コード例 #1
0
void
DataValidatorGroup::print()
{
	/* print the group's state */
	ECL_INFO("validator: best: %d, prev best: %d, failsafe: %s (%u events)",
		 _curr_best, _prev_best, (_toggle_count > 0) ? "YES" : "NO",
		 _toggle_count);

	DataValidator *next = _first;
	unsigned i = 0;

	while (next != nullptr) {
		if (next->used()) {
			uint32_t flags = next->state();

			ECL_INFO("sensor #%u, prio: %d, state:%s%s%s%s%s%s", i, next->priority(),
				 ((flags & DataValidator::ERROR_FLAG_NO_DATA) ? " OFF" : ""),
				 ((flags & DataValidator::ERROR_FLAG_STALE_DATA) ? " STALE" : ""),
				 ((flags & DataValidator::ERROR_FLAG_TIMEOUT) ? " TOUT" : ""),
				 ((flags & DataValidator::ERROR_FLAG_HIGH_ERRCOUNT) ? " ECNT" : ""),
				 ((flags & DataValidator::ERROR_FLAG_HIGH_ERRDENSITY) ? " EDNST" : ""),
				 ((flags == DataValidator::ERROR_FLAG_NO_ERROR) ? " OK" : ""));

			next->print();
		}

		next = next->sibling();
		i++;
	}
}
コード例 #2
0
ファイル: data_validator.cpp プロジェクト: PX4/ecl
void
DataValidator::print()
{
	if (_time_last == 0) {
		ECL_INFO("\tno data");
		return;
	}

	for (unsigned i = 0; i < dimensions; i++) {
		ECL_INFO("\tval: %8.4f, lp: %8.4f mean dev: %8.4f RMS: %8.4f conf: %8.4f",
			(double) _value[i], (double)_lp[i], (double)_mean[i],
			(double)_rms[i], (double)confidence(hrt_absolute_time()));
	}
}
コード例 #3
0
ファイル: control.cpp プロジェクト: vvranjek/ecl
void Ekf::controlFusionModes()
{
	// Store the status to enable change detection
	_control_status_prev.value = _control_status.value;

	// Get the magnetic declination
	calcMagDeclination();

	// monitor the tilt alignment
	if (!_control_status.flags.tilt_align) {
		// whilst we are aligning the tilt, monitor the variances
		Vector3f angle_err_var_vec = calcRotVecVariances();

		// Once the tilt variances have reduced to equivalent of 3deg uncertainty, re-set the yaw and magnetic field states
		// and declare the tilt alignment complete
		if ((angle_err_var_vec(0) + angle_err_var_vec(1)) < sq(0.05235f)) {
			_control_status.flags.tilt_align = true;
			_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
			ECL_INFO("EKF alignment complete");

		}

	}

	// check for arrival of new sensor data at the fusion time horizon
	_gps_data_ready = _gps_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_gps_sample_delayed);
	_mag_data_ready = _mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed);
	_baro_data_ready = _baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed);
	_range_data_ready = _range_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_range_sample_delayed)
			&& (_R_to_earth(2, 2) > 0.7071f);
	_flow_data_ready = _flow_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_flow_sample_delayed)
			&&  (_R_to_earth(2, 2) > 0.7071f);
	_ev_data_ready = _ext_vision_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_ev_sample_delayed);
	_tas_data_ready = _airspeed_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_airspeed_sample_delayed);

	// check for height sensor timeouts and reset and change sensor if necessary
	controlHeightSensorTimeouts();

	// control use of observations for aiding
	controlMagFusion();
	controlExternalVisionFusion();
	controlOpticalFlowFusion();
	controlGpsFusion();
	controlBaroFusion();
	controlRangeFinderFusion();
	controlAirDataFusion();

	// for efficiency, fusion of direct state observations for position ad velocity is performed sequentially
	// in a single function using sensor data from multiple sources (GPS, external vision, baro, range finder, etc)
	controlVelPosFusion();

}
コード例 #4
0
ファイル: estimator_interface.cpp プロジェクト: PX4/ecl
bool EstimatorInterface::initialise_interface(uint64_t timestamp)
{
	// find the maximum time delay required to compensate for
	uint16_t max_time_delay_ms = math::max(_params.mag_delay_ms,
					 math::max(_params.range_delay_ms,
					     math::max(_params.gps_delay_ms,
						 math::max(_params.flow_delay_ms,
						     math::max(_params.ev_delay_ms,
							 math::max(_params.airspeed_delay_ms, _params.baro_delay_ms))))));

	// calculate the IMU buffer length required to accomodate the maximum delay with some allowance for jitter
	_imu_buffer_length = (max_time_delay_ms / FILTER_UPDATE_PERIOD_MS) + 1;

	// set the observaton buffer length to handle the minimum time of arrival between observations in combination
	// with the worst case delay from current time to ekf fusion time
	// allow for worst case 50% extension of the ekf fusion time horizon delay due to timing jitter
	uint16_t ekf_delay_ms = max_time_delay_ms + (int)(ceil((float)max_time_delay_ms * 0.5f));
	_obs_buffer_length = (ekf_delay_ms / _params.sensor_interval_min_ms) + 1;

	// limit to be no longer than the IMU buffer (we can't process data faster than the EKF prediction rate)
	_obs_buffer_length = math::min(_obs_buffer_length,_imu_buffer_length);

	ECL_INFO("EKF IMU buffer length = %i",(int)_imu_buffer_length);
	ECL_INFO("EKF observation buffer length = %i",(int)_obs_buffer_length);

	if (!(_imu_buffer.allocate(_imu_buffer_length) &&
	      _gps_buffer.allocate(_obs_buffer_length) &&
	      _mag_buffer.allocate(_obs_buffer_length) &&
	      _baro_buffer.allocate(_obs_buffer_length) &&
	      _range_buffer.allocate(_obs_buffer_length) &&
	      _airspeed_buffer.allocate(_obs_buffer_length) &&
	      _flow_buffer.allocate(_obs_buffer_length) &&
	      _ext_vision_buffer.allocate(_obs_buffer_length) &&
	      _output_buffer.allocate(_imu_buffer_length))) {
		ECL_ERR("EKF buffer allocation failed!");
		unallocate_buffers();
		return false;
	}

	// zero the data in the observation buffers
	for (int index=0; index < _obs_buffer_length; index++) {
		gpsSample gps_sample_init = {};
		_gps_buffer.push(gps_sample_init);
		magSample mag_sample_init = {};
		_mag_buffer.push(mag_sample_init);
		baroSample baro_sample_init = {};
		_baro_buffer.push(baro_sample_init);
		rangeSample range_sample_init = {};
		_range_buffer.push(range_sample_init);
		airspeedSample airspeed_sample_init = {};
		_airspeed_buffer.push(airspeed_sample_init);
		flowSample flow_sample_init = {};
		_flow_buffer.push(flow_sample_init);
		extVisionSample ext_vision_sample_init = {};
		_ext_vision_buffer.push(ext_vision_sample_init);
	}

	// zero the data in the imu data and output observer state buffers
	for (int index=0; index < _imu_buffer_length; index++) {
		imuSample imu_sample_init = {};
		_imu_buffer.push(imu_sample_init);
		outputSample output_sample_init = {};
		_output_buffer.push(output_sample_init);
	}

	_dt_imu_avg = 0.0f;

	_imu_sample_delayed.delta_ang.setZero();
	_imu_sample_delayed.delta_vel.setZero();
	_imu_sample_delayed.delta_ang_dt = 0.0f;
	_imu_sample_delayed.delta_vel_dt = 0.0f;
	_imu_sample_delayed.time_us = timestamp;

	_imu_ticks = 0;

	_initialised = false;

	_time_last_imu = 0;
	_time_last_gps = 0;
	_time_last_mag = 0;
	_time_last_baro = 0;
	_time_last_range = 0;
	_time_last_airspeed = 0;
	_time_last_optflow = 0;
	memset(&_fault_status.flags, 0, sizeof(_fault_status.flags));
	_time_last_ext_vision = 0;
	return true;
}
コード例 #5
0
ファイル: control.cpp プロジェクト: vvranjek/ecl
void Ekf::controlExternalVisionFusion()
{
	// Check for new exernal vision data
	if (_ev_data_ready) {

		// external vision position aiding selection logic
		if ((_params.fusion_mode & MASK_USE_EVPOS) && !_control_status.flags.ev_pos && _control_status.flags.tilt_align && _control_status.flags.yaw_align) {
			// check for a exernal vision measurement that has fallen behind the fusion time horizon
			if (_time_last_imu - _time_last_ext_vision < 2 * EV_MAX_INTERVAL) {
				// turn on use of external vision measurements for position and height
				_control_status.flags.ev_pos = true;
				ECL_INFO("EKF switching to external vision position fusion");
				// turn off other forms of height aiding
				_control_status.flags.baro_hgt = false;
				_control_status.flags.gps_hgt = false;
				_control_status.flags.rng_hgt = false;
				// reset the position, height and velocity
				resetPosition();
				resetVelocity();
				resetHeight();
			}
		}

		// external vision yaw aiding selection logic
		if ((_params.fusion_mode & MASK_USE_EVYAW) && !_control_status.flags.ev_yaw && _control_status.flags.tilt_align) {
			// check for a exernal vision measurement that has fallen behind the fusion time horizon
			if (_time_last_imu - _time_last_ext_vision < 2 * EV_MAX_INTERVAL) {
				// reset the yaw angle to the value from the observaton quaternion
				// get the roll, pitch, yaw estimates from the quaternion states
				matrix::Quaternion<float> q_init(_state.quat_nominal(0), _state.quat_nominal(1), _state.quat_nominal(2),
							    _state.quat_nominal(3));
				matrix::Euler<float> euler_init(q_init);

				// get initial yaw from the observation quaternion
				extVisionSample ev_newest = _ext_vision_buffer.get_newest();
				matrix::Quaternion<float> q_obs(ev_newest.quat(0), ev_newest.quat(1), ev_newest.quat(2), ev_newest.quat(3));
				matrix::Euler<float> euler_obs(q_obs);
				euler_init(2) = euler_obs(2);

				// save a copy of the quaternion state for later use in calculating the amount of reset change
				Quaternion quat_before_reset = _state.quat_nominal;

				// calculate initial quaternion states for the ekf
				_state.quat_nominal = Quaternion(euler_init);

				// calculate the amount that the quaternion has changed by
				_state_reset_status.quat_change = _state.quat_nominal * quat_before_reset.inversed();

				// add the reset amount to the output observer buffered data
				outputSample output_states;
				unsigned output_length = _output_buffer.get_length();
				for (unsigned i=0; i < output_length; i++) {
					output_states = _output_buffer.get_from_index(i);
					output_states.quat_nominal *= _state_reset_status.quat_change;
					_output_buffer.push_to_index(i,output_states);
				}

				// capture the reset event
				_state_reset_status.quat_counter++;

				// flag the yaw as aligned
				_control_status.flags.yaw_align = true;

				// turn on fusion of external vision yaw measurements and disable all magnetoemter fusion
				_control_status.flags.ev_yaw = true;
				_control_status.flags.mag_hdg = false;
				_control_status.flags.mag_3D = false;
				_control_status.flags.mag_dec = false;

				ECL_INFO("EKF switching to external vision yaw fusion");
			}
		}

		// determine if we should use the height observation
		if (_params.vdist_sensor_type == VDIST_SENSOR_EV) {
			_control_status.flags.baro_hgt = false;
			_control_status.flags.gps_hgt = false;
			_control_status.flags.rng_hgt = false;
			_control_status.flags.ev_hgt = true;
			_fuse_height = true;

		}

		// determine if we should use the horizontal position observations
		if (_control_status.flags.ev_pos) {
			_fuse_pos = true;

			// correct position and height for offset relative to IMU
			Vector3f pos_offset_body = _params.ev_pos_body - _params.imu_pos_body;
			Vector3f pos_offset_earth = _R_to_earth * pos_offset_body;
			_ev_sample_delayed.posNED(0) -= pos_offset_earth(0);
			_ev_sample_delayed.posNED(1) -= pos_offset_earth(1);
			_ev_sample_delayed.posNED(2) -= pos_offset_earth(2);
		}

		// determine if we should use the yaw observation
		if (_control_status.flags.ev_yaw) {
			fuseHeading();
		}
	}
}
コード例 #6
0
ファイル: control.cpp プロジェクト: vvranjek/ecl
void Ekf::controlHeightSensorTimeouts()
{
	/*
	 * Handle the case where we have not fused height measurements recently and
	 * uncertainty exceeds the max allowable. Reset using the best available height
	 * measurement source, continue using it after the reset and declare the current
	 * source failed if we have switched.
	*/

	// check for inertial sensing errors as evidenced by the vertical innovations having the same sign and not stale
	bool bad_vert_accel = (_control_status.flags.baro_hgt && // we can only run this check if vertical position and velocity observations are indepedant
			(_vel_pos_innov[5] * _vel_pos_innov[2] > 0.0f) && // vertical position and velocity sensors are in agreement
			((_imu_sample_delayed.time_us - _baro_sample_delayed.time_us) < 2 * BARO_MAX_INTERVAL) && // vertical position data is fresh
			((_imu_sample_delayed.time_us - _gps_sample_delayed.time_us) < 2 * GPS_MAX_INTERVAL) &&  // vertical velocity data is freshs
			_vel_pos_test_ratio[2] > 1.0f && // vertical velocty innovations have failed innovation consistency checks
			_vel_pos_test_ratio[5] > 1.0f); // vertical position innovations have failed innovation consistency checks

	// record time of last bad vert accel
	if (bad_vert_accel) {
		_time_bad_vert_accel =  _time_last_imu;
	}

	if ((P[9][9] > sq(_params.hgt_reset_lim)) && ((_time_last_imu - _time_last_hgt_fuse) > 5e6)) {
		// boolean that indicates we will do a height reset
		bool reset_height = false;

		// handle the case where we are using baro for height
		if (_control_status.flags.baro_hgt) {
			// check if GPS height is available
			gpsSample gps_init = _gps_buffer.get_newest();
			bool gps_hgt_available = ((_time_last_imu - gps_init.time_us) < 2 * GPS_MAX_INTERVAL);
			bool gps_hgt_accurate = (gps_init.vacc < _params.req_vacc);
			baroSample baro_init = _baro_buffer.get_newest();
			bool baro_hgt_available = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL);

			// check for inertial sensing errors in the last 10 seconds
			bool prev_bad_vert_accel = (_time_last_imu - _time_bad_vert_accel < 10E6);

			// reset to GPS if adequate GPS data is available and the timeout cannot be blamed on IMU data
			bool reset_to_gps = gps_hgt_available && gps_hgt_accurate && !_gps_hgt_faulty && !prev_bad_vert_accel;

			// reset to GPS if GPS data is available and there is no Baro data
			reset_to_gps = reset_to_gps || (gps_hgt_available && !baro_hgt_available);

			// reset to Baro if we are not doing a GPS reset and baro data is available
			bool reset_to_baro = !reset_to_gps && baro_hgt_available;

			if (reset_to_gps) {
				// set height sensor health
				_baro_hgt_faulty = true;
				_gps_hgt_faulty = false;

				// declare the GPS height healthy
				_gps_hgt_faulty = false;

				// reset the height mode
				_control_status.flags.baro_hgt = false;
				_control_status.flags.gps_hgt = true;
				_control_status.flags.rng_hgt = false;
				_control_status.flags.ev_hgt = false;

				// request a reset
				reset_height = true;
				ECL_INFO("EKF baro hgt timeout - reset to GPS");

			} else if (reset_to_baro){
				// set height sensor health
				_baro_hgt_faulty = false;

				// reset the height mode
				_control_status.flags.baro_hgt = true;
				_control_status.flags.gps_hgt = false;
				_control_status.flags.rng_hgt = false;
				_control_status.flags.ev_hgt = false;

				// request a reset
				reset_height = true;
				ECL_INFO("EKF baro hgt timeout - reset to baro");

			} else {
				// we have nothing we can reset to
				// deny a reset
				reset_height = false;

			}
		}

		// handle the case we are using GPS for height
		if (_control_status.flags.gps_hgt) {
			// check if GPS height is available
			gpsSample gps_init = _gps_buffer.get_newest();
			bool gps_hgt_available = ((_time_last_imu - gps_init.time_us) < 2 * GPS_MAX_INTERVAL);
			bool gps_hgt_accurate = (gps_init.vacc < _params.req_vacc);

			// check the baro height source for consistency and freshness
			baroSample baro_init = _baro_buffer.get_newest();
			bool baro_data_fresh = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL);
			float baro_innov = _state.pos(2) - (_hgt_sensor_offset - baro_init.hgt + _baro_hgt_offset);
			bool baro_data_consistent = fabsf(baro_innov) < (sq(_params.baro_noise) + P[8][8]) * sq(_params.baro_innov_gate);

			// if baro data is acceptable and GPS data is inaccurate, reset height to baro
			bool reset_to_baro = baro_data_consistent && baro_data_fresh && !_baro_hgt_faulty && !gps_hgt_accurate;

			// if GPS height is unavailable and baro data is available, reset height to baro
			reset_to_baro = reset_to_baro || (!gps_hgt_available && baro_data_fresh);

			// if we cannot switch to baro and GPS data is available, reset height to GPS
			bool reset_to_gps = !reset_to_baro && gps_hgt_available;

			if (reset_to_baro) {
				// set height sensor health
				_gps_hgt_faulty = true;
				_baro_hgt_faulty = false;

				// reset the height mode
				_control_status.flags.baro_hgt = true;
				_control_status.flags.gps_hgt = false;
				_control_status.flags.rng_hgt = false;
				_control_status.flags.ev_hgt = false;

				// request a reset
				reset_height = true;
				ECL_INFO("EKF gps hgt timeout - reset to baro");

			} else if (reset_to_gps) {
				// set height sensor health
				_gps_hgt_faulty = false;

				// reset the height mode
				_control_status.flags.baro_hgt = false;
				_control_status.flags.gps_hgt = true;
				_control_status.flags.rng_hgt = false;
				_control_status.flags.ev_hgt = false;

				// request a reset
				reset_height = true;
				ECL_INFO("EKF gps hgt timeout - reset to GPS");

			} else {
				// we have nothing to reset to
				reset_height = false;

			}
		}

		// handle the case we are using range finder for height
		if (_control_status.flags.rng_hgt) {
			// check if range finder data is available
			rangeSample rng_init = _range_buffer.get_newest();
			bool rng_data_available = ((_time_last_imu - rng_init.time_us) < 2 * RNG_MAX_INTERVAL);

			// check if baro data is available
			baroSample baro_init = _baro_buffer.get_newest();
			bool baro_data_available = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL);

			// reset to baro if we have no range data and baro data is available
			bool reset_to_baro = !rng_data_available && baro_data_available;

			// reset to range data if it is available
			bool reset_to_rng = rng_data_available;

			if (reset_to_baro) {
				// set height sensor health
				_rng_hgt_faulty = true;
				_baro_hgt_faulty = false;

				// reset the height mode
				_control_status.flags.baro_hgt = true;
				_control_status.flags.gps_hgt = false;
				_control_status.flags.rng_hgt = false;
				_control_status.flags.ev_hgt = false;

				// request a reset
				reset_height = true;
				ECL_INFO("EKF rng hgt timeout - reset to baro");

			} else if (reset_to_rng) {
				// set height sensor health
				_rng_hgt_faulty = false;

				// reset the height mode
				_control_status.flags.baro_hgt = false;
				_control_status.flags.gps_hgt = false;
				_control_status.flags.rng_hgt = true;
				_control_status.flags.ev_hgt = false;

				// request a reset
				reset_height = true;
				ECL_INFO("EKF rng hgt timeout - reset to rng hgt");

			} else {
				// we have nothing to reset to
				reset_height = false;

			}
		}

		// handle the case where we are using external vision data for height
		if (_control_status.flags.ev_hgt) {
			// check if vision data is available
			extVisionSample ev_init = _ext_vision_buffer.get_newest();
			bool ev_data_available = ((_time_last_imu - ev_init.time_us) < 2 * EV_MAX_INTERVAL);

			// check if baro data is available
			baroSample baro_init = _baro_buffer.get_newest();
			bool baro_data_available = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL);

			// reset to baro if we have no vision data and baro data is available
			bool reset_to_baro = !ev_data_available && baro_data_available;

			// reset to ev data if it is available
			bool reset_to_ev = ev_data_available;

			if (reset_to_baro) {
				// set height sensor health
				_rng_hgt_faulty = true;
				_baro_hgt_faulty = false;

				// reset the height mode
				_control_status.flags.baro_hgt = true;
				_control_status.flags.gps_hgt = false;
				_control_status.flags.rng_hgt = false;
				_control_status.flags.ev_hgt = false;

				// request a reset
				reset_height = true;
				ECL_INFO("EKF ev hgt timeout - reset to baro");

			} else if (reset_to_ev) {
				// reset the height mode
				_control_status.flags.baro_hgt = false;
				_control_status.flags.gps_hgt = false;
				_control_status.flags.rng_hgt = false;
				_control_status.flags.ev_hgt = true;

				// request a reset
				reset_height = true;
				ECL_INFO("EKF ev hgt timeout - reset to ev hgt");

			} else {
				// we have nothing to reset to
				reset_height = false;

			}
		}

		// Reset vertical position and velocity states to the last measurement
		if (reset_height) {
			resetHeight();
			// Reset the timout timer
			_time_last_hgt_fuse = _time_last_imu;

		}

	}
}
コード例 #7
0
ファイル: control.cpp プロジェクト: vvranjek/ecl
void Ekf::controlGpsFusion()
{
	// Check for new GPS data that has fallen behind the fusion time horizon
	if (_gps_data_ready) {

		// Determine if we should use GPS aiding for velocity and horizontal position
		// To start using GPS we need angular alignment completed, the local NED origin set and GPS data that has not failed checks recently
		if ((_params.fusion_mode & MASK_USE_GPS) && !_control_status.flags.gps) {
			if (_control_status.flags.tilt_align && _NED_origin_initialised && (_time_last_imu - _last_gps_fail_us > 5e6)) {
				// If the heading is not aligned, reset the yaw and magnetic field states
				if (!_control_status.flags.yaw_align) {
					_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);

				}

				// If the heading is valid start using gps aiding
				if (_control_status.flags.yaw_align) {
					_control_status.flags.gps = true;
					_time_last_gps = _time_last_imu;

					// if we are not already aiding with optical flow, then we need to reset the position and velocity
					if (!_control_status.flags.opt_flow) {
						if (resetPosition() && resetVelocity()) {
							_control_status.flags.gps = true;

						} else {
							_control_status.flags.gps = false;

						}
					}
					if (_control_status.flags.gps) {
						ECL_INFO("EKF commencing GPS aiding");

					}
				}
			}

		}  else if (!(_params.fusion_mode & MASK_USE_GPS)) {
			_control_status.flags.gps = false;

		}

		// handle the case when we are relying on GPS fusion and lose it
		if (_control_status.flags.gps && !_control_status.flags.opt_flow) {
			// We are relying on GPS aiding to constrain attitude drift so after 10 seconds without aiding we need to do something
			if ((_time_last_imu - _time_last_pos_fuse > 10e6) && (_time_last_imu - _time_last_vel_fuse > 10e6)) {
				if (_time_last_imu - _time_last_gps > 5e5) {
					// if we don't have gps then we need to switch to the non-aiding mode, zero the velocity states
					// and set the synthetic GPS position to the current estimate
					_control_status.flags.gps = false;
					_last_known_posNE(0) = _state.pos(0);
					_last_known_posNE(1) = _state.pos(1);
					_state.vel.setZero();
					ECL_WARN("EKF GPS fusion timout - stopping GPS aiding");

				} else {
					// Reset states to the last GPS measurement
					resetPosition();
					resetVelocity();
					ECL_WARN("EKF GPS fusion timout - resetting to GPS");

					// Reset the timeout counters
					_time_last_pos_fuse = _time_last_imu;
					_time_last_vel_fuse = _time_last_imu;

				}
			}
		}

		// Only use GPS data for position and velocity aiding if enabled
		if (_control_status.flags.gps) {
			_fuse_pos = true;
			_fuse_vert_vel = true;
			_fuse_hor_vel = true;

			// correct velocity for offset relative to IMU
			Vector3f ang_rate = _imu_sample_delayed.delta_ang * (1.0f/_imu_sample_delayed.delta_ang_dt);
			Vector3f pos_offset_body = _params.gps_pos_body - _params.imu_pos_body;
			Vector3f vel_offset_body = cross_product(ang_rate,pos_offset_body);
			Vector3f vel_offset_earth = _R_to_earth * vel_offset_body;
			_gps_sample_delayed.vel -= vel_offset_earth;

			// correct position and height for offset relative to IMU
			Vector3f pos_offset_earth = _R_to_earth * pos_offset_body;
			_gps_sample_delayed.pos(0) -= pos_offset_earth(0);
			_gps_sample_delayed.pos(1) -= pos_offset_earth(1);
			_gps_sample_delayed.hgt += pos_offset_earth(2);

		}

		// Determine if GPS should be used as the height source
		if (((_params.vdist_sensor_type == VDIST_SENSOR_GPS)) && !_gps_hgt_faulty) {
			_control_status.flags.baro_hgt = false;
			_control_status.flags.gps_hgt = true;
			_control_status.flags.rng_hgt = false;
			_control_status.flags.ev_hgt = false;
			_fuse_height = true;

		}
	}
}