int CgptCreate(CgptCreateParams *params) { struct drive drive; if (params == NULL) return CGPT_FAILED; if (CGPT_OK != DriveOpen(params->drive_name, &drive, O_RDWR)) return CGPT_FAILED; if (drive.is_mtd) { if (MtdCreate(&drive, params)) goto bad; } else { if (GptCreate(&drive, params)) goto bad; } // Write it all out return DriveClose(&drive, 1); bad: DriveClose(&drive, 0); return CGPT_FAILED; }
int CgptSetAttributes(CgptAddParams *params) { struct drive drive; if (params == NULL) return CGPT_FAILED; if (CGPT_OK != DriveOpen(params->drive_name, &drive, O_RDWR)) return CGPT_FAILED; if (CgptCheckAddValidity(&drive)) { goto bad; } if (params->partition == 0 || params->partition >= GetNumberOfEntries(&drive)) { Error("invalid partition number: %d\n", params->partition); goto bad; } SetEntryAttributes(&drive, params->partition - 1, params); UpdateAllEntries(&drive); // Write it all out. return DriveClose(&drive, 1); bad: DriveClose(&drive, 0); return CGPT_FAILED; }
int CgptRepair(CgptRepairParams *params) { struct drive drive; if (params == NULL) return CGPT_FAILED; if (CGPT_OK != DriveOpen(params->drive_name, &drive, O_RDWR)) return CGPT_FAILED; int gpt_retval = GptSanityCheck(&drive.gpt); if (params->verbose) printf("GptSanityCheck() returned %d: %s\n", gpt_retval, GptError(gpt_retval)); GptRepair(&drive.gpt); if (drive.gpt.modified & GPT_MODIFIED_HEADER1) printf("Primary Header is updated.\n"); if (drive.gpt.modified & GPT_MODIFIED_ENTRIES1) printf("Primary Entries is updated.\n"); if (drive.gpt.modified & GPT_MODIFIED_ENTRIES2) printf("Secondary Entries is updated.\n"); if (drive.gpt.modified & GPT_MODIFIED_HEADER2) printf("Secondary Header is updated.\n"); return DriveClose(&drive, 1); }
// This method gets the partition details such as the attributes, the // guids of the partitions, etc. Input is the partition number or the // unique id of the partition. Output is populated in the respective // fields of params. int CgptGetPartitionDetails(CgptAddParams *params) { struct drive drive; int result = CGPT_FAILED; int index; if (params == NULL) return CGPT_FAILED; if (CGPT_OK != DriveOpen(params->drive_name, &drive, O_RDWR)) return CGPT_FAILED; if (CgptCheckAddValidity(&drive)) { goto bad; } int max_part = GetNumberOfEntries(&drive); if (params->partition > 0) { if (params->partition >= max_part) { Error("invalid partition number: %d\n", params->partition); goto bad; } } else { if (!params->set_unique) { Error("either partition or unique_id must be specified\n"); goto bad; } for (index = 0; index < max_part; index++) { GptEntry *entry = GetEntry(&drive.gpt, PRIMARY, index); if (GuidEqual(&entry->unique, ¶ms->unique_guid)) { params->partition = index + 1; break; } } if (index >= max_part) { Error("no partitions with the given unique id available\n"); goto bad; } } index = params->partition - 1; { // GPT-specific code GptEntry *entry = GetEntry(&drive.gpt, PRIMARY, index); params->begin = entry->starting_lba; params->size = entry->ending_lba - entry->starting_lba + 1; memcpy(¶ms->type_guid, &entry->type, sizeof(Guid)); memcpy(¶ms->unique_guid, &entry->unique, sizeof(Guid)); params->raw_value = entry->attrs.fields.gpt_att; } params->successful = GetSuccessful(&drive, PRIMARY, index); params->tries = GetTries(&drive, PRIMARY, index); params->priority = GetPriority(&drive, PRIMARY, index); result = CGPT_OK; bad: DriveClose(&drive, 0); return result; }
int CgptAdd(CgptAddParams *params) { struct drive drive; GptEntry *entry, backup; uint32_t index; int rv; if (params == NULL) return CGPT_FAILED; if (CGPT_OK != DriveOpen(params->drive_name, &drive, O_RDWR)) return CGPT_FAILED; if (CgptCheckAddValidity(&drive)) { goto bad; } if (CgptGetUnusedPartition(&drive, &index, params)) { goto bad; } entry = GetEntry(&drive.gpt, PRIMARY, index); memcpy(&backup, entry, sizeof(backup)); if (SetEntryAttributes(&drive, index, params) || GptSetEntryAttributes(&drive, index, params)) { memcpy(entry, &backup, sizeof(*entry)); goto bad; } UpdateAllEntries(&drive); rv = CheckEntries((GptEntry*)drive.gpt.primary_entries, (GptHeader*)drive.gpt.primary_header); if (0 != rv) { // If the modified entry is illegal, recover it and return error. memcpy(entry, &backup, sizeof(*entry)); Error("%s\n", GptErrorText(rv)); Error(DumpCgptAddParams(params)); goto bad; } // Write it all out. return DriveClose(&drive, 1); bad: DriveClose(&drive, 0); return CGPT_FAILED; }
// This returns true if a GPT partition matches the search criteria. If a match // isn't found (or if the file doesn't contain a GPT), it returns false. The // filename and partition number that matched is left in a global, since we // could have multiple hits. static int do_search(CgptFindParams *params, char *fileName) { int retval = 0; int i; struct drive drive; GptEntry *entry; char partlabel[GPT_PARTNAME_LEN]; if (CGPT_OK != DriveOpen(fileName, &drive, O_RDONLY)) return 0; if (GPT_SUCCESS != GptSanityCheck(&drive.gpt)) { (void) DriveClose(&drive, 0); return 0; } for (i = 0; i < GetNumberOfEntries(&drive); ++i) { entry = GetEntry(&drive.gpt, ANY_VALID, i); if (GuidIsZero(&entry->type)) continue; int found = 0; if ((params->set_unique && GuidEqual(¶ms->unique_guid, &entry->unique)) || (params->set_type && GuidEqual(¶ms->type_guid, &entry->type))) { found = 1; } else if (params->set_label) { if (CGPT_OK != UTF16ToUTF8(entry->name, sizeof(entry->name) / sizeof(entry->name[0]), (uint8_t *)partlabel, sizeof(partlabel))) { Error("The label cannot be converted from UTF16, so abort.\n"); return 0; } if (!strncmp(params->label, partlabel, sizeof(partlabel))) found = 1; } if (found && match_content(params, &drive, entry)) { params->hits++; retval++; showmatch(params, fileName, i+1, entry); if (!params->match_partnum) params->match_partnum = i+1; } } (void) DriveClose(&drive, 0); return retval; }
int CgptGetBootPartitionNumber(CgptBootParams *params) { struct drive drive; int gpt_retval= 0; int retval; if (params == NULL) return CGPT_FAILED; if (CGPT_OK != DriveOpen(params->drive_name, &drive, O_RDONLY, params->drive_size)) return CGPT_FAILED; if (GPT_SUCCESS != (gpt_retval = GptSanityCheck(&drive.gpt))) { Error("GptSanityCheck() returned %d: %s\n", gpt_retval, GptError(gpt_retval)); retval = CGPT_FAILED; goto done; } if (CGPT_OK != ReadPMBR(&drive)) { Error("Unable to read PMBR\n"); retval = CGPT_FAILED; goto done; } char buf[GUID_STRLEN]; GuidToStr(&drive.pmbr.boot_guid, buf, sizeof(buf)); int numEntries = GetNumberOfEntries(&drive); int i; for(i = 0; i < numEntries; i++) { GptEntry *entry = GetEntry(&drive.gpt, ANY_VALID, i); if (GuidEqual(&entry->unique, &drive.pmbr.boot_guid)) { params->partition = i + 1; retval = CGPT_OK; goto done; } } Error("Didn't find any boot partition\n"); params->partition = 0; retval = CGPT_FAILED; done: (void) DriveClose(&drive, 1); return retval; }
int CgptCreate(CgptCreateParams *params) { struct drive drive; int mode = O_RDWR; if (params == NULL) return CGPT_FAILED; if (params->create) mode |= O_CREAT; if (CGPT_OK != DriveOpen(params->drive_name, &drive, params->min_size, mode)) return CGPT_FAILED; // Erase the data memset(drive.gpt.primary_header, 0, drive.gpt.sector_bytes * GPT_HEADER_SECTOR); memset(drive.gpt.secondary_header, 0, drive.gpt.sector_bytes * GPT_HEADER_SECTOR); memset(drive.gpt.primary_entries, 0, drive.gpt.sector_bytes * GPT_ENTRIES_SECTORS); memset(drive.gpt.secondary_entries, 0, drive.gpt.sector_bytes * GPT_ENTRIES_SECTORS); memset(&drive.pmbr, 0, sizeof(drive.pmbr)); drive.gpt.modified |= (GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1 | GPT_MODIFIED_HEADER2 | GPT_MODIFIED_ENTRIES2); // Initialize a blank set if (!params->zap) { if (CGPT_OK != initialize_gpt(&drive, params->drive_guid)) goto bad; InitPMBR(&drive, PRIMARY); } if (CGPT_OK != WritePMBR(&drive)) goto bad; // Write it all out return DriveClose(&drive, 1); bad: DriveClose(&drive, 0); return CGPT_FAILED; }
int CgptNext(CgptNextParams *params) { struct drive drive; GptEntry *entry; char tmp[64]; int tries; next_index = -1; int gpt_retval; if (params == NULL) return CGPT_FAILED; if (params->drive_name) { do_search(params); } else { scan_real_devs(params); } if (strlen(next_file_name) < 0) { return CGPT_FAILED; } if (DriveOpen(next_file_name, &drive, 0, O_RDWR) == CGPT_OK) { if (GPT_SUCCESS != (gpt_retval = GptSanityCheck(&drive.gpt))) { Error("GptSanityCheck() returned %d: %s\n", gpt_retval, GptError(gpt_retval)); return CGPT_FAILED; } // Decrement tries if we selected on that criteria tries = GetTries(&drive, PRIMARY, next_index); if (tries > 0) { tries--; } SetTries(&drive, PRIMARY, next_index, tries); // Print out the next disk to go! entry = GetEntry(&drive.gpt, ANY_VALID, next_index); GuidToStrLower(&entry->unique, tmp, sizeof(tmp)); printf("%s\n", tmp); // Write it all out UpdateAllEntries(&drive); return DriveClose(&drive, 1); } return 1; }
int CgptRepair(CgptRepairParams *params) { struct drive drive; if (params == NULL) return CGPT_FAILED; if (CGPT_OK != DriveOpen(params->drive_name, &drive, 0, O_RDWR)) return CGPT_FAILED; if (CGPT_OK != ReadPMBR(&drive)) { Error("Unable to read PMBR\n"); } int gpt_retval = GptSanityCheck(&drive.gpt); if (params->verbose) printf("GptSanityCheck() returned %d: %s\n", gpt_retval, GptError(gpt_retval)); if (GPT_SUCCESS != (gpt_retval = GptRepair(&drive.gpt))) { Error("GptRepair() returned %d: %s\n", gpt_retval, GptError(gpt_retval)); return CGPT_FAILED; } if (drive.gpt.modified & GPT_MODIFIED_HEADER1) printf("Primary Header is updated.\n"); if (drive.gpt.modified & GPT_MODIFIED_ENTRIES1) printf("Primary Entries is updated.\n"); if (drive.gpt.modified & GPT_MODIFIED_ENTRIES2) printf("Secondary Entries is updated.\n"); if (drive.gpt.modified & GPT_MODIFIED_HEADER2) printf("Secondary Header is updated.\n"); UpdatePMBR(&drive, ANY_VALID); if (WritePMBR(&drive) != CGPT_OK) { Error("Failed to write legacy MBR.\n"); } return DriveClose(&drive, 1); }
static int do_search(CgptNextParams *params) { struct drive drive; uint32_t max_part; int gpt_retval; int priority, tries, successful; int i; if (CGPT_OK != DriveOpen(params->drive_name, &drive, 0, O_RDONLY)) return CGPT_FAILED; if (GPT_SUCCESS != (gpt_retval = GptSanityCheck(&drive.gpt))) { Error("GptSanityCheck() returned %d: %s\n", gpt_retval, GptError(gpt_retval)); return CGPT_FAILED; } max_part = GetNumberOfEntries(&drive); for (i = 0; i < max_part; i++) { if (!IsRoot(&drive, PRIMARY, i)) continue; priority = GetPriority(&drive, PRIMARY, i); tries = GetTries(&drive, PRIMARY, i); successful = GetSuccessful(&drive, PRIMARY, i); if (next_index == -1 || ((priority > next_priority) && (successful || tries))) { strncpy(next_file_name, params->drive_name, BUFSIZE); if (successful || tries) { next_priority = priority; } else { next_priority = -1; } next_index = i; } } return DriveClose(&drive, 0); }
/* Resize the partition and notify the kernel. * returns: * CGPT_OK for resize successful or nothing to do * CGPT_FAILED on error */ static int resize_partition(CgptResizeParams *params, blkid_dev dev) { char *disk_devname; struct drive drive; GptHeader *header; GptEntry *entry; int gpt_retval, entry_index, entry_count; uint64_t free_bytes, last_free_lba, entry_size_lba; if ((disk_devname = dev_to_wholedevname(dev)) == NULL) { Error("Failed to find whole disk device for %s\n", blkid_dev_devname(dev)); return CGPT_FAILED; } if (DriveOpen(disk_devname, &drive, 0, O_RDWR) != CGPT_OK) { free(disk_devname); return CGPT_FAILED; } free(disk_devname); if (CGPT_OK != ReadPMBR(&drive)) { Error("Unable to read PMBR\n"); goto nope; } if (GPT_SUCCESS != (gpt_retval = GptSanityCheck(&drive.gpt))) { Error("GptSanityCheck() returned %d: %s\n", gpt_retval, GptError(gpt_retval)); goto nope; } // If either table is bad fix it! (likely if disk was extended) GptRepair(&drive.gpt); header = (GptHeader*)drive.gpt.primary_header; last_free_lba = header->last_usable_lba; entry_count = GetNumberOfEntries(&drive); entry_index = dev_to_partno(dev) - 1; if (entry_index < 0 || entry_index >= entry_count) { Error("Kernel and GPT disagree on the number of partitions!\n"); goto nope; } entry = GetEntry(&drive.gpt, PRIMARY, entry_index); // Scan entire table to determine if entry can grow. for (int i = 0; i < entry_count; i++) { GptEntry *other = GetEntry(&drive.gpt, PRIMARY, i); if (GuidIsZero(&other->type)) continue; if (other->starting_lba > entry->ending_lba && other->starting_lba - 1 < last_free_lba) { last_free_lba = other->starting_lba - 1; } } // Exit without doing anything if the size is too small free_bytes = (last_free_lba - entry->ending_lba) * drive.gpt.sector_bytes; if (entry->ending_lba >= last_free_lba || free_bytes < params->min_resize_bytes) { if (DriveClose(&drive, 0) != CGPT_OK) return CGPT_FAILED; else return CGPT_OK; } // Update and test partition table in memory entry->ending_lba = last_free_lba; entry_size_lba = entry->ending_lba - entry->starting_lba; UpdateAllEntries(&drive); gpt_retval = CheckEntries((GptEntry*)drive.gpt.primary_entries, (GptHeader*)drive.gpt.primary_header); if (gpt_retval != GPT_SUCCESS) { Error("CheckEntries() returned %d: %s\n", gpt_retval, GptError(gpt_retval)); goto nope; } // Notify kernel of new partition size via an ioctl. if (blkpg_resize_partition(drive.fd, dev_to_partno(dev), entry->starting_lba * drive.gpt.sector_bytes, entry_size_lba * drive.gpt.sector_bytes) < 0) { Error("Failed to notify kernel of new partition size: %s\n" "Leaving existing partition table in place.\n", strerror(errno)); goto nope; } UpdatePMBR(&drive, PRIMARY); if (WritePMBR(&drive) != CGPT_OK) { Error("Failed to write legacy MBR.\n"); goto nope; } // Whew! we made it! Flush to disk. return DriveClose(&drive, 1); nope: DriveClose(&drive, 0); return CGPT_FAILED; }
int CgptBoot(CgptBootParams *params) { struct drive drive; int retval = 1; int gpt_retval= 0; int mode = O_RDONLY; if (params == NULL) return CGPT_FAILED; if (params->create_pmbr || params->partition || params->bootfile) mode = O_RDWR; if (CGPT_OK != DriveOpen(params->drive_name, &drive, mode, params->drive_size)) { return CGPT_FAILED; } if (CGPT_OK != ReadPMBR(&drive)) { Error("Unable to read PMBR\n"); goto done; } if (params->create_pmbr) { drive.pmbr.magic[0] = 0x1d; drive.pmbr.magic[1] = 0x9a; drive.pmbr.sig[0] = 0x55; drive.pmbr.sig[1] = 0xaa; memset(&drive.pmbr.part, 0, sizeof(drive.pmbr.part)); drive.pmbr.part[0].f_head = 0x00; drive.pmbr.part[0].f_sect = 0x02; drive.pmbr.part[0].f_cyl = 0x00; drive.pmbr.part[0].type = 0xee; drive.pmbr.part[0].l_head = 0xff; drive.pmbr.part[0].l_sect = 0xff; drive.pmbr.part[0].l_cyl = 0xff; drive.pmbr.part[0].f_lba = htole32(1); uint32_t max = 0xffffffff; if (drive.gpt.streaming_drive_sectors < 0xffffffff) max = drive.gpt.streaming_drive_sectors - 1; drive.pmbr.part[0].num_sect = htole32(max); } if (params->partition) { if (GPT_SUCCESS != (gpt_retval = GptSanityCheck(&drive.gpt))) { Error("GptSanityCheck() returned %d: %s\n", gpt_retval, GptError(gpt_retval)); goto done; } if (params->partition > GetNumberOfEntries(&drive)) { Error("invalid partition number: %d\n", params->partition); goto done; } uint32_t index = params->partition - 1; GptEntry *entry = GetEntry(&drive.gpt, ANY_VALID, index); memcpy(&drive.pmbr.boot_guid, &entry->unique, sizeof(Guid)); } if (params->bootfile) { int fd = open(params->bootfile, O_RDONLY); if (fd < 0) { Error("Can't read %s: %s\n", params->bootfile, strerror(errno)); goto done; } int n = read(fd, drive.pmbr.bootcode, sizeof(drive.pmbr.bootcode)); if (n < 1) { Error("problem reading %s: %s\n", params->bootfile, strerror(errno)); close(fd); goto done; } close(fd); } char buf[GUID_STRLEN]; GuidToStr(&drive.pmbr.boot_guid, buf, sizeof(buf)); printf("%s\n", buf); // Write it all out, if needed. if (mode == O_RDONLY || CGPT_OK == WritePMBR(&drive)) retval = 0; done: (void) DriveClose(&drive, 1); return retval; }
int CgptPrioritize(CgptPrioritizeParams *params) { struct drive drive; int priority; int gpt_retval; uint32_t index; uint32_t max_part; int num_root; int i,j; group_list_t *groups; if (params == NULL) return CGPT_FAILED; if (CGPT_OK != DriveOpen(params->drive_name, &drive, 0, O_RDWR)) return CGPT_FAILED; if (GPT_SUCCESS != (gpt_retval = GptSanityCheck(&drive.gpt))) { Error("GptSanityCheck() returned %d: %s\n", gpt_retval, GptError(gpt_retval)); return CGPT_FAILED; } max_part = GetNumberOfEntries(&drive); if (params->set_partition) { if (params->set_partition < 1 || params->set_partition > max_part) { Error("invalid partition number: %d (must be between 1 and %d\n", params->set_partition, max_part); goto bad; } index = params->set_partition - 1; // it must be a kernel if (!IsRoot(&drive, PRIMARY, index) && !IsMarker(&drive, PRIMARY, index)) { Error("partition %d is not a valid root\n", params->set_partition); goto bad; } } // How many kernel partitions do I have? num_root = 0; for (i = 0; i < max_part; i++) { if (IsRoot(&drive, PRIMARY, i) || IsMarker(&drive, PRIMARY, i)) num_root++; } if (num_root) { // Determine the current priority groups groups = NewGroupList(num_root); for (i = 0; i < max_part; i++) { if (!IsRoot(&drive, PRIMARY, i) && !IsMarker(&drive, PRIMARY, i)) continue; priority = GetPriority(&drive, PRIMARY, i); // Is this partition special? if (params->set_partition && (i+1 == params->set_partition)) { params->orig_priority = priority; // remember the original priority if (params->set_friends) AddToGroup(groups, priority, i); // we'll move them all later else AddToGroup(groups, 99, i); // move only this one } else { AddToGroup(groups, priority, i); // just remember } } // If we're including friends, then change the original group priority if (params->set_partition && params->set_friends) { ChangeGroup(groups, params->orig_priority, 99); } // Sorting gives the new order. Now we just need to reassign the // priorities. SortGroups(groups); // We'll never lower anything to zero, so if the last group is priority zero // we can ignore it. i = groups->num_groups; if (groups->group[i-1].priority == 0) groups->num_groups--; // Where do we start? if (params->max_priority) priority = params->max_priority; else priority = groups->num_groups > 15 ? 15 : groups->num_groups; // Figure out what the new values should be for (i=0; i<groups->num_groups; i++) { groups->group[i].priority = priority; if (priority > 1) priority--; } // Now apply the ranking to the GPT for (i=0; i<groups->num_groups; i++) for (j=0; j<groups->group[i].num_parts; j++) SetPriority(&drive, PRIMARY, groups->group[i].part[j], groups->group[i].priority); FreeGroups(groups); } // Write it all out UpdateAllEntries(&drive); return DriveClose(&drive, 1); bad: (void) DriveClose(&drive, 0); return CGPT_FAILED; }