コード例 #1
0
ファイル: geevalnc.c プロジェクト: mildred/Varkon
    DBstatus GEevalnc(

/*-------------- Argument declarations --------------------------------------*/
/*                                                                           */
/* In:                                                                       */
   DBCurve *p_cur,       /* Curve                             (ptr)          */
   DBSeg   *p_seg,       /* Curve segment                     (ptr)          */
   EVALC   *p_evalc )    /* Curve coordinates & derivatives   (ptr)          */
/* Out:                                                                      */
/*       Data to p_evalc                                                     */
/*---------------------------------------------------------------------------*/


   { /* Start of function */

/*!------------------------ Internal variables ------------------------------*/
        
       
   bool     offseg;        /* Flag for offset segment                        */
   bool     ratseg;        /* Flag for rational segment                      */
   DBfloat  offset;        /* Offset value                                   */      
   DBVector n_p;           /* Curve segment plane normal                     */
   DBint    status;        /* Error code from called function                */
   DBint    i;             /* loop variable                                  */
   
   DBVector r;             /* Position (non-offset)                          */
   DBVector drdu;          /* First   derivative with respect to u           */
   DBVector d2rdu2;        /* Second  derivative with respect to u           */
   DBVector d3rdu3;        /* Third  derivative with respect to u            */
   
   DBHvector w;            /* Position, homogenus coordinates                */
   DBHvector dwdu;         /* 1:st der.with respect to u, hom. coord.        */
   DBHvector d2wdu2;       /* 2:nd der.with respect to u, hom. coord.        */
   DBHvector d3wdu3;       /* 3:rd der.with respect to u, hom. coord.        */

   DBshort   degree;       /* Nurbs degree                                   */
   DBint     offs_p;       /* offset in control points array                 */
   DBint     offs_u;       /* offset in knots array                          */  
   DBHvector *P;           /* Pointer to control points for curve            */
   DBfloat   *U;           /* Pointer to knots for curve                     */
   DBfloat    u;           /* local parameter value */

   DBfloat   invHom;       /* 1/w.w_gm)                                      */
   DBfloat   invHomQuad;   /* 1/((w.w_gm)*(w.w_gm))                          */
   DBfloat   invHomCub;    /* 1/((w.w_gm)*(w.w_gm)*(w.w_gm))                 */
 
   char     errbuf[80];         /* String for error message fctn erpush      */

   DBfloat ders[3][MAX_NURBD];  /* basis values[der_no][index]               */
   DBint   no_der;              /* no off requested derivatives              */
   DBfloat kappa;               /* Curvature                                 */
   DBfloat tx,ty,tz;            /* Unit tangent                              */
   DBfloat bx,by,bz;            /* Binormal                                  */
   DBfloat nx,ny,nz;            /* Principal normal                          */
   DBfloat dsdu,dsdu3,dsdu6;    /* 1:st derivative of s with respect to u    */
   DBfloat d2sdu2;              /* 2:nd derivative of s with respect to u    */
   DBfloat xoff,yoff,zoff;      /* Position in offset                        */
   DBfloat npy,npx,npz;         /* Direction of tangent in offset            */
   DBfloat dxoff,dyoff,dzoff;   /* 1:st der. with respect to u, in offset    */ 
   DBfloat d2xoff,d2yoff,d2zoff;/* 2:nd der. with respect to u, in offset    */
   DBfloat ntpx,ntpy,ntpz;      /* Principal normal in offset                */
   DBfloat dsoffs,dsoff3;       /* 1:st derivative of s in offset            */
   DBfloat kapofs;              /* Curvature in offset                       */
   DBfloat dkappadu;            /* 1:st derivative of Curvature              */
   DBfloat tmpx,tmpy,tmpz,tmp;
   DBfloat ux,uy,uz,vx,vy,vz;

/*-------------------end-of-declarations-------------------------------------*/

   
/*
*** Copy to local variables
*/
   degree  =  p_seg -> nurbs_degree;  
   offs_p  =  p_seg -> offset_cpts;
   offs_u  =  p_seg -> offset_knots;
   P       =  p_seg -> cpts_c;         
   U       =  p_seg -> knots_c;        
   u       =  p_evalc->t_local;

/*
*** Let offset flag be true and retrieve curve plane if the
*** curve is in offset.
*/
   if ( p_seg->ofs != 0.0 )
      {
      offseg = TRUE;
      offset = p_seg->ofs;
      n_p.x_gm = p_cur->csy_cu.g31;
      n_p.y_gm = p_cur->csy_cu.g32;
      n_p.z_gm = p_cur->csy_cu.g33;
      }
    else 
      {
      offseg = FALSE;
      offset = p_seg->ofs;
      }

/*
*** Is the segment rational?     
*/
   ratseg = FALSE;
   for (i=0 ;i <= degree  ; i++ )
      {
      if (ABS((P + offs_p + i)->w_gm - 1.0) > COMPTOL) 
         {
         ratseg = TRUE;
         break;
         }
      }

/*
*** How many derivatives do we need in "DeersBasisFuns"?
*/
   no_der = -1;
   if (  p_evalc ->evltyp & EVC_R   ) no_der = 0;
   if (  p_evalc ->evltyp & EVC_DR  ) no_der = 1;

   if (offseg == TRUE ||
       (p_evalc ->evltyp & (EVC_D2R + EVC_PN + EVC_BN + EVC_KAP))) no_der = 2;

   if (offseg == TRUE &&
       (p_evalc ->evltyp & (EVC_D2R + EVC_PN + EVC_BN + EVC_KAP))) no_der = 3;

   if (no_der < 0) 
      {
      sprintf(errbuf," - evltyp - %%GEevalnc");
      return(varkon_erpush("SU2993",errbuf));
      }

/*
*** Calculate basis values
*/
   status = DersBasisFuns (offs_u,u,degree,no_der,p_seg->knots_c,ders);

/*
*** Calculate position 
*** (always needed for a rational curve)    
*/
   if ((p_evalc ->evltyp & EVC_R) || (ratseg == TRUE)) 
      {
      w.x_gm = w.y_gm = w.z_gm = w.w_gm = 0.0;

      for (i=0;i<=degree;i++)
         {
         w.x_gm = w.x_gm + (P + offs_p + i)->x_gm * ders[0][i];
         w.y_gm = w.y_gm + (P + offs_p + i)->y_gm * ders[0][i];
         w.z_gm = w.z_gm + (P + offs_p + i)->z_gm * ders[0][i];
         w.w_gm = w.w_gm + (P + offs_p + i)->w_gm * ders[0][i];     
         }

      if (ratseg == TRUE)
         {
         invHom = 1.0 / w.w_gm;
         p_evalc ->r.x_gm = r.x_gm = w.x_gm * invHom;
         p_evalc ->r.y_gm = r.y_gm = w.y_gm * invHom;
         p_evalc ->r.z_gm = r.z_gm = w.z_gm * invHom;
         }
      else
         {
         w.w_gm = 1.0; 
         p_evalc ->r.x_gm = r.x_gm = w.x_gm;
         p_evalc ->r.y_gm = r.y_gm = w.y_gm;
         p_evalc ->r.z_gm = r.z_gm = w.z_gm;
         }
      if ( no_der == 0 ) return(SUCCED);
      }
      /* end position */
/*
*** Calculate first derivative
*/
   if ((p_evalc ->evltyp & (EVC_DR+EVC_PN+EVC_BN+EVC_KAP)) || (offseg==TRUE )) 
      {
      dwdu.x_gm = dwdu.y_gm = dwdu.z_gm = dwdu.w_gm = 0.0;

      for (i=0 ;i <= degree ;i++ ) 
         {
         dwdu.x_gm = dwdu.x_gm + (P + offs_p + i)->x_gm * ders[1][i];
         dwdu.y_gm = dwdu.y_gm + (P + offs_p + i)->y_gm * ders[1][i];
         dwdu.z_gm = dwdu.z_gm + (P + offs_p + i)->z_gm * ders[1][i];
         dwdu.w_gm = dwdu.w_gm + (P + offs_p + i)->w_gm * ders[1][i];
         }

      if (ratseg == TRUE)
         {
         invHomQuad = invHom * invHom; 
         drdu.x_gm = (w.w_gm * dwdu.x_gm - dwdu.w_gm * w.x_gm) * invHomQuad;
         drdu.y_gm = (w.w_gm * dwdu.y_gm - dwdu.w_gm * w.y_gm) * invHomQuad;
         drdu.z_gm = (w.w_gm * dwdu.z_gm - dwdu.w_gm * w.z_gm) * invHomQuad;
         }
      else
         {
         drdu.x_gm = dwdu.x_gm;
         drdu.y_gm = dwdu.y_gm;
         drdu.z_gm = dwdu.z_gm;
         }

      p_evalc ->drdt.x_gm = drdu.x_gm;
      p_evalc ->drdt.y_gm = drdu.y_gm;
      p_evalc ->drdt.z_gm = drdu.z_gm;

      if ( no_der == 1 ) return(SUCCED);
      }
      /* end 1:st derivative */
/*
*** Calculate second derivative
*/
   if ( (p_evalc->evltyp & (EVC_D2R+EVC_PN+EVC_BN+EVC_KAP)) || (offseg==TRUE )) 
      {
      if (degree > 1)
         {
         d2wdu2.x_gm=0.0;
         d2wdu2.y_gm=0.0;
         d2wdu2.z_gm=0.0;
         d2wdu2.w_gm=0.0;

         for (i=0 ;i <= degree ;i++ )
            {
            d2wdu2.x_gm = d2wdu2.x_gm + (P + offs_p + i)->x_gm * ders[2][i];
            d2wdu2.y_gm = d2wdu2.y_gm + (P + offs_p + i)->y_gm * ders[2][i];
            d2wdu2.z_gm = d2wdu2.z_gm + (P + offs_p + i)->z_gm * ders[2][i];
            d2wdu2.w_gm = d2wdu2.w_gm + (P + offs_p + i)->w_gm * ders[2][i];
            }

         if (ratseg == TRUE)
            {
            invHomCub = invHomQuad * invHom;

            d2rdu2.x_gm = 
             (w.w_gm  * (w.w_gm * d2wdu2.x_gm - w.x_gm * d2wdu2.w_gm) + 2 * 
            dwdu.w_gm * (w.x_gm * dwdu.w_gm   - w.w_gm * dwdu.x_gm)) 
            * invHomCub;

            d2rdu2.y_gm = 
             (w.w_gm  * (w.w_gm * d2wdu2.y_gm - w.y_gm * d2wdu2.w_gm) + 2 * 
            dwdu.w_gm * (w.y_gm * dwdu.w_gm   - w.w_gm * dwdu.y_gm)) 
            * invHomCub;

            d2rdu2.z_gm = 
             (w.w_gm  * (w.w_gm * d2wdu2.z_gm - w.z_gm * d2wdu2.w_gm) + 2 * 
            dwdu.w_gm * (w.z_gm * dwdu.w_gm   - w.w_gm * dwdu.z_gm)) * 
            invHomCub;
            }
         else
            {
             d2rdu2.x_gm = d2wdu2.x_gm;
             d2rdu2.y_gm = d2wdu2.y_gm;
             d2rdu2.z_gm = d2wdu2.z_gm;
            }
         }
      else d2rdu2.x_gm = d2rdu2.y_gm = d2rdu2.z_gm = d2wdu2.w_gm = 0.0;

      p_evalc->d2rdt2.x_gm = d2rdu2.x_gm ;
      p_evalc->d2rdt2.y_gm = d2rdu2.y_gm ;
      p_evalc->d2rdt2.z_gm = d2rdu2.z_gm ;
      }
      /* end 2:nd derivative */

/*
*** Do we need to calculate kappa ?
*/
   if (p_evalc ->evltyp & (EVC_KAP + EVC_BN + EVC_PN) || (offseg == TRUE ))
      {
      tmpx  = drdu.y_gm * d2rdu2.z_gm - drdu.z_gm * d2rdu2.y_gm;
      tmpy  = drdu.z_gm * d2rdu2.x_gm - drdu.x_gm * d2rdu2.z_gm;
      tmpz  = drdu.x_gm * d2rdu2.y_gm - drdu.y_gm * d2rdu2.x_gm;

      tmp   = tmpx * tmpx + tmpy * tmpy + tmpz * tmpz;

      /*
      *** dr/du = (dxdu,dydu,dzdu). 
      *** The tangent vector, T = dr/ds is the unit vector with same
      *** direction as dr/du. 
      *** Calculate the length of dr/du = dsdu.
      */

      dsdu   =  SQRT( drdu.x_gm * drdu.x_gm  + 
                      drdu.y_gm * drdu.y_gm  + 
                      drdu.z_gm * drdu.z_gm) ;

      dsdu3 = dsdu*dsdu*dsdu;
      if ( dsdu3 < 1e-14 ) dsdu3 = 1e-10;

      if ( tmp > COMPTOL ) kappa = SQRT(tmp)/dsdu3;
      else                 kappa = 0.0;

      p_evalc->kappa = kappa;
      }
      /* end kappa */

/*
*** The binormal. This is calculated as:
*** drdu X d2rdu2 / dsdu ** 3 / kappa. See Faux-Pratt p. 100.
*/
   if ( p_evalc ->evltyp & (EVC_BN+EVC_PN) || (offseg == TRUE ))
      {
      bx = tmpx/dsdu3;
      by = tmpy/dsdu3;
      bz = tmpz/dsdu3;

      if ( kappa > COMPTOL )
         {
         bx /= kappa;
         by /= kappa;
         bz /= kappa;
         }
      p_evalc->bn_x = bx;
      p_evalc->bn_y = by;
      p_evalc->bn_z = bz;

      p_evalc->b_norm.x_gm = bx;
      p_evalc->b_norm.y_gm = by;
      p_evalc->b_norm.z_gm = bz;
      }
      /*end binormal*/

/*
*** Principal normal, N = B X T.
*/
   if ( (p_evalc ->evltyp & EVC_PN) ||(offseg == TRUE ))
      {
      tx = drdu.x_gm/dsdu;
      ty = drdu.y_gm/dsdu; 
      tz = drdu.z_gm/dsdu;

      nx = by*tz - ty*bz;
      ny = bz*tx - tz*bx;
      nz = bx*ty - tx*by;

      p_evalc->pn_x = nx;
      p_evalc->pn_y = ny;
      p_evalc->pn_z = nz;

      p_evalc->p_norm.x_gm = nx;
      p_evalc->p_norm.y_gm = ny;
      p_evalc->p_norm.z_gm = nz;
      }
      /*end principal normal*/

/*
*** Calculate offset coordinates and derivatives if the curve
*** segment is in offset.
*/

   if (offseg == TRUE )
      {

      /*
      *** Calculate the direction of the offset vector as the cross-product 
      *** between the tangent to the curve and the normal of the curve-plane.
      *** T and P are normalized, thus the result of T X P is a
      *** normalized vector with same direction as the curve normal,
      *** possibly with opposite sign.
      *** When the curve turns right in the curve plane, T X P = N but
      *** when the curve turbs left T X P = -N. This is varkons definition
      *** of the concept of offset. Thus positive offset is always the right
      *** side of the curve in the curve plane.
      *** Length of offset vector = the offset value of the curve.
      */

      if (p_evalc ->evltyp & EVC_R) 
         {   
         p_evalc->r.x_gm= xoff= r.x_gm + offset*(ty * n_p.z_gm- n_p.y_gm * tz);
         p_evalc->r.y_gm= yoff= r.y_gm + offset*(tz * n_p.x_gm- n_p.z_gm * tx);
         p_evalc->r.z_gm= zoff= r.z_gm + offset*(tx * n_p.y_gm- n_p.x_gm * ty);
         }

      if ((p_evalc ->evltyp & (EVC_DR+EVC_KAP)))  
         {

         /*
         *** The offset tangent has same direction as the original tangent, T.
         *** But, since offset is counted positive on the right side of the
         *** curve and negative on the left side of the curve, the sign of the
         *** tangent must be adjusted.
         *** compare with the calculation of coordinates in offset.
         *** The direction of the offset tangent is calculated as N X P.
         */
         npx = ny * n_p.z_gm - n_p.y_gm * nz;
         npy = nz * n_p.x_gm - n_p.z_gm * nx;
         npz = nx * n_p.y_gm - n_p.x_gm * ny;
     
         /*
         *** The tangent in offset = dr/du + offset*kappa * dsdu*(npx,npy,npz). 
         *** Simply a factor kappa*offset greater. The sign of np eliminates 
         *** the sign of offset, which make the result correct.
         */
         p_evalc->drdt.x_gm = dxoff = drdu.x_gm + offset * kappa * dsdu * npx; 
         p_evalc->drdt.y_gm = dyoff = drdu.y_gm + offset * kappa * dsdu * npy;  
         p_evalc->drdt.z_gm = dzoff = drdu.z_gm + offset * kappa * dsdu * npz;  

         }


      if ((p_evalc ->evltyp & (EVC_D2R+EVC_KAP)))  
         {
         
         /* Third derivative */
         
         if (degree>2)
            {

            d3wdu3.x_gm=0.0;
            d3wdu3.y_gm=0.0;
            d3wdu3.z_gm=0.0;
            d3wdu3.w_gm=0.0;
   
            for (i=0 ;i <= degree ;i++ )  
               {        
               d3wdu3.x_gm = d3wdu3.x_gm + (P + offs_p + i)->x_gm * ders[3][i];
               d3wdu3.y_gm = d3wdu3.y_gm + (P + offs_p + i)->y_gm * ders[3][i];
               d3wdu3.z_gm = d3wdu3.z_gm + (P + offs_p + i)->z_gm * ders[3][i];
               d3wdu3.w_gm = d3wdu3.w_gm + (P + offs_p + i)->w_gm * ders[3][i];
               }
         
            if (ratseg==TRUE)
               {      
               d3rdu3.x_gm = 
               (d3wdu3.x_gm -3.0 * d2rdu2.x_gm * dwdu.w_gm - 
               3.0 * drdu.x_gm * d2wdu2.w_gm - r.x_gm * d3wdu3.w_gm) * invHom;
         
               d3rdu3.y_gm = 
               (d3wdu3.y_gm -3.0 * d2rdu2.y_gm * dwdu.w_gm - 
               3.0 * drdu.y_gm * d2wdu2.w_gm - r.y_gm * d3wdu3.w_gm) * invHom;

               d3rdu3.z_gm = 
               (d3wdu3.z_gm -3.0 * d2rdu2.z_gm * dwdu.w_gm - 
               3.0 * drdu.z_gm * d2wdu2.w_gm - r.z_gm * d3wdu3.w_gm) * invHom;
               }
            else
               {
               d3rdu3.x_gm = d3wdu3.x_gm; 
               d3rdu3.y_gm = d3wdu3.y_gm;
               d3rdu3.z_gm = d3wdu3.z_gm;
               }
            }
         else d3rdu3.x_gm = d3rdu3.y_gm = d3rdu3.z_gm = d3wdu3.x_gm = 
              d3wdu3.y_gm = d3wdu3.z_gm = d3wdu3.w_gm = 0.0;

         /* Second derivative of s with respect to u. */
            d2sdu2 = d2rdu2.x_gm * tx + d2rdu2.y_gm * ty + d2rdu2.z_gm * tz;
         
         /* dr/du X d2r/du2. */
            vx = drdu.y_gm * d2rdu2.z_gm - drdu.z_gm * d2rdu2.y_gm;
            vy = drdu.z_gm * d2rdu2.x_gm - drdu.x_gm * d2rdu2.z_gm;
            vz = drdu.x_gm * d2rdu2.y_gm - drdu.y_gm * d2rdu2.x_gm;
         
         /* dr/du X d3r/du3 */
            ux = drdu.y_gm * d3rdu3.z_gm - drdu.z_gm * d3rdu3.y_gm;
            uy = drdu.z_gm * d3rdu3.x_gm - drdu.x_gm * d3rdu3.z_gm;
            uz = drdu.x_gm * d3rdu3.y_gm - drdu.y_gm * d3rdu3.x_gm;
         
         /* Scalar product ( dr/du ! dr/du )**3 */
            dsdu6 = dsdu3 * dsdu3;
         /*
         *** dkappa/du.
         */
            dkappadu = vx * ux + vy * uy + vz * uz;

            if ( dsdu6 > TOL1 && kappa > TOL1 )
               {
               dkappadu = dkappadu/dsdu6/kappa;
               }
            else
               {
               dkappadu = n_p.x_gm * ux + n_p.y_gm * uy + n_p.z_gm * uz;
               dkappadu = dkappadu/dsdu3;
               }

            dkappadu = dkappadu - 3.0 * kappa * 
            (d2rdu2.x_gm * drdu.x_gm + d2rdu2.y_gm * drdu.y_gm + 
             d2rdu2.z_gm * drdu.z_gm) / (dsdu * dsdu);
         /*
         *** Normalen i offset korrigerad för tecknet på offset.
         */
            ntpx = ty * n_p.z_gm - n_p.y_gm * tz;
            ntpy = tz * n_p.x_gm - n_p.z_gm * tx;
            ntpz = tx * n_p.y_gm - n_p.x_gm * ty;
         
         /*
         *** Calculate second derivative
         */
            p_evalc->d2rdt2.x_gm = d2xoff = 
            d2rdu2.x_gm + offset*(dkappadu * dsdu * npx +
            kappa * (d2sdu2 * npx - dsdu * dsdu * kappa * ntpx));
            
            p_evalc->d2rdt2.y_gm = d2yoff = 
            d2rdu2.y_gm + offset*(dkappadu * dsdu * npy +
            kappa * (d2sdu2 * npy - dsdu * dsdu * kappa * ntpy));
            
            p_evalc->d2rdt2.z_gm = d2zoff = 
            d2rdu2.z_gm + offset*(dkappadu*dsdu*npz +
            kappa * (d2sdu2 * npz - dsdu * dsdu*kappa*ntpz));
      }
    
      /*
      *** Kappa in offset.
      */

      if (p_evalc ->evltyp & EVC_KAP)  
         {
         tmpx = dyoff * d2zoff - dzoff * d2yoff;
         tmpy = dzoff * d2xoff - dxoff * d2zoff;
         tmpz = dxoff * d2yoff - dyoff * d2xoff;

         tmp = tmpx * tmpx + tmpy * tmpy + tmpz * tmpz;

         if ( tmp > COMPTOL )
            {
            kapofs  = SQRT(tmp);
            dsoffs  = SQRT(dxoff*dxoff + dyoff*dyoff + dzoff*dzoff);
            dsoff3  = dsoffs * dsoffs * dsoffs;
            kapofs /= dsoff3;
            }
         else kapofs = 0.0;
      
         p_evalc->kappa = kapofs;
         }

/*
*** Binormal and Pricipal normal, need not to be recalculated. 
*** (not dependet on offset value)
***
*** The binormal has same direction as for offset = 0. Both
*** The principal-normal, N = B X T. Is also same as for offset = 0.
*/

      } /* end offset curve */

   return(SUCCED);

   } /* End of function */
コード例 #2
0
main()
{
	FILE *Bspline=fopen("Bspline.dat","wt");
	FILE *Bsplineslope=fopen("Bsplineslope.dat","wt");

	FILE *CP=fopen("CP.dat","wt");
	FILE *BPxy=fopen("BPxy.dat","wt");
	
	FILE *test=fopen("test.dat","wt");

	int k, i, j, spn, *pivot;

	double *BaseP_x, *BaseP_y, *End_BaseP_x, *End_BaseP_y, angle, arc, D0_x, D0_y, Dn_x, Dn_y;
	double *BP_sn, *BP_dests, **BP_N, **temp_BP_N, *N, plusminusone;

	double *x, *y, *u, **xdev, **ydev;	
	double *ksi, *eta, *rhs;

	double *U, *Nonuni_U, *End_Nonuni_U;
	double maxu, delu, **nders;
	double *nx, *ny, *kslope;

	BaseP_x = (double*)malloc(sizeof(double) * BP);
	BaseP_y = (double*)malloc(sizeof(double) * BP);
	End_BaseP_x = (double*)malloc(sizeof(double) * (BP+ENDD));
	End_BaseP_y = (double*)malloc(sizeof(double) * (BP+ENDD));
	BP_sn = (double*)malloc(sizeof(double) * BP);
	BP_dests = (double*)malloc(sizeof(double));

	N = (double*)malloc(sizeof(double) * (ORD+1));
	U = (double*)malloc(sizeof(double) * (VER_ARR+ENDD));
	Nonuni_U = (double*)malloc(sizeof(double) * VER_ARR);
	End_Nonuni_U = (double*)malloc(sizeof(double) * (VER_ARR+ENDD));
	pivot = (int*)malloc(sizeof(int) * (VER+ENDD));

	rhs = (double*)malloc(sizeof(double) * (VER+ENDD));
	ksi = (double*)malloc(sizeof(double) * (VER+ENDD));
	eta = (double*)malloc(sizeof(double) * (VER+ENDD));
	x = (double*)malloc(sizeof(double) * Num);
	y = (double*)malloc(sizeof(double) * Num);
	u = (double*)malloc(sizeof(double) * Num);
	nx = (double*)malloc(sizeof(double) * Num);
	ny = (double*)malloc(sizeof(double) * Num);
	kslope = (double*)malloc(sizeof(double) * Num);

	nders = (double**)malloc(sizeof(double*) * (ORD+1));
	nders[0] = (double*)malloc(sizeof(double) * (ORD+1) * (ORD+1));
	for(i=1; i<(ORD+1); i++)
	{
		nders[i] = nders[i-1] + (ORD+1);
	}

	xdev = (double**)malloc(sizeof(double*) * 2);
	xdev[0] = (double*)malloc(sizeof(double) * 2 * Num);
	for(i=1; i<2; i++)
	{
		xdev[i] = xdev[i-1] + Num;
	}

	ydev = (double**)malloc(sizeof(double*) * 2);
	ydev[0] = (double*)malloc(sizeof(double) * 2 * Num);
	for(i=1; i<2; i++)
	{
		ydev[i] = ydev[i-1] + Num;
	}
/*
	BP_N = (double**)malloc(sizeof(double*) * BP);
	BP_N[0] = (double*)malloc(sizeof(double) * BP * BP);
	for(i=1; i<BP; i++)
	{
		BP_N[i] = BP_N[i-1] + BP;
	}
	
	temp_BP_N = (double**)malloc(sizeof(double*) * BP);
	temp_BP_N[0] = (double*)malloc(sizeof(double) * BP * BP);
	for(i=1; i<BP; i++)
	{
		temp_BP_N[i] = temp_BP_N[i-1] + BP;
	}
*/	
	BP_N = (double**)malloc(sizeof(double*) * (BP+ENDD));
	BP_N[0] = (double*)malloc(sizeof(double) * (BP+ENDD) * (BP+ENDD));
	for(i=1; i<(BP+ENDD); i++)
	{
		BP_N[i] = BP_N[i-1] + (BP+ENDD);
	}
	
	temp_BP_N = (double**)malloc(sizeof(double*) * (BP+ENDD));
	temp_BP_N[0] = (double*)malloc(sizeof(double) * (BP+ENDD) * (BP+ENDD));
	for(i=1; i<(BP+ENDD); i++)
	{
		temp_BP_N[i] = temp_BP_N[i-1] + (BP+ENDD);
	}

	//...init datapoint	.... bow shape

	BaseP_x[0] = 0.000; 
	BaseP_x[1] = 0.200; 
	BaseP_x[2] = 1.000; 
	BaseP_x[3] = 1.500; 
	BaseP_x[4] = 2.500; 
	BaseP_x[5] = 3.100; 
	BaseP_x[6] = 2.500; 
//	BaseP_x[7] = 3.500; 

	BaseP_y[0] = 0.000;
	BaseP_y[1] = 0.500;
	BaseP_y[2] = 0.700;
	BaseP_y[3] = 0.250;
	BaseP_y[4] = 0.000;
	BaseP_y[5] = 1.150;
	BaseP_y[6] = 1.330;
//	BaseP_y[7] = 1.700; 

//init End BP	
	for(i=0;i<(BP+ENDD);i++)
	{
		End_BaseP_x[i] = End_BaseP_y[i] = 0.0;
	}

	End_BaseP_x[0] = BaseP_x[0];
	End_BaseP_y[0] = BaseP_y[0];

	End_BaseP_x[BP+ENDD-1] = BaseP_x[BP-1];
	End_BaseP_y[BP+ENDD-1] = BaseP_y[BP-1];

	for(i=ENDD;i<(BP+ENDD)-2;i++)
	{
		End_BaseP_x[i] = BaseP_x[i-ENDD/2];
		End_BaseP_y[i] = BaseP_y[i-ENDD/2];
	}

	for(i=0;i<BP;i++)
	{
		fprintf(BPxy, "%lf %lf\n", BaseP_x[i], BaseP_y[i]);
	}

	*BP_dests = 0.0;
	for(i=1;i<BP;i++)
	{
		cacu_BP_dests(BaseP_x[i], BaseP_x[i-1], BaseP_y[i], BaseP_y[i-1], BP_dests);
	}
	
//	D0 = Dn = *BP_dests * 0.0;
	
	End_BaseP_x[ENDD/2] = 0.000;
	End_BaseP_y[ENDD/2] = 10.000;//D0;
	End_BaseP_x[BP+ENDD-2] = -10.000;
	End_BaseP_y[BP+ENDD-2] = 0.000;//Dn;

	for(i=0;i<(BP+ENDD);i++)
	{
//		printf("%lf %lf\n", End_BaseP_x[i], End_BaseP_y[i]);
	}

	for(i=0;i<BP;i++)
	{
		if(i==0)
		{
			BP_sn[i] = 0.0;
		}
		else
		{
			cacu_BP_sn(BP_dests, BP_sn[i-1], BaseP_x[i], BaseP_x[i-1], BaseP_y[i], BaseP_y[i-1], &BP_sn[i]);
		}
//		printf("%lf\n", BP_sn[i]);
	}
	
//	create_Nonuni_Knot_Ver(BP, ORD, BP_sn, Nonuni_U);
	create_End_Nonuni_Knot_Ver(BP, ORD, BP_sn, End_Nonuni_U);

	for(i=0;i<VER_ARR;i++)
	{
//		printf("%lf\n", Nonuni_U[i]);
	}

	for(i=0;i<(VER_ARR+ENDD);i++)
	{
//		printf("%lf\n", End_Nonuni_U[i]);
	}
/*
	for(i=0;i<BP;i++)
	{
		for(j=0;j<BP;j++)
		{
			BP_N[i][j] = 0.0;
			temp_BP_N[i][j] = 0.0;
		}
	}
	
	for(j=0;j<BP;j++) 
	{
		spn = FindSpan(BP-1, ORD, BP_sn[j], Nonuni_U);
		BasisFuns(spn, BP_sn[j], ORD, Nonuni_U, N); 
		for(i=0;i<=ORD;i++) 
		{
			BP_N[j][spn-ORD+i] = N[i];
		}
	}

	for(i=0;i<BP;i++)
	{
		for(j=0;j<BP;j++)
		{
			fprintf(test, "%lf ", BP_N[i][j]);
		}
		fprintf(test, "\n");
	}
*/

	for(i=0;i<(BP+ENDD);i++)
	{
		for(j=0;j<(BP+ENDD);j++)
		{
			BP_N[i][j] = 0.0;
			temp_BP_N[i][j] = 0.0;
		}
	}
	
	for(j=1;j<(BP+ENDD)-1;j++) 
	{
		spn = FindSpan((BP+ENDD)-1, ORD, BP_sn[j-1], End_Nonuni_U);
		BasisFuns(spn, BP_sn[j-1], ORD, End_Nonuni_U, N); 
		for(i=0;i<=ORD;i++) 
		{
			BP_N[j][spn-ORD+i] = N[i];
		}
	}
	
	for(j=1;j<(BP+ENDD)-1;j++)
	{
		if(j==(0+ENDD/2) || j==((BP+ENDD)-2))
		{
			spn = FindSpan((BP+ENDD)-1, ORD, BP_sn[j-1], End_Nonuni_U);
			DersBasisFuns(spn, BP_sn[j-1], ORD, 1, End_Nonuni_U, nders);
			for(i=0;i<=ORD;i++) 
			{
				BP_N[j][spn-ORD+i] = nders[1][i];
			}
		}
	}
	
	BP_N[0][0] = BP_N[BP+ENDD-1][BP+ENDD-1]= 1.0;
/*
	for(i=0;i<(BP+ENDD);i++)
	{
		for(j=0;j<(BP+ENDD);j++)
		{
			fprintf(test, "%lf ", BP_N[i][j]);
		}
		fprintf(test, "\n");
	}
*/

	ludcmp(BP_N, temp_BP_N, (BP+ENDD), pivot, &plusminusone);  

	for(i=0;i<(BP+ENDD);i++) 
	{
		rhs[i] = End_BaseP_x[i];
	}
	lubksb(temp_BP_N, (BP+ENDD), pivot, rhs);
	for(i=0;i<(BP+ENDD);i++) 
	{
		ksi[i] = rhs[i];
	}

	for(i=0;i<(BP+ENDD);i++) 
	{
		rhs[i] = End_BaseP_y[i];
	}
	lubksb(temp_BP_N, (BP+ENDD), pivot, rhs);
	for(i=0;i<(BP+ENDD);i++) 
	{
		eta[i] = rhs[i];
	}
	
	for(i=0;i<(VER+ENDD);i++)
	{
		fprintf(CP, "%lf %lf\n", ksi[i], eta[i]);
	}

	create_Uni_Knot_Ver((VER+ENDD), ORD, U);

	maxu = (double)((VER+ENDD) - ORD);
	delu = maxu / (double)(Num-1);
	
	for(i=0;i<Num;i++)
	{
		u[i] = (double)i * delu;
		CurvePoint((VER+ENDD)-1, ORD, U, ksi, u[i], &x[i]);
		CurvePoint((VER+ENDD)-1, ORD, U, eta, u[i], &y[i]);
		fprintf(Bspline, "%lf %lf\n", x[i], y[i]);
	}

	for(k=0;k<2;k++)
	{
		for(i=0;i<Num;i++)
		{
			xdev[k][i] = 0.0;
			ydev[k][i] = 0.0;
			spn = FindSpan((VER+ENDD)-1, ORD, u[i], U);
			DersBasisFuns(spn, u[i], ORD, k+1, U, nders);
			for(j=0;j<=ORD;j++)
			{
				xdev[k][i] += nders[k+1][j] * ksi[spn-ORD+j];
				ydev[k][i] += nders[k+1][j] * eta[spn-ORD+j];
			}
		}
	}

	for(i=0;i<Num;i++)
	{
		fprintf(Bsplineslope, "zone t=\"Bsplineslope\"\n");
		cacu_nx(xdev[0][i], ydev[0][i], &nx[i]);
		cacu_ny(xdev[0][i], ydev[0][i], &ny[i]);
		cacu_kslope(xdev[0][i], ydev[0][i], xdev[1][i], ydev[1][i], &kslope[i]);
		fprintf(Bsplineslope, "%lf %lf\n", x[i], y[i]);
		fprintf(Bsplineslope, "%lf %lf\n", x[i]+nx[i]*kslope[i]*rad, y[i]+ny[i]*kslope[i]*rad);
	}
/*	*/
	return 0;
}
コード例 #3
0
ファイル: geevalnc.c プロジェクト: mildred/Varkon
    DBstatus GEevaluvnc(

/*-------------- Argument declarations --------------------------------------*/
/*                                                                           */
/* In:                                                                       */
   DBCurve *p_cur,       /* Curve                             (ptr)          */
   DBSeg   *p_seg,       /* Curve segment                     (ptr)          */
   EVALC   *p_evalc )    /* Curve coordinates & derivatives   (ptr)          */
/* Out:                                                                      */
/*       Data to p_evalc                                                     */
/*---------------------------------------------------------------------------*/


   { /* Start of function */

/*!------------------------ Internal variables ------------------------------*/
        
   bool     ratseg;        /* Flag for rational segment                      */
   DBint    status;        /* Error code from called function                */
   DBint    i;             /* loop variable                                  */
   
   DBVector r;             /* Position (non-offset)                          */
   DBVector drdu;          /* First   derivative with respect to u           */
   DBVector d2rdu2;        /* Second  derivative with respect to u           */
   
   DBHvector w;            /* Position, homogenus coordinates                */
   DBHvector dwdu;         /* 1:st der.with respect to u, hom. coord.        */
   DBHvector d2wdu2;       /* 2:nd der.with respect to u, hom. coord.        */

   DBshort   degree;       /* Nurbs degree                                   */
   DBint     offs_p;       /* offset in control points array                 */
   DBint     offs_u;       /* offset in knots array                          */  
   DBHvector *P;           /* Pointer to control points for curve            */
   DBfloat   *U;           /* Pointer to knots for curve                     */
   DBfloat    u;           /* local parameter value */

   DBfloat   invHom;       /* 1/w.w_gm)                                      */
   DBfloat   invHomQuad;   /* 1/((w.w_gm)*(w.w_gm))                          */
   DBfloat   invHomCub;    /* 1/((w.w_gm)*(w.w_gm)*(w.w_gm))                 */
 
   char     errbuf[80];         /* String for error message fctn erpush      */

   DBfloat ders[3][MAX_NURBD];  /* basis values[der_no][index]               */
   DBint   no_der;              /* no off requested derivatives              */

/*-------------------end-of-declarations-------------------------------------*/

/*
*** Let flag for UV segment be true.
*/   

   if ( p_seg->typ  ==  UV_NURB_SEG )
        p_evalc->surpat = TRUE;
   else
      {    
      sprintf(errbuf,                       
      "(not UV_NURB_SEG)%%varkon_seg_uveval");
      return(varkon_erpush("SU2993",errbuf));
      }
        
/*
*** Copy to local variables
*/
   degree  =  p_seg -> nurbs_degree;  
   offs_p  =  p_seg -> offset_cpts;
   offs_u  =  p_seg -> offset_knots;
   P       =  p_seg -> cpts_c;         
   U       =  p_seg -> knots_c;        
   u       =  p_evalc->t_local;
/*                        
*** Is the segment rational?     
*/
   ratseg = FALSE;
   for (i=0 ;i <= degree  ; i++ )
      {
      if (ABS((P + offs_p + i)->w_gm - 1.0) > COMPTOL) 
         {
         ratseg = TRUE;
         break;
         }
      }

/*                        
*** Calculate basis values    
*/
   no_der = 2;
   status = DersBasisFuns (offs_u,u,degree,no_der,p_seg->knots_c,ders);

/*                        
*** Calculate position
*/

   w.x_gm = w.y_gm = w.z_gm = w.w_gm = 0.0;

   for (i=0;i<=degree;i++)
      {
      w.x_gm = w.x_gm + (P + offs_p + i)->x_gm * ders[0][i];
      w.y_gm = w.y_gm + (P + offs_p + i)->y_gm * ders[0][i];
      w.w_gm = w.w_gm + (P + offs_p + i)->w_gm * ders[0][i];
      }

   if (ratseg == TRUE)
      {
      invHom = 1.0 / w.w_gm;
      p_evalc -> u = r.x_gm = w.x_gm * invHom;
      p_evalc -> v = r.y_gm = w.y_gm * invHom;
      }
   else
      {
      w.w_gm = 1.0;
      p_evalc -> u = r.x_gm = w.x_gm;
      p_evalc -> v = r.y_gm = w.y_gm;
      }

/*                        
*** Calculate first derivative     
*/

   dwdu.x_gm = dwdu.y_gm = dwdu.z_gm = dwdu.w_gm = 0.0;
 
   for (i=0 ;i <= degree ;i++ )
      {
      dwdu.x_gm = dwdu.x_gm + (P + offs_p + i)->x_gm * ders[1][i];
      dwdu.y_gm = dwdu.y_gm + (P + offs_p + i)->y_gm * ders[1][i];
      dwdu.w_gm = dwdu.w_gm + (P + offs_p + i)->w_gm * ders[1][i];
      }
            
   if (ratseg == TRUE)
      {
      invHomQuad = invHom * invHom;
      drdu.x_gm = (w.w_gm * dwdu.x_gm - dwdu.w_gm * w.x_gm) * invHomQuad;
      drdu.y_gm = (w.w_gm * dwdu.y_gm - dwdu.w_gm * w.y_gm) * invHomQuad;
      }
   else
      {
      drdu.x_gm = dwdu.x_gm;
      drdu.y_gm = dwdu.y_gm;
      }
         
   p_evalc ->u_t = drdu.x_gm;
   p_evalc ->v_t = drdu.y_gm;

/*
*** Calculate second derivative
*/
   if (degree > 1)
      {
      d2wdu2.x_gm=0.0;
      d2wdu2.y_gm=0.0;
      d2wdu2.w_gm=0.0;
  
      for (i=0 ;i <= degree ;i++ )
         {
         d2wdu2.x_gm = d2wdu2.x_gm + (P + offs_p + i)->x_gm * ders[2][i];
         d2wdu2.y_gm = d2wdu2.y_gm + (P + offs_p + i)->y_gm * ders[2][i];
         d2wdu2.w_gm = d2wdu2.w_gm + (P + offs_p + i)->w_gm * ders[2][i];
         }

      if (ratseg == TRUE)
         {
         invHomCub = invHomQuad * invHom;

         d2rdu2.x_gm =
          (w.w_gm  * (w.w_gm * d2wdu2.x_gm - w.x_gm * d2wdu2.w_gm) + 2 *
          dwdu.w_gm * (w.x_gm * dwdu.w_gm   - w.w_gm * dwdu.x_gm))
          * invHomCub;

         d2rdu2.y_gm =
          (w.w_gm  * (w.w_gm * d2wdu2.y_gm - w.y_gm * d2wdu2.w_gm) + 2 *
          dwdu.w_gm * (w.y_gm * dwdu.w_gm   - w.w_gm * dwdu.y_gm))
          * invHomCub;
         }
      else
         {
         d2rdu2.x_gm = d2wdu2.x_gm;
         d2rdu2.y_gm = d2wdu2.y_gm;
         }
      }
   else d2rdu2.x_gm = d2rdu2.y_gm = d2rdu2.z_gm = d2wdu2.w_gm = 0.0;

   p_evalc->u_t2 = d2rdu2.x_gm ;
   p_evalc->v_t2 = d2rdu2.y_gm ;

   return(SUCCED);

   } /* End of function */
コード例 #4
0
main()
{
	FILE *Bspline=fopen("Bspline.dat","wt");
	FILE *Bsplineslope=fopen("Bsplineslope.dat","wt");

	FILE *CP=fopen("CP.dat","wt");
	FILE *BPxy=fopen("BPxy.dat","wt");
	
	FILE *test=fopen("test.dat","wt");

	int k, i, j, spn, *pivot;

	double *BaseP_x, *BaseP_y, angle, arc;
	double *BP_sn, *BP_dests, *BP_un, **BP_N, **temp_BP_N, *N, plusminusone;

	double *x, *y, *u, **xdev, **ydev;	
	double *ksi, *eta, *rhs;

	double *U, *Nonuni_U;
	double maxu, delu, **nders;
	double *nx, *ny, *kslope;

	BaseP_x = (double*)malloc(sizeof(double) * BP);
	BaseP_y = (double*)malloc(sizeof(double) * BP);
	BP_sn = (double*)malloc(sizeof(double) * BP);
	BP_dests = (double*)malloc(sizeof(double));
	BP_un = (double*)malloc(sizeof(double) * BP);
	
	N = (double*)malloc(sizeof(double) * (ORD+1));
	U = (double*)malloc(sizeof(double) * VER_ARR);
	Nonuni_U = (double*)malloc(sizeof(double) * VER_ARR);
	pivot = (int*)malloc(sizeof(int) * VER);

	rhs = (double*)malloc(sizeof(double) * VER);
	ksi = (double*)malloc(sizeof(double) * VER);
	eta = (double*)malloc(sizeof(double) * VER);
	x = (double*)malloc(sizeof(double) * Num);
	y = (double*)malloc(sizeof(double) * Num);
	u = (double*)malloc(sizeof(double) * Num);
	nx = (double*)malloc(sizeof(double) * Num);
	ny = (double*)malloc(sizeof(double) * Num);
	kslope = (double*)malloc(sizeof(double) * Num);

	nders = (double**)malloc(sizeof(double*) * (ORD+1));
	nders[0] = (double*)malloc(sizeof(double) * (ORD+1) * (ORD+1));
	for(i=1; i<(ORD+1); i++)
	{
		nders[i] = nders[i-1] + (ORD+1);
	}

	xdev = (double**)malloc(sizeof(double*) * 2);
	xdev[0] = (double*)malloc(sizeof(double) * 2 * Num);
	for(i=1; i<2; i++)
	{
		xdev[i] = xdev[i-1] + Num;
	}

	ydev = (double**)malloc(sizeof(double*) * 2);
	ydev[0] = (double*)malloc(sizeof(double) * 2 * Num);
	for(i=1; i<2; i++)
	{
		ydev[i] = ydev[i-1] + Num;
	}

	BP_N = (double**)malloc(sizeof(double*) * BP);
	BP_N[0] = (double*)malloc(sizeof(double) * BP * BP);
	for(i=1; i<BP; i++)
	{
		BP_N[i] = BP_N[i-1] + BP;
	}
	
	temp_BP_N = (double**)malloc(sizeof(double*) * BP);
	temp_BP_N[0] = (double*)malloc(sizeof(double) * BP * BP);
	for(i=1; i<BP; i++)
	{
		temp_BP_N[i] = temp_BP_N[i-1] + BP;
	}

	//...init datapoint	.... bow shape

	BaseP_x[0] = 0.000; 
	BaseP_x[1] = 0.000; 
	BaseP_x[2] = 0.000; 
	BaseP_x[3] = 0.000; 
	BaseP_x[4] = 1.000; 
	BaseP_x[5] = 1.600; 
	BaseP_x[6] = 2.000; 
	BaseP_x[7] = 2.000; 
	BaseP_x[8] = 2.000; 
	BaseP_x[9] = 2.300; 
	BaseP_x[10] = 2.700; 
	BaseP_x[11] = 4.500; 
	BaseP_x[12] = 5.000; 

	BaseP_y[0] = 0.000;
	BaseP_y[1] = 0.300;
	BaseP_y[2] = 2.000;
	BaseP_y[3] = 2.300;
	BaseP_y[4] = 3.000;
	BaseP_y[5] = 3.000;
	BaseP_y[6] = 2.600;
	BaseP_y[7] = 2.300;
	BaseP_y[8] = 2.000;
	BaseP_y[9] = 1.800;
	BaseP_y[10] = 1.800;
	BaseP_y[11] = 1.800;
	BaseP_y[12] = 1.800;

/*

	BaseP_x[0] = 0.000; 
	BaseP_x[1] = 0.250; 
	BaseP_x[2] = 1.500; 
	BaseP_x[3] = 2.500; 
	BaseP_x[4] = 4.000; 
	BaseP_x[5] = 4.500; 
	BaseP_x[6] = 4.000; 

	BaseP_y[0] = 0.000;
	BaseP_y[1] = 1.000;
	BaseP_y[2] = 1.500;
	BaseP_y[3] = 0.500;
	BaseP_y[4] = 0.150;
	BaseP_y[5] = 2.000;
	BaseP_y[6] = 2.100;
*//*
	BaseP_x[0] = 0.000; 
	BaseP_x[1] = 3.037; 
	BaseP_x[2] = 5.941; 
	BaseP_x[3] = 7.769; 
	BaseP_x[4] = 8.406; 
	BaseP_x[5] = 8.948; 
	BaseP_x[6] = 9.075; 
	BaseP_x[7] = 8.789; 
	BaseP_x[8] = 7.705; 
	BaseP_x[9] = 5.941; 
	BaseP_x[10] = 3.037; 
	BaseP_x[11] = 0.000; 
//	BaseP_x[12] = 0.000;  

	BaseP_y[0] = 1.252;
	BaseP_y[1] = 2.340;
	BaseP_y[2] = 4.206;
	BaseP_y[3] = 6.000;
	BaseP_y[4] = 7.000;
	BaseP_y[5] = 8.000;
	BaseP_y[6] = 9.000;
	BaseP_y[7] = 10.000;
	BaseP_y[8] = 11.000;
	BaseP_y[9] = 11.198;
	BaseP_y[10] = 11.516;
	BaseP_y[11] = 11.947;
//	BaseP_y[12] = 12.300;

	
// 
	BaseP_x[0] = -4.000;
	BaseP_x[1] = 0.000;  
	BaseP_x[2] = 3.037; 
	BaseP_x[3] = 5.941;  
	BaseP_x[4] = 7.769;
	BaseP_x[5] = 8.406; 
	BaseP_x[6] = 8.948;  
	BaseP_x[7] = 9.075;
	BaseP_x[8] = 8.789;   
	BaseP_x[9] = 7.705;
	BaseP_x[10] = 5.941;
	BaseP_x[11] = 3.037;
	BaseP_x[12] = 0.000; 
	BaseP_x[13] = 0.000; 
	BaseP_x[14] = 0.034; 
	BaseP_x[15] = 0.524;  
	BaseP_x[16] = 1.267;  
	BaseP_x[17] = 3.037;
	BaseP_x[18] = 5.941; 
	

	BaseP_y[0] = 0.000;
	BaseP_y[1] = 1.252;  
	BaseP_y[2] = 2.340; 
	BaseP_y[3] = 4.206;  
	BaseP_y[4] = 6.000;
	BaseP_y[5] = 7.000; 
	BaseP_y[6] = 8.000;  
	BaseP_y[7] = 9.000;
	BaseP_y[8] = 10.000;   
	BaseP_y[9] = 11.000;
	BaseP_y[10] = 11.198;
	BaseP_y[11] = 11.516;
	BaseP_y[12] = 11.947; 
	BaseP_y[13] = 12.300; 
	BaseP_y[14] = 13.000; 
	BaseP_y[15] = 14.500;  
	BaseP_y[16] = 16.000;  
	BaseP_y[17] = 18.640;
	BaseP_y[18] = 23.013;
*/


	for(i=0;i<BP;i++)
	{
		fprintf(BPxy, "%lf %lf\n", BaseP_x[i], BaseP_y[i]);
	}

	// cylinder shape
/*
	angle = 0.0;
	for(i=0;i<BP;i++)
	{
		ang_to_rad(&angle, &arc);
		BaseP_x[i] = 1.0 * cos(arc);									
		BaseP_y[i] = 1.0 * sin(arc);		
		angle += 360.0 / (BP-1);
		fprintf(BPxy, "%lf %lf\n", BaseP_x[i], BaseP_y[i]);
	}
*/	

	*BP_dests = 0.0;
	for(i=1;i<BP;i++)
	{
		cacu_BP_dests(BaseP_x[i], BaseP_x[i-1], BaseP_y[i], BaseP_y[i-1], BP_dests);
	}


	for(i=0;i<BP;i++)
	{
		if(i==0)
		{
			BP_sn[i] = 0.0;
		}
		else
		{
			cacu_BP_sn(BP_dests, BP_sn[i-1], BaseP_x[i], BaseP_x[i-1], BaseP_y[i], BaseP_y[i-1], &BP_sn[i]);
		}
//		printf("%lf\n", BP_sn[i]);
	}
	
	create_Nonuni_Knot_Ver(BP, ORD, BP_sn, Nonuni_U);

//	for(i=0;i<VER_ARR;i++)
//	{
//		printf("%lf\n", Nonuni_U[i]);
//	}

	for(i=0;i<BP;i++)
	{
		for(j=0;j<BP;j++)
		{
			BP_N[i][j] = 0.0;
			temp_BP_N[i][j] = 0.0;
		}
	}
	
	for(j=0;j<BP;j++) 
	{
		spn = FindSpan(BP-1, ORD, BP_sn[j], Nonuni_U);
		BasisFuns(spn, BP_sn[j], ORD, Nonuni_U, N); 
		for(i=0;i<=ORD;i++) 
		{
			BP_N[j][spn-ORD+i] = N[i];
		}
	}

//	for(i=0;i<BP;i++)
//	{
//		for(j=0;j<BP;j++)
//		{
//			fprintf(test, "%lf ", BP_N[i][j]);
//		}
//		fprintf(test, "\n");
//	}


	ludcmp(BP_N, temp_BP_N, BP, pivot, &plusminusone);  
	
	for(i = 0; i < BP; i++) 
	{
		rhs[i] = BaseP_x[i];
	}
	lubksb(temp_BP_N, BP, pivot, rhs);
	for(i=0;i<BP;i++) 
	{
		ksi[i] = rhs[i];
	}

	for(i = 0; i < BP; i++) 
	{
		rhs[i] = BaseP_y[i];
	}
	lubksb(temp_BP_N, BP, pivot, rhs);
	for(i=0;i<BP;i++) 
	{
		eta[i] = rhs[i];
	}
	
	for(i=0;i<VER;i++)
	{
		fprintf(CP, "%lf %lf\n", ksi[i], eta[i]);
	}

	create_Uni_Knot_Ver(VER, ORD, U);

	maxu = (double)(VER - ORD);
	delu = maxu / (double)(Num-1);
	
	for(i=0;i<Num;i++)
	{
		u[i] = (double)i * delu;
		CurvePoint(VER-1, ORD, U, ksi, u[i], &x[i]);
		CurvePoint(VER-1, ORD, U, eta, u[i], &y[i]);
		fprintf(Bspline, "%lf %lf\n", x[i], y[i]);
	}

	for(k=0;k<2;k++)
	{
		for(i=0;i<Num;i++)
		{
			xdev[k][i] = 0.0;
			ydev[k][i] = 0.0;
			spn = FindSpan(VER-1, ORD, u[i], U);
			DersBasisFuns(spn, u[i], ORD, k+1, U, nders);
			for(j=0;j<=ORD;j++)
			{
				xdev[k][i] += nders[k+1][j] * ksi[spn-ORD+j];
				ydev[k][i] += nders[k+1][j] * eta[spn-ORD+j];
			}
		}
	}

	for(i=0;i<Num;i++)
	{
		fprintf(Bsplineslope, "zone t=\"Bsplineslope\"\n");
		cacu_nx(xdev[0][i], ydev[0][i], &nx[i]);
		cacu_ny(xdev[0][i], ydev[0][i], &ny[i]);
		cacu_kslope(xdev[0][i], ydev[0][i], xdev[1][i], ydev[1][i], &kslope[i]);
		fprintf(Bsplineslope, "%lf %lf\n", x[i], y[i]);
		fprintf(Bsplineslope, "%lf %lf\n", x[i]+nx[i]*kslope[i]*rad, y[i]+ny[i]*kslope[i]*rad);
	}
/*	*/
	return 0;
}