コード例 #1
0
/**
 * @brief DataIO::open_for_reading load frame from file into dataset
 * @return A Dataset object ready for use
 */
Dataset DataIO::open_for_reading(){
    file.open(filename, std::ios::in | std::ios::binary);
    // read header
    uint8_t header[1+1+1+8+8]; // magic cookie, proto version, data mask, number of frames, frame-length
    file.read((char*)&header, sizeof(header));
    if(header[0] != 170){
        std::cout << "Tried to read file, but it appears to be corrupted! (no magic cookie found)" << std::endl;
        exit(EXIT_FAILURE);
    }
    if(header[1] != 0){
        std::cout << "Tried to read file, but the file format version does not match the version this parser understands!" << std::endl;
        exit(EXIT_FAILURE);
    }
    uint8_t datamask = header[2];
    frames_available = *((uint64_t*)&header[3]);
    std::cout << "number of frames: " << frames_available << std::endl;
    bodies = *((uint64_t*)&header[3+8]);
    std::cout << "number of bodies: " << bodies << std::endl;

    dataset = Dataset(bodies);
    for(unsigned long i = 0; i < bodies; i++){
        dataset.masses[i] = 1.0;
        dataset.velocities[i] = number3(0.0, 0.0, 0.0);
        dataset.positions[i] = number3(0.0, 0.0, 0.0);
    }
    read_buffer = (float*)malloc(sizeof(float)*3*bodies);
    return dataset;
}
コード例 #2
0
ファイル: gluiLoad.cpp プロジェクト: varungupta181186/vistool
void loadDataset(string location){
  ToolState &state = *ToolState::getInstance();
  if(state.classes != 0)
    state.classes->close();
  state.classes = GLUI_Master.create_glui( "classes", 0, 800, 315 );
  state.current_db = Dataset(location);
  vector<Category> * cats = state.current_db.getCategories();
  size_t c = 0;
  //  classes->add_column(true);
  GLUI_Panel * pan = state.classes->add_panel("categories");
    vector<int*> live_vars;
    for(size_t i = 0; i < cats->size(); ++i){
      stringstream name;
      name << i << " " << cats->at(i).get_name();

      state.classes->add_checkbox_to_panel( pan,
					    name.str().c_str(),
					    cats->at(i).enabledLiveVar(),
					    1, (GLUI_Update_CB) viewDataset);
      live_vars.push_back(cats->at(i).enabledLiveVar());
      c++;
      if(c%34==0)
	state.classes->add_column_to_panel(pan, false);
    }
}
コード例 #3
0
int main(void){

    Dataset ds = Dataset(2);
    DataIO io = DataIO("test.dat");
    io.open_for_writing(ds);

    ds.initialize_random(Dataset::RandomConfiguration::SOLAR_SYSTEM);
    number initial_energy = ds.compute_energy(GRAVITATIONAL_CONSTANT);
    std::cout << "initial energy in system: " << initial_energy << std::endl;

    Renderer renderer = Renderer(ds);
    StatLogger<number> energylogger = StatLogger<number>("energy-conservation.dat");

    number dt = 153.0;
    //dt = 0.000001;
    Integrator::Integrator *integrator = new Integrator::EulerCromer(ds, dt, DISTANCE_SMOOTHING_FACTOR, GRAVITATIONAL_CONSTANT);
    unsigned long frame = 0;
    while(true){
        if(frame > 100000000) break;
        integrator->swap();
        integrator->step();
        if(frame % 16000 == 0){
            number3 center_of_mass = ds.compute_center_of_mass();
            number energy = ds.compute_energy(GRAVITATIONAL_CONSTANT);
            //std::cout << "energy drift: initial_energy - energy = " << initial_energy << " - " << energy << " = " << (initial_energy - energy) << std::endl;
            energylogger.append(energy);
            //renderer.set_center_of_mass(center_of_mass.x, center_of_mass.y, center_of_mass.z);
            //renderer.push_tails();
        }
        if(frame % 200000 == 0){
            if(renderer.render()) break;
            io.append();
        }
        frame++;
    }
    energylogger.finalize();
    renderer.quit();
    io.finalize();
}
コード例 #4
0
ファイル: HLTDatasets.cpp プロジェクト: CmsHI/CVS_SavedFMa
HLTDatasets::HLTDatasets(const std::vector<TString>& triggerNames, const Char_t* datasetDefinitionFile,
                         Bool_t preferEmulatedTriggers, TString emulationPrefix)
  :  datasetsConfig("", &timer)
{
  //...........................................................................
  // Parse input file and mark all the triggers that belong to datasets
  const UInt_t              numTriggers   = triggerNames.size();
  std::vector<Bool_t>       notInDataset  (numTriggers, kTRUE);
  if (datasetDefinitionFile && datasetDefinitionFile[0]) {
    std::ifstream           input(datasetDefinitionFile);
    if (!input.good())
      std::cerr << "ERROR : Cannot open dataset definitions file " << datasetDefinitionFile << std::endl;
    else {
      scenarioName          = gSystem->BaseName(datasetDefinitionFile);
      Int_t                 iExtension    = scenarioName.Last('.');
      if (iExtension != kNPOS)            scenarioName  = scenarioName(0, iExtension);


      // Parse dataset definition blocks
      TString               line;
      int                   lineNumber    = 0;
      while (input.good() && !input.eof()) {  ++lineNumber;

        // Get a line, strip comments and whitespace
        line.ReadLine(input);       strip(line);
        const Int_t         commentIndex  = line.First('#');
        if (commentIndex != kNPOS) {line  = line(0, commentIndex);      strip(line);}
        if (line.Length() < 1)      continue;

        // If the line ends with a semi-colon, it is the start of a dataset definition block
        if (line.EndsWith(":")) {
          TString           name          = line(0, line.Length()-1);   strip(name);
          if (indexOf(datasetsConfig, name) >= 0)
            std::cerr << "WARNING : One or more datasets have the same name '" << name 
                      << "'. Are you sure this is acceptable?" << std::endl;
          datasetsConfig.push_back(Dataset(name));
        }

        // Otherwise it is a trigger in the current dataset
        else {
          if (datasetsConfig.empty())
            std::cerr << "ERROR : Skipping unexpected line before declaration of first dataset : " << std::endl
                      << " [" << std::setw(3) << lineNumber << "]  " << line << std::endl;
          else {
            const Int_t     triggerIndex  = indexOf(triggerNames, line);
            // Also check in case there is an emulated version -- don't use both!
            TString         emulationName = emulationPrefix + line;
            const Int_t     emulationIndex= indexOf(triggerNames, emulationName);

            if (triggerIndex < 0 && emulationIndex < 0) {
              std::cerr << "WARNING : Skipping un-available trigger : " << std::endl
                        << " [" << std::setw(3) << lineNumber << "]  " << line << std::endl;
            } else {
              if (triggerIndex < 0 || (emulationIndex >= 0 && preferEmulatedTriggers))
                datasetsConfig.back().push_back(Trigger(emulationName, emulationIndex));
              else datasetsConfig.back().push_back(Trigger(line, triggerIndex));
              if (triggerIndex >= 0)      notInDataset[triggerIndex]    = kFALSE;
              if (emulationIndex >= 0)    notInDataset[emulationIndex]  = kFALSE;
            }
          }
        }
      } // end loop over lines in file
    }
  }
  // If there are no datasets defined, there's no point in marking all triggers as new
  // since the extra diagnostics will show nothing
  else {
    scenarioName  = "pertrigger";
    for (UInt_t iTrigger = 0; iTrigger < numTriggers; ++iTrigger) {
      // Prefer either the original or emulated version (but not both)
      Bool_t      isEmulated  = triggerNames[iTrigger].BeginsWith(emulationPrefix);
      if          ( preferEmulatedTriggers && !isEmulated) {
        if (indexOf(triggerNames, emulationPrefix + triggerNames[iTrigger]) >= 0)  continue;
      }
      else if     (!preferEmulatedTriggers &&  isEmulated) {
        Int_t     prefix      = emulationPrefix.Length();
        if (indexOf(triggerNames, triggerNames[iTrigger](prefix, triggerNames[iTrigger].Length()-prefix)) >= 0)  continue;
      }
      datasetsConfig.push_back(Dataset(triggerNames[iTrigger]));
      datasetsConfig.back().push_back(Trigger(triggerNames[iTrigger], iTrigger));
      notInDataset[iTrigger]  = kFALSE;
    } // end loop over triggers
  }


  //...........................................................................

  const UInt_t    numDatasets     = datasetsConfig.size();
  std::clog << "-- HLTDatasets -----------------------------------------------------------" << std::endl;
  std::clog << "There are " << numDatasets << " datasets:"            << std::endl;
  for (UInt_t iSet = 0; iSet < numDatasets; ++iSet)
    std::clog << "  " << std::left << std::setw(40) << datasetsConfig[iSet].name << " (x " 
              << std::right << std::setw(2) << datasetsConfig[iSet].size() << " triggers)"      << std::endl;

  //...........................................................................
  // Register all triggers _not_ in any dataset as new triggers
  UInt_t          numNewTriggers  = 0;
  for (UInt_t iTrigger = 0; iTrigger < numTriggers; ++iTrigger) {
    if (notInDataset[iTrigger] && 
				(!triggerNames[iTrigger].Contains("AlCa_Ecal"      ,TString::kIgnoreCase) &&
				 !triggerNames[iTrigger].Contains("AlCa_IsoTrack"  ,TString::kIgnoreCase) &&
				 !triggerNames[iTrigger].Contains("AlCa_HcalPhiSym",TString::kIgnoreCase) &&
				 !triggerNames[iTrigger].Contains("AlCa_RPC"       ,TString::kIgnoreCase))) {
      datasetsConfig.push_back(Dataset(triggerNames[iTrigger], kTRUE));
      datasetsConfig.back().push_back(Trigger(triggerNames[iTrigger], iTrigger));
      ++numNewTriggers;
    }
  } // end loop over triggers

  if (numNewTriggers) {
    std::clog << "and " << numNewTriggers << " new triggers:"                               << std::endl;
    for (UInt_t iTrigger = 0; iTrigger < numNewTriggers; ++iTrigger)
      std::clog << "  +  " << datasetsConfig[numDatasets + iTrigger].name                   << std::endl;
  }
  else                  std::clog << "There are no new triggers."                           << std::endl;
  std::clog << "==========================================================================" << std::endl << std::endl;
 
  
  datasetsConfig.setup();   // Make sure to allocate space at the end after everything is registered
}
コード例 #5
0
ファイル: sgd.cpp プロジェクト: NHisato/sgd
// [[Rcpp::export]]
Rcpp::List run(SEXP dataset, SEXP model_control, SEXP sgd_control) {
  boost::timer ti;
  Rcpp::List Dataset(dataset);
  Rcpp::List Model_control(model_control);
  Rcpp::List Sgd_control(sgd_control);
  if (Rcpp::as<bool>(Sgd_control["verbose"])) {
    Rcpp::Rcout << "Converting arguments from R to C++ types..." << std::endl;
  }

  // Construct data.
  data_set data(Dataset["bigmat"],
                Rcpp::as<mat>(Dataset["X"]),
                Rcpp::as<mat>(Dataset["Y"]),
                Rcpp::as<unsigned>(Sgd_control["npasses"]),
                Rcpp::as<bool>(Dataset["big"]),
                Rcpp::as<bool>(Sgd_control["shuffle"]));

  // Construct model.
  std::string model_name = Rcpp::as<std::string>(Model_control["name"]);
  if (model_name == "cox") {
    cox_model model(Model_control);
    // Construct stochastic gradient method.
    std::string sgd_name = Rcpp::as<std::string>(Sgd_control["method"]);
    if (sgd_name == "sgd" || sgd_name == "asgd") {
      explicit_sgd sgd(Sgd_control, data.n_samples, ti);
      return run(data, model, sgd);
    } else if (sgd_name == "implicit" || sgd_name == "ai-sgd") {
      implicit_sgd sgd(Sgd_control, data.n_samples, ti);
      return run(data, model, sgd);
    } else if (sgd_name == "momentum") {
      momentum_sgd sgd(Sgd_control, data.n_samples, ti);
      return run(data, model, sgd);
    } else if (sgd_name == "nesterov") {
      nesterov_sgd sgd(Sgd_control, data.n_samples, ti);
      return run(data, model, sgd);
    } else {
      Rcpp::Rcout << "error: stochastic gradient method not implemented" << std::endl;
      return Rcpp::List();
    }
  } else if (model_name == "lm" || model_name == "glm") {
    glm_model model(Model_control);
    // Construct stochastic gradient method.
    std::string sgd_name = Rcpp::as<std::string>(Sgd_control["method"]);
    if (sgd_name == "sgd" || sgd_name == "asgd") {
      explicit_sgd sgd(Sgd_control, data.n_samples, ti);
      return run(data, model, sgd);
    } else if (sgd_name == "implicit" || sgd_name == "ai-sgd") {
      implicit_sgd sgd(Sgd_control, data.n_samples, ti);
      return run(data, model, sgd);
    } else if (sgd_name == "momentum") {
      momentum_sgd sgd(Sgd_control, data.n_samples, ti);
      return run(data, model, sgd);
    } else if (sgd_name == "nesterov") {
      nesterov_sgd sgd(Sgd_control, data.n_samples, ti);
      return run(data, model, sgd);
    } else {
      Rcpp::Rcout << "error: stochastic gradient method not implemented" << std::endl;
      return Rcpp::List();
    }
  } else if (model_name == "gmm") {
    gmm_model model(Model_control);
    // Construct stochastic gradient method.
    std::string sgd_name = Rcpp::as<std::string>(Sgd_control["method"]);
    if (sgd_name == "sgd" || sgd_name == "asgd") {
      explicit_sgd sgd(Sgd_control, data.n_samples, ti);
      return run(data, model, sgd);
    } else if (sgd_name == "implicit" || sgd_name == "ai-sgd") {
      implicit_sgd sgd(Sgd_control, data.n_samples, ti);
      return run(data, model, sgd);
    } else if (sgd_name == "momentum") {
      momentum_sgd sgd(Sgd_control, data.n_samples, ti);
      return run(data, model, sgd);
    } else if (sgd_name == "nesterov") {
      nesterov_sgd sgd(Sgd_control, data.n_samples, ti);
      return run(data, model, sgd);
    } else {
      Rcpp::Rcout << "error: stochastic gradient method not implemented" << std::endl;
      return Rcpp::List();
    }
  } else if (model_name == "m") {
    m_model model(Model_control);
    // Construct stochastic gradient method.
    std::string sgd_name = Rcpp::as<std::string>(Sgd_control["method"]);
    if (sgd_name == "sgd" || sgd_name == "asgd") {
      explicit_sgd sgd(Sgd_control, data.n_samples, ti);
      return run(data, model, sgd);
    } else if (sgd_name == "implicit" || sgd_name == "ai-sgd") {
      implicit_sgd sgd(Sgd_control, data.n_samples, ti);
      return run(data, model, sgd);
    } else if (sgd_name == "momentum") {
      momentum_sgd sgd(Sgd_control, data.n_samples, ti);
      return run(data, model, sgd);
    } else if (sgd_name == "nesterov") {
      nesterov_sgd sgd(Sgd_control, data.n_samples, ti);
      return run(data, model, sgd);
    } else {
      Rcpp::Rcout << "error: stochastic gradient method not implemented" << std::endl;
      return Rcpp::List();
    }
  } else {
    Rcpp::Rcout << "error: model not implemented" << std::endl;
    return Rcpp::List();
  }

  #if 0
  // TODO The above duplicates code within the if-else statement.
  // Construct stochastic gradient method.
  std::string sgd_name = Rcpp::as<std::string>(Sgd_control["method"]);
  if (sgd_name == "sgd" || sgd_name == "asgd") {
    explicit_sgd sgd(Sgd_control, data.n_samples, ti);
    return run(data, model, sgd);
  } else if (sgd_name == "implicit" || sgd_name == "ai-sgd") {
    implicit_sgd sgd(Sgd_control, data.n_samples, ti);
    return run(data, model, sgd);
  } else if (sgd_name == "momentum") {
    momentum_sgd sgd(Sgd_control, data.n_samples, ti);
    return run(data, model, sgd);
  } else if (sgd_name == "nesterov") {
    nesterov_sgd sgd(Sgd_control, data.n_samples, ti);
    return run(data, model, sgd);
  } else {
    Rcpp::Rcout << "error: stochastic gradient method not implemented" << std::endl;
    return Rcpp::List();
  }
  #endif
}