sb; inode = new_inode(sb); if (!inode) { *err = -ENOMEM; return NULL; } *err = -ENOSPC; block = udf_new_block(dir->i_sb, NULL, UDF_I_LOCATION(dir).partitionReferenceNum, start, err); if (*err) { iput(inode); return NULL; } lock_super(sb); if (UDF_SB_LVIDBH(sb)) { struct LogicalVolHeaderDesc *lvhd; Uint64 uniqueID; lvhd = (struct LogicalVolHeaderDesc *)(UDF_SB_LVID(sb)->logicalVolContentsUse); if (S_ISDIR(mode)) UDF_SB_LVIDIU(sb)->numDirs = cpu_to_le32(le32_to_cpu(UDF_SB_LVIDIU(sb)->numDirs) + 1); else UDF_SB_LVIDIU(sb)->numFiles = cpu_to_le32(le32_to_cpu(UDF_SB_LVIDIU(sb)->numFiles) + 1); UDF_I_UNIQUE(inode) = uniqueID = le64_to_cpu(lvhd->uniqueID); if (!(++uniqueID & 0x00000000FFFFFFFFUL)) uniqueID += 16; lvhd->uniqueID = cpu_to_le64(uniqueID); mark_buffer_dirty(UDF_SB_LVIDBH(sb)); } inode->i_mode = mode; inode->i_uid = current->fsuid; if (dir->i_mode & S_ISGID) { inode->i_gid = dir->i_gid; if (S_ISDIR(mode)) mode |= S_ISGID; } else inode->i_gid = current->fsgid; UDF_I_LOCATION(inode).logicalBlockNum = block; UDF_I_LOCATION(inode).partitionReferenceNum = UDF_I_LOCATION(dir).partitionReferenceNum; inode->i_ino = udf_get_lb_pblock(sb, UDF_I_LOCATION(inode), 0); inode->i_blksize = PAGE_SIZE; inode->i_blocks = 0; UDF_I_LENEATTR(inode) = 0; UDF_I_LENALLOC(inode) = 0; if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_EXTENDED_FE)) { UDF_I_EXTENDED_FE(inode) = 1; UDF_UPDATE_UDFREV(inode->i_sb, UDF_VERS_USE_EXTENDED_FE); } else UDF_I_EXTENDED_FE(inode) = 0; if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_AD_IN_ICB)) UDF_I_ALLOCTYPE(inode) = ICB_FLAG_AD_IN_ICB; else if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) UDF_I_ALLOCTYPE(inode) = ICB_FLAG_AD_SHORT; else UDF_I_ALLOCTYPE(inode) = ICB_FLAG_AD_LONG; inode->i_mtime = inode->i_atime = inode->i_ctime = UDF_I_CRTIME(inode) = CURRENT_TIME; UDF_I_UMTIME(inode) = UDF_I_UCTIME(inode) = UDF_I_UCRTIME(inode) = CURRENT_UTIME; UDF_I_NEW_INODE(inode) = 1; insert_inode_hash(inode); mark_inode_dirty(inode); unlock_super(sb); if (DQUOT_ALLOC_INODE(inode)) { DQUOT_DROP(inode); inode->i_flags |= S_NOQUOTA; inode->i_nlink = 0; iput(inode); *err = -EDQUOT; return NULL; } *err = 0; return inode; }
/* * NOTE! When we get the inode, we're the only people * that have access to it, and as such there are no * race conditions we have to worry about. The inode * is not on the hash-lists, and it cannot be reached * through the filesystem because the directory entry * has been deleted earlier. * * HOWEVER: we must make sure that we get no aliases, * which means that we have to call "clear_inode()" * _before_ we mark the inode not in use in the inode * bitmaps. Otherwise a newly created file might use * the same inode number (not actually the same pointer * though), and then we'd have two inodes sharing the * same inode number and space on the harddisk. */ void ext2_free_inode (struct inode * inode) { struct super_block * sb = inode->i_sb; int is_directory; unsigned long ino; struct buffer_head * bh; struct buffer_head * bh2; unsigned long block_group; unsigned long bit; struct ext2_group_desc * desc; struct ext2_super_block * es; ino = inode->i_ino; ext2_debug ("freeing inode %lu\n", ino); /* * Note: we must free any quota before locking the superblock, * as writing the quota to disk may need the lock as well. */ if (!is_bad_inode(inode)) { /* Quota is already initialized in iput() */ DQUOT_FREE_INODE(inode); DQUOT_DROP(inode); } lock_super (sb); es = sb->u.ext2_sb.s_es; is_directory = S_ISDIR(inode->i_mode); /* Do this BEFORE marking the inode not in use or returning an error */ clear_inode (inode); if (ino < EXT2_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { ext2_error (sb, "ext2_free_inode", "reserved or nonexistent inode %lu", ino); goto error_return; } block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb); bit = (ino - 1) % EXT2_INODES_PER_GROUP(sb); bh = load_inode_bitmap (sb, block_group); if (IS_ERR(bh)) goto error_return; /* Ok, now we can actually update the inode bitmaps.. */ if (!ext2_clear_bit (bit, bh->b_data)) ext2_error (sb, "ext2_free_inode", "bit already cleared for inode %lu", ino); else { desc = ext2_get_group_desc (sb, block_group, &bh2); if (desc) { desc->bg_free_inodes_count = cpu_to_le16(le16_to_cpu(desc->bg_free_inodes_count) + 1); if (is_directory) desc->bg_used_dirs_count = cpu_to_le16(le16_to_cpu(desc->bg_used_dirs_count) - 1); } mark_buffer_dirty(bh2); es->s_free_inodes_count = cpu_to_le32(le32_to_cpu(es->s_free_inodes_count) + 1); mark_buffer_dirty(sb->u.ext2_sb.s_sbh); } mark_buffer_dirty(bh); if (sb->s_flags & MS_SYNCHRONOUS) { ll_rw_block (WRITE, 1, &bh); wait_on_buffer (bh); } sb->s_dirt = 1; error_return: unlock_super (sb); }
/* * Unlink a file or directory * N.B. After this call fhp needs an fh_put */ int nfsd_unlink(struct svc_rqst *rqstp, struct svc_fh *fhp, int type, char *fname, int flen) { struct dentry *dentry, *rdentry; struct inode *dirp; int err; /* N.B. We shouldn't need this test ... handled by dentry layer */ err = nfserr_acces; if (!flen || isdotent(fname, flen)) goto out; err = fh_verify(rqstp, fhp, S_IFDIR, MAY_REMOVE); if (err) goto out; dentry = fhp->fh_dentry; dirp = dentry->d_inode; rdentry = lookup_dentry(fname, dget(dentry), 0); err = PTR_ERR(rdentry); if (IS_ERR(rdentry)) goto out_nfserr; if (!rdentry->d_inode) { dput(rdentry); err = nfserr_noent; goto out; } if (type != S_IFDIR) { /* It's UNLINK */ err = fh_lock_parent(fhp, rdentry); if (err) goto out; err = vfs_unlink(dirp, rdentry); DQUOT_DROP(dirp); fh_unlock(fhp); dput(rdentry); } else { /* It's RMDIR */ /* See comments in fs/namei.c:do_rmdir */ rdentry->d_count++; nfsd_double_down(&dirp->i_sem, &rdentry->d_inode->i_sem); if (!fhp->fh_pre_mtime) fhp->fh_pre_mtime = dirp->i_mtime; fhp->fh_locked = 1; err = -ENOENT; if (check_parent(dirp, rdentry)) err = vfs_rmdir(dirp, rdentry); rdentry->d_count--; DQUOT_DROP(dirp); if (!fhp->fh_post_version) fhp->fh_post_version = dirp->i_version; fhp->fh_locked = 0; nfsd_double_up(&dirp->i_sem, &rdentry->d_inode->i_sem); dput(rdentry); } if (err) goto out_nfserr; if (EX_ISSYNC(fhp->fh_export)) write_inode_now(dirp); out: return err; out_nfserr: err = nfserrno(-err); goto out; }
/* * NOTE! When we get the inode, we're the only people * that have access to it, and as such there are no * race conditions we have to worry about. The inode * is not on the hash-lists, and it cannot be reached * through the filesystem because the directory entry * has been deleted earlier. * * HOWEVER: we must make sure that we get no aliases, * which means that we have to call "clear_inode()" * _before_ we mark the inode not in use in the inode * bitmaps. Otherwise a newly created file might use * the same inode number (not actually the same pointer * though), and then we'd have two inodes sharing the * same inode number and space on the harddisk. */ void ext3_free_inode (handle_t *handle, struct inode * inode) { struct super_block * sb = inode->i_sb; int is_directory; unsigned long ino; struct buffer_head *bitmap_bh = NULL; struct buffer_head *bh2; unsigned long block_group; unsigned long bit; struct ext3_group_desc * gdp; struct ext3_super_block * es; struct ext3_sb_info *sbi; int fatal = 0, err; if (atomic_read(&inode->i_count) > 1) { printk ("ext3_free_inode: inode has count=%d\n", atomic_read(&inode->i_count)); return; } if (inode->i_nlink) { printk ("ext3_free_inode: inode has nlink=%d\n", inode->i_nlink); return; } if (!sb) { printk("ext3_free_inode: inode on nonexistent device\n"); return; } sbi = EXT3_SB(sb); ino = inode->i_ino; ext3_debug ("freeing inode %lu\n", ino); /* * Note: we must free any quota before locking the superblock, * as writing the quota to disk may need the lock as well. */ DQUOT_INIT(inode); ext3_xattr_delete_inode(handle, inode); DQUOT_FREE_INODE(inode); DQUOT_DROP(inode); is_directory = S_ISDIR(inode->i_mode); /* Do this BEFORE marking the inode not in use or returning an error */ clear_inode (inode); es = EXT3_SB(sb)->s_es; if (ino < EXT3_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { ext3_error (sb, "ext3_free_inode", "reserved or nonexistent inode %lu", ino); goto error_return; } block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb); bit = (ino - 1) % EXT3_INODES_PER_GROUP(sb); bitmap_bh = read_inode_bitmap(sb, block_group); if (!bitmap_bh) goto error_return; BUFFER_TRACE(bitmap_bh, "get_write_access"); fatal = ext3_journal_get_write_access(handle, bitmap_bh); if (fatal) goto error_return; /* Ok, now we can actually update the inode bitmaps.. */ if (!ext3_clear_bit_atomic(sb_bgl_lock(sbi, block_group), bit, bitmap_bh->b_data)) ext3_error (sb, "ext3_free_inode", "bit already cleared for inode %lu", ino); else { gdp = ext3_get_group_desc (sb, block_group, &bh2); BUFFER_TRACE(bh2, "get_write_access"); fatal = ext3_journal_get_write_access(handle, bh2); if (fatal) goto error_return; if (gdp) { spin_lock(sb_bgl_lock(sbi, block_group)); gdp->bg_free_inodes_count = cpu_to_le16( le16_to_cpu(gdp->bg_free_inodes_count) + 1); if (is_directory) gdp->bg_used_dirs_count = cpu_to_le16( le16_to_cpu(gdp->bg_used_dirs_count) - 1); spin_unlock(sb_bgl_lock(sbi, block_group)); percpu_counter_inc(&sbi->s_freeinodes_counter); if (is_directory) percpu_counter_dec(&sbi->s_dirs_counter); } BUFFER_TRACE(bh2, "call ext3_journal_dirty_metadata"); err = ext3_journal_dirty_metadata(handle, bh2); if (!fatal) fatal = err; } BUFFER_TRACE(bitmap_bh, "call ext3_journal_dirty_metadata"); err = ext3_journal_dirty_metadata(handle, bitmap_bh); if (!fatal) fatal = err; sb->s_dirt = 1; error_return: brelse(bitmap_bh); ext3_std_error(sb, fatal); }
/* * NOTE! When we get the inode, we're the only people * that have access to it, and as such there are no * race conditions we have to worry about. The inode * is not on the hash-lists, and it cannot be reached * through the filesystem because the directory entry * has been deleted earlier. * * HOWEVER: we must make sure that we get no aliases, * which means that we have to call "clear_inode()" * _before_ we mark the inode not in use in the inode * bitmaps. Otherwise a newly created file might use * the same inode number (not actually the same pointer * though), and then we'd have two inodes sharing the * same inode number and space on the harddisk. */ void ext2_free_inode (struct inode * inode) { struct super_block * sb = inode->i_sb; int is_directory; unsigned long ino; struct buffer_head * bh; struct buffer_head * bh2; unsigned long block_group; unsigned long bit; int bitmap_nr; struct ext2_group_desc * gdp; struct ext2_super_block * es; if (!inode->i_dev) { printk ("ext2_free_inode: inode has no device\n"); return; } if (inode->i_count > 1) { printk ("ext2_free_inode: inode has count=%d\n", inode->i_count); return; } if (inode->i_nlink) { printk ("ext2_free_inode: inode has nlink=%d\n", (int) inode->i_nlink); return; } if (!sb) { printk("ext2_free_inode: inode on nonexistent device\n"); return; } ino = inode->i_ino; ext2_debug ("freeing inode %lu\n", ino); /* * Note: we must free any quota before locking the superblock, * as writing the quota to disk may need the lock as well. */ DQUOT_FREE_INODE(sb, inode); DQUOT_DROP(inode); lock_super (sb); es = sb->u.ext2_sb.s_es; if (ino < EXT2_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { ext2_error (sb, "free_inode", "reserved inode or nonexistent inode"); goto error_return; } block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb); bit = (ino - 1) % EXT2_INODES_PER_GROUP(sb); bitmap_nr = load_inode_bitmap (sb, block_group); if (bitmap_nr < 0) goto error_return; bh = sb->u.ext2_sb.s_inode_bitmap[bitmap_nr]; is_directory = S_ISDIR(inode->i_mode); /* Do this BEFORE marking the inode not in use */ clear_inode (inode); /* Ok, now we can actually update the inode bitmaps.. */ if (!ext2_clear_bit (bit, bh->b_data)) ext2_warning (sb, "ext2_free_inode", "bit already cleared for inode %lu", ino); else { gdp = ext2_get_group_desc (sb, block_group, &bh2); if (gdp) { gdp->bg_free_inodes_count = cpu_to_le16(le16_to_cpu(gdp->bg_free_inodes_count) + 1); if (is_directory) gdp->bg_used_dirs_count = cpu_to_le16(le16_to_cpu(gdp->bg_used_dirs_count) - 1); } mark_buffer_dirty(bh2, 1); es->s_free_inodes_count = cpu_to_le32(le32_to_cpu(es->s_free_inodes_count) + 1); mark_buffer_dirty(sb->u.ext2_sb.s_sbh, 1); } mark_buffer_dirty(bh, 1); if (sb->s_flags & MS_SYNCHRONOUS) { ll_rw_block (WRITE, 1, &bh); wait_on_buffer (bh); } sb->s_dirt = 1; error_return: unlock_super (sb); }
/* * Create a file (regular, directory, device, fifo); UNIX sockets * not yet implemented. * If the response fh has been verified, the parent directory should * already be locked. Note that the parent directory is left locked. * * N.B. Every call to nfsd_create needs an fh_put for _both_ fhp and resfhp */ int nfsd_create(struct svc_rqst *rqstp, struct svc_fh *fhp, char *fname, int flen, struct iattr *iap, int type, dev_t rdev, struct svc_fh *resfhp) { struct dentry *dentry, *dchild; struct inode *dirp; nfsd_dirop_t opfunc = NULL; int err; err = nfserr_perm; if (!flen) goto out; err = fh_verify(rqstp, fhp, S_IFDIR, MAY_CREATE); if (err) goto out; dentry = fhp->fh_dentry; dirp = dentry->d_inode; err = nfserr_notdir; if(!dirp->i_op || !dirp->i_op->lookup) goto out; /* * Check whether the response file handle has been verified yet. * If it has, the parent directory should already be locked. */ if (!resfhp->fh_dverified) { dchild = lookup_dentry(fname, dget(dentry), 0); err = PTR_ERR(dchild); if (IS_ERR(dchild)) goto out_nfserr; fh_compose(resfhp, fhp->fh_export, dchild); /* Lock the parent and check for errors ... */ err = fh_lock_parent(fhp, dchild); if (err) goto out; } else { dchild = resfhp->fh_dentry; if (!fhp->fh_locked) printk(KERN_ERR "nfsd_create: parent %s/%s not locked!\n", dentry->d_parent->d_name.name, dentry->d_name.name); } /* * Make sure the child dentry is still negative ... */ err = nfserr_exist; if (dchild->d_inode) { printk(KERN_WARNING "nfsd_create: dentry %s/%s not negative!\n", dentry->d_name.name, dchild->d_name.name); goto out; } /* * Get the dir op function pointer. */ err = nfserr_perm; switch (type) { case S_IFREG: opfunc = (nfsd_dirop_t) dirp->i_op->create; break; case S_IFDIR: opfunc = (nfsd_dirop_t) dirp->i_op->mkdir; break; case S_IFCHR: case S_IFBLK: /* The client is _NOT_ required to do security enforcement */ if(!capable(CAP_SYS_ADMIN)) { err = -EPERM; goto out; } case S_IFIFO: case S_IFSOCK: opfunc = dirp->i_op->mknod; break; } if (!opfunc) goto out; if (!(iap->ia_valid & ATTR_MODE)) iap->ia_mode = 0; /* * Call the dir op function to create the object. */ DQUOT_INIT(dirp); err = opfunc(dirp, dchild, iap->ia_mode, rdev); DQUOT_DROP(dirp); if (err < 0) goto out_nfserr; if (EX_ISSYNC(fhp->fh_export)) write_inode_now(dirp); /* * Update the file handle to get the new inode info. */ fh_update(resfhp); /* Set file attributes. Mode has already been set and * setting uid/gid works only for root. Irix appears to * send along the gid when it tries to implement setgid * directories via NFS. */ err = 0; if ((iap->ia_valid &= (ATTR_UID|ATTR_GID|ATTR_MODE)) != 0) err = nfsd_setattr(rqstp, resfhp, iap); out: return err; out_nfserr: err = nfserrno(-err); goto out; }
/* * Create a hardlink * N.B. After this call _both_ ffhp and tfhp need an fh_put */ int nfsd_link(struct svc_rqst *rqstp, struct svc_fh *ffhp, char *fname, int len, struct svc_fh *tfhp) { struct dentry *ddir, *dnew, *dold; struct inode *dirp, *dest; int err; err = fh_verify(rqstp, ffhp, S_IFDIR, MAY_CREATE); if (err) goto out; err = fh_verify(rqstp, tfhp, S_IFREG, MAY_NOP); if (err) goto out; err = nfserr_perm; if (!len) goto out; ddir = ffhp->fh_dentry; dirp = ddir->d_inode; dnew = lookup_dentry(fname, dget(ddir), 0); err = PTR_ERR(dnew); if (IS_ERR(dnew)) goto out_nfserr; /* * Lock the parent before checking for existence */ err = fh_lock_parent(ffhp, dnew); if (err) goto out_dput; err = nfserr_exist; if (dnew->d_inode) goto out_unlock; dold = tfhp->fh_dentry; dest = dold->d_inode; err = nfserr_acces; if (nfsd_iscovered(ddir, ffhp->fh_export)) goto out_unlock; /* FIXME: nxdev for NFSv3 */ if (dirp->i_dev != dest->i_dev) goto out_unlock; err = nfserr_perm; if (IS_IMMUTABLE(dest) /* || IS_APPEND(dest) */ ) goto out_unlock; if (!dirp->i_op || !dirp->i_op->link) goto out_unlock; DQUOT_INIT(dirp); err = dirp->i_op->link(dold, dirp, dnew); DQUOT_DROP(dirp); if (!err) { if (EX_ISSYNC(ffhp->fh_export)) { write_inode_now(dirp); write_inode_now(dest); } } else err = nfserrno(-err); out_unlock: fh_unlock(ffhp); out_dput: dput(dnew); out: return err; out_nfserr: err = nfserrno(-err); goto out; }
/* * Create a symlink and look up its inode * N.B. After this call _both_ fhp and resfhp need an fh_put */ int nfsd_symlink(struct svc_rqst *rqstp, struct svc_fh *fhp, char *fname, int flen, char *path, int plen, struct svc_fh *resfhp) { struct dentry *dentry, *dnew; struct inode *dirp; int err; err = nfserr_noent; if (!flen || !plen) goto out; err = fh_verify(rqstp, fhp, S_IFDIR, MAY_CREATE); if (err) goto out; dentry = fhp->fh_dentry; err = nfserr_perm; if (nfsd_iscovered(dentry, fhp->fh_export)) goto out; dirp = dentry->d_inode; if (!dirp->i_op || !dirp->i_op->symlink) goto out; dnew = lookup_dentry(fname, dget(dentry), 0); err = PTR_ERR(dnew); if (IS_ERR(dnew)) goto out_nfserr; /* * Lock the parent before checking for existence */ err = fh_lock_parent(fhp, dnew); if (err) goto out_compose; err = nfserr_exist; if (!dnew->d_inode) { DQUOT_INIT(dirp); err = dirp->i_op->symlink(dirp, dnew, path); DQUOT_DROP(dirp); if (!err) { if (EX_ISSYNC(fhp->fh_export)) write_inode_now(dirp); } else err = nfserrno(-err); } fh_unlock(fhp); /* Compose the fh so the dentry will be freed ... */ out_compose: fh_compose(resfhp, fhp->fh_export, dnew); out: return err; out_nfserr: err = nfserrno(-err); goto out; }
/* * NAME: ialloc() * * FUNCTION: Allocate a new inode * */ struct inode *ialloc(struct inode *parent, umode_t mode) { struct super_block *sb = parent->i_sb; struct inode *inode; struct jfs_inode_info *jfs_inode; int rc; inode = new_inode(sb); if (!inode) { jfs_warn("ialloc: new_inode returned NULL!"); return ERR_PTR(-ENOMEM); } jfs_inode = JFS_IP(inode); rc = diAlloc(parent, S_ISDIR(mode), inode); if (rc) { jfs_warn("ialloc: diAlloc returned %d!", rc); if (rc == -EIO) make_bad_inode(inode); iput(inode); return ERR_PTR(rc); } inode->i_uid = current_fsuid(); if (parent->i_mode & S_ISGID) { inode->i_gid = parent->i_gid; if (S_ISDIR(mode)) mode |= S_ISGID; } else inode->i_gid = current_fsgid(); /* * New inodes need to save sane values on disk when * uid & gid mount options are used */ jfs_inode->saved_uid = inode->i_uid; jfs_inode->saved_gid = inode->i_gid; /* * Allocate inode to quota. */ if (DQUOT_ALLOC_INODE(inode)) { DQUOT_DROP(inode); inode->i_flags |= S_NOQUOTA; inode->i_nlink = 0; iput(inode); return ERR_PTR(-EDQUOT); } inode->i_mode = mode; /* inherit flags from parent */ jfs_inode->mode2 = JFS_IP(parent)->mode2 & JFS_FL_INHERIT; if (S_ISDIR(mode)) { jfs_inode->mode2 |= IDIRECTORY; jfs_inode->mode2 &= ~JFS_DIRSYNC_FL; } else { jfs_inode->mode2 |= INLINEEA | ISPARSE; if (S_ISLNK(mode)) jfs_inode->mode2 &= ~(JFS_IMMUTABLE_FL|JFS_APPEND_FL); } jfs_inode->mode2 |= mode; inode->i_blocks = 0; inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; jfs_inode->otime = inode->i_ctime.tv_sec; inode->i_generation = JFS_SBI(sb)->gengen++; jfs_inode->cflag = 0; /* Zero remaining fields */ memset(&jfs_inode->acl, 0, sizeof(dxd_t)); memset(&jfs_inode->ea, 0, sizeof(dxd_t)); jfs_inode->next_index = 0; jfs_inode->acltype = 0; jfs_inode->btorder = 0; jfs_inode->btindex = 0; jfs_inode->bxflag = 0; jfs_inode->blid = 0; jfs_inode->atlhead = 0; jfs_inode->atltail = 0; jfs_inode->xtlid = 0; jfs_set_inode_flags(inode); jfs_info("ialloc returns inode = 0x%p\n", inode); return inode; }
struct inode * udf_new_inode (struct inode *dir, int mode, int * err) { struct super_block *sb = dir->i_sb; struct udf_sb_info *sbi = UDF_SB(sb); struct inode * inode; int block; uint32_t start = UDF_I_LOCATION(dir).logicalBlockNum; inode = new_inode(sb); if (!inode) { *err = -ENOMEM; return NULL; } *err = -ENOSPC; block = udf_new_block(dir->i_sb, NULL, UDF_I_LOCATION(dir).partitionReferenceNum, start, err); if (*err) { iput(inode); return NULL; } lock_udf_alloc_sem(sbi); UDF_I_UNIQUE(inode) = 0; UDF_I_LENEXTENTS(inode) = 0; UDF_I_NEXT_ALLOC_BLOCK(inode) = 0; UDF_I_NEXT_ALLOC_GOAL(inode) = 0; UDF_I_STRAT4096(inode) = 0; if (UDF_SB_LVIDBH(sb)) { struct logicalVolHeaderDesc *lvhd; uint64_t uniqueID; lvhd = (struct logicalVolHeaderDesc *)(UDF_SB_LVID(sb)->logicalVolContentsUse); if (S_ISDIR(mode)) UDF_SB_LVIDIU(sb)->numDirs = cpu_to_le32(le32_to_cpu(UDF_SB_LVIDIU(sb)->numDirs) + 1); else UDF_SB_LVIDIU(sb)->numFiles = cpu_to_le32(le32_to_cpu(UDF_SB_LVIDIU(sb)->numFiles) + 1); UDF_I_UNIQUE(inode) = uniqueID = le64_to_cpu(lvhd->uniqueID); if (!(++uniqueID & 0x00000000FFFFFFFFUL)) uniqueID += 16; lvhd->uniqueID = cpu_to_le64(uniqueID); mark_buffer_dirty(UDF_SB_LVIDBH(sb)); } inode->i_mode = mode; inode->i_uid = current->fsuid; if (dir->i_mode & S_ISGID) { inode->i_gid = dir->i_gid; if (S_ISDIR(mode)) mode |= S_ISGID; } else inode->i_gid = current->fsgid; UDF_I_LOCATION(inode).logicalBlockNum = block; UDF_I_LOCATION(inode).partitionReferenceNum = UDF_I_LOCATION(dir).partitionReferenceNum; inode->i_ino = udf_get_lb_pblock(sb, UDF_I_LOCATION(inode), 0); inode->i_blksize = PAGE_SIZE; inode->i_blocks = 0; UDF_I_LENEATTR(inode) = 0; UDF_I_LENALLOC(inode) = 0; UDF_I_USE(inode) = 0; if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_EXTENDED_FE)) { UDF_I_EFE(inode) = 1; UDF_UPDATE_UDFREV(inode->i_sb, UDF_VERS_USE_EXTENDED_FE); UDF_I_DATA(inode) = kmalloc(inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry), GFP_KERNEL); memset(UDF_I_DATA(inode), 0x00, inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry)); } else { UDF_I_EFE(inode) = 0; UDF_I_DATA(inode) = kmalloc(inode->i_sb->s_blocksize - sizeof(struct fileEntry), GFP_KERNEL); memset(UDF_I_DATA(inode), 0x00, inode->i_sb->s_blocksize - sizeof(struct fileEntry)); } if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_AD_IN_ICB)) UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB; else if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT; else UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG; inode->i_mtime = inode->i_atime = inode->i_ctime = UDF_I_CRTIME(inode) = current_fs_time(inode->i_sb); insert_inode_hash(inode); mark_inode_dirty(inode); unlock_udf_alloc_sem(sbi); if (DQUOT_ALLOC_INODE(inode)) { DQUOT_DROP(inode); inode->i_flags |= S_NOQUOTA; inode->i_nlink = 0; iput(inode); *err = -EDQUOT; return NULL; } *err = 0; return inode; }
struct inode * ext2_new_inode (const struct inode * dir, int mode) { struct super_block * sb; struct buffer_head * bh; struct buffer_head * bh2; int group, i; ino_t ino; struct inode * inode; struct ext2_group_desc * desc; struct ext2_super_block * es; int err; sb = dir->i_sb; inode = new_inode(sb); if (!inode) return ERR_PTR(-ENOMEM); lock_super (sb); es = sb->u.ext2_sb.s_es; repeat: if (S_ISDIR(mode)) group = find_group_dir(sb, dir->u.ext2_i.i_block_group); else group = find_group_other(sb, dir->u.ext2_i.i_block_group); err = -ENOSPC; if (group == -1) goto fail; err = -EIO; bh = load_inode_bitmap (sb, group); if (IS_ERR(bh)) goto fail2; i = ext2_find_first_zero_bit ((unsigned long *) bh->b_data, EXT2_INODES_PER_GROUP(sb)); if (i >= EXT2_INODES_PER_GROUP(sb)) goto bad_count; ext2_set_bit (i, bh->b_data); mark_buffer_dirty(bh); if (sb->s_flags & MS_SYNCHRONOUS) { ll_rw_block (WRITE, 1, &bh); wait_on_buffer (bh); } ino = group * EXT2_INODES_PER_GROUP(sb) + i + 1; if (ino < EXT2_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { ext2_error (sb, "ext2_new_inode", "reserved inode or inode > inodes count - " "block_group = %d,inode=%ld", group, ino); err = -EIO; goto fail2; } es->s_free_inodes_count = cpu_to_le32(le32_to_cpu(es->s_free_inodes_count) - 1); mark_buffer_dirty(sb->u.ext2_sb.s_sbh); sb->s_dirt = 1; inode->i_uid = current->fsuid; if (test_opt (sb, GRPID)) inode->i_gid = dir->i_gid; else if (dir->i_mode & S_ISGID) { inode->i_gid = dir->i_gid; if (S_ISDIR(mode)) mode |= S_ISGID; } else inode->i_gid = current->fsgid; inode->i_mode = mode; inode->i_ino = ino; inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size (for stat), not the fs block size */ inode->i_blocks = 0; inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; inode->u.ext2_i.i_new_inode = 1; inode->u.ext2_i.i_flags = dir->u.ext2_i.i_flags & ~EXT2_BTREE_FL; if (S_ISLNK(mode)) inode->u.ext2_i.i_flags &= ~(EXT2_IMMUTABLE_FL|EXT2_APPEND_FL); inode->u.ext2_i.i_block_group = group; if (inode->u.ext2_i.i_flags & EXT2_SYNC_FL) inode->i_flags |= S_SYNC; insert_inode_hash(inode); inode->i_generation = event++; mark_inode_dirty(inode); unlock_super (sb); if(DQUOT_ALLOC_INODE(inode)) { DQUOT_DROP(inode); inode->i_flags |= S_NOQUOTA; inode->i_nlink = 0; iput(inode); return ERR_PTR(-EDQUOT); } ext2_debug ("allocating inode %lu\n", inode->i_ino); return inode; fail2: desc = ext2_get_group_desc (sb, group, &bh2); desc->bg_free_inodes_count = cpu_to_le16(le16_to_cpu(desc->bg_free_inodes_count) + 1); if (S_ISDIR(mode)) desc->bg_used_dirs_count = cpu_to_le16(le16_to_cpu(desc->bg_used_dirs_count) - 1); mark_buffer_dirty(bh2); fail: unlock_super(sb); make_bad_inode(inode); iput(inode); return ERR_PTR(err); bad_count: ext2_error (sb, "ext2_new_inode", "Free inodes count corrupted in group %d", group); /* Is it really ENOSPC? */ err = -ENOSPC; if (sb->s_flags & MS_RDONLY) goto fail; desc = ext2_get_group_desc (sb, group, &bh2); desc->bg_free_inodes_count = 0; mark_buffer_dirty(bh2); goto repeat; }
/* * NAME: ialloc() * * FUNCTION: Allocate a new inode * */ struct inode *ialloc(struct inode *parent, umode_t mode) { struct super_block *sb = parent->i_sb; struct inode *inode; struct jfs_inode_info *jfs_inode; int rc; inode = new_inode(sb); if (!inode) { jfs_warn("ialloc: new_inode returned NULL!"); return inode; } jfs_inode = JFS_IP(inode); rc = diAlloc(parent, S_ISDIR(mode), inode); if (rc) { jfs_warn("ialloc: diAlloc returned %d!", rc); make_bad_inode(inode); iput(inode); return NULL; } inode->i_uid = current->fsuid; if (parent->i_mode & S_ISGID) { inode->i_gid = parent->i_gid; if (S_ISDIR(mode)) mode |= S_ISGID; } else inode->i_gid = current->fsgid; /* * Allocate inode to quota. */ if (DQUOT_ALLOC_INODE(inode)) { DQUOT_DROP(inode); inode->i_flags |= S_NOQUOTA; inode->i_nlink = 0; iput(inode); return NULL; } inode->i_mode = mode; if (S_ISDIR(mode)) jfs_inode->mode2 = IDIRECTORY | mode; else jfs_inode->mode2 = INLINEEA | ISPARSE | mode; inode->i_blksize = sb->s_blocksize; inode->i_blocks = 0; inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; jfs_inode->otime = inode->i_ctime.tv_sec; inode->i_generation = JFS_SBI(sb)->gengen++; jfs_inode->cflag = 0; /* Zero remaining fields */ memset(&jfs_inode->acl, 0, sizeof(dxd_t)); memset(&jfs_inode->ea, 0, sizeof(dxd_t)); jfs_inode->next_index = 0; jfs_inode->acltype = 0; jfs_inode->btorder = 0; jfs_inode->btindex = 0; jfs_inode->bxflag = 0; jfs_inode->blid = 0; jfs_inode->atlhead = 0; jfs_inode->atltail = 0; jfs_inode->xtlid = 0; jfs_info("ialloc returns inode = 0x%p\n", inode); return inode; }