/* ** creaseProj ** ** eigenvectors (with non-zero eigenvalues) of output posproj are ** tangents to the directions along which particle is allowed to move ** *downward* (in height) for constraint satisfaction (according to ** tangent 1 or tangents 1&2) ** ** negproj is the same, but for points moving upwards (according to ** negativetangent1 or negativetangent 1&2) */ static void creaseProj(pullTask *task, pullPoint *point, int tang1Use, int tang2Use, int negtang1Use, int negtang2Use, /* output */ double posproj[9], double negproj[9]) { #if PRAYING static const char me[]="creaseProj"; #endif double pp[9]; double *tng; ELL_3M_ZERO_SET(posproj); if (tang1Use) { tng = point->info + task->pctx->infoIdx[pullInfoTangent1]; #if PRAYING fprintf(stderr, "!%s: tng1 = %g %g %g\n", me, tng[0], tng[1], tng[2]); #endif ELL_3MV_OUTER(pp, tng, tng); ELL_3M_ADD2(posproj, posproj, pp); } if (tang2Use) { tng = point->info + task->pctx->infoIdx[pullInfoTangent2]; ELL_3MV_OUTER(pp, tng, tng); ELL_3M_ADD2(posproj, posproj, pp); } ELL_3M_ZERO_SET(negproj); if (negtang1Use) { tng = point->info + task->pctx->infoIdx[pullInfoNegativeTangent1]; ELL_3MV_OUTER(pp, tng, tng); ELL_3M_ADD2(negproj, negproj, pp); } if (negtang2Use) { tng = point->info + task->pctx->infoIdx[pullInfoNegativeTangent2]; ELL_3MV_OUTER(pp, tng, tng); ELL_3M_ADD2(negproj, negproj, pp); } if (!tang1Use && !tang2Use && !negtang1Use && !negtang2Use) { /* we must be after points, and so need freedom to go after them */ /* for now we do this via posproj not negproj; see haveNada below */ ELL_3M_IDENTITY_SET(posproj); } return; }
static void scalingMatrix(double mat[9], double vec[3], double scl) { double dir[3], tmp[9], len; ELL_3V_NORM(dir, vec, len); ELL_3MV_OUTER(tmp, dir, dir); ELL_3M_SCALE(tmp, scl-1, tmp); ELL_3M_IDENTITY_SET(mat); ELL_3M_ADD2(mat, mat, tmp); return; }
void _gageVecAnswer(gageContext *ctx, gagePerVolume *pvl) { char me[]="_gageVecAnswer"; double cmag, tmpMat[9], mgevec[9], mgeval[3]; double symm[9], asym[9], tran[9], eval[3], tmpVec[3], norm; gage_t *vecAns, *normAns, *jacAns, *curlAns, *hesAns, *curlGradAns, *helGradAns, *dirHelDirAns, *curlnormgradAns; /* int asw; */ vecAns = pvl->directAnswer[gageVecVector]; normAns = pvl->directAnswer[gageVecNormalized]; jacAns = pvl->directAnswer[gageVecJacobian]; curlAns = pvl->directAnswer[gageVecCurl]; hesAns = pvl->directAnswer[gageVecHessian]; curlGradAns = pvl->directAnswer[gageVecCurlGradient]; curlnormgradAns = pvl->directAnswer[gageVecCurlNormGrad]; helGradAns = pvl->directAnswer[gageVecHelGradient]; dirHelDirAns = pvl->directAnswer[gageVecDirHelDeriv]; if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecVector)) { /* done if doV */ if (ctx->verbose) { fprintf(stderr, "vec = "); ell_3v_PRINT(stderr, vecAns); } } /* done if doV if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecVector{0,1,2})) { } */ if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecLength)) { pvl->directAnswer[gageVecLength][0] = AIR_CAST(gage_t, ELL_3V_LEN(vecAns)); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecNormalized)) { if (pvl->directAnswer[gageVecLength][0]) { ELL_3V_SCALE_TT(normAns, gage_t, 1.0/pvl->directAnswer[gageVecLength][0], vecAns); } else { ELL_3V_COPY(normAns, gageZeroNormal); } } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecJacobian)) { /* done if doD1 */ /* 0:dv_x/dx 1:dv_x/dy 2:dv_x/dz 3:dv_y/dx 4:dv_y/dy 5:dv_y/dz 6:dv_z/dx 7:dv_z/dy 8:dv_z/dz */ if (ctx->verbose) { fprintf(stderr, "%s: jac = \n", me); ell_3m_PRINT(stderr, jacAns); } } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecDivergence)) { pvl->directAnswer[gageVecDivergence][0] = jacAns[0] + jacAns[4] + jacAns[8]; if (ctx->verbose) { fprintf(stderr, "%s: div = %g + %g + %g = %g\n", me, jacAns[0], jacAns[4], jacAns[8], pvl->directAnswer[gageVecDivergence][0]); } } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecCurl)) { ELL_3V_SET(curlAns, jacAns[7] - jacAns[5], jacAns[2] - jacAns[6], jacAns[3] - jacAns[1]); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecCurlNorm)) { pvl->directAnswer[gageVecCurlNorm][0] = AIR_CAST(gage_t, ELL_3V_LEN(curlAns)); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecHelicity)) { pvl->directAnswer[gageVecHelicity][0] = ELL_3V_DOT(vecAns, curlAns); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecNormHelicity)) { cmag = ELL_3V_LEN(curlAns); pvl->directAnswer[gageVecNormHelicity][0] = AIR_CAST(gage_t, cmag ? ELL_3V_DOT(normAns, curlAns)/cmag : 0); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecLambda2)) { ELL_3M_TRANSPOSE(tran, jacAns); /* symmetric part */ ELL_3M_SCALE_ADD2(symm, 0.5, jacAns, 0.5, tran); /* antisymmetric part */ ELL_3M_SCALE_ADD2(asym, 0.5, jacAns, -0.5, tran); /* square symmetric part */ ELL_3M_MUL(tmpMat, symm, symm); ELL_3M_COPY(symm, tmpMat); /* square antisymmetric part */ ELL_3M_MUL(tmpMat, asym, asym); /* sum of both */ ELL_3M_ADD2(symm, symm, tmpMat); /* get eigenvalues in sorted order */ /* asw = */ ell_3m_eigenvalues_d(eval, symm, AIR_TRUE); pvl->directAnswer[gageVecLambda2][0] = AIR_CAST(gage_t, eval[1]); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecImaginaryPart)) { pvl->directAnswer[gageVecImaginaryPart][0] = AIR_CAST(gage_t, gage_imaginary_part_eigenvalues(jacAns)); } /* 2nd order vector derivative continued */ if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecHessian)) { /* done if doD2 */ /* the ordering is induced by the scalar hessian computation : 0:d2v_x/dxdx 1:d2v_x/dxdy 2:d2v_x/dxdz 3:d2v_x/dydx 4:d2v_x/dydy 5:d2v_x/dydz 6:d2v_x/dzdx 7:d2v_x/dzdy 8:d2v_x/dzdz 9:d2v_y/dxdx [...] [...] 24:dv2_z/dzdx 25:d2v_z/dzdy 26:d2v_z/dzdz */ if (ctx->verbose) { fprintf(stderr, "%s: hes = \n", me); ell_3m_PRINT(stderr, hesAns); /* ?? */ } } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecDivGradient)) { pvl->directAnswer[gageVecDivGradient][0] = hesAns[0] + hesAns[12] + hesAns[24]; pvl->directAnswer[gageVecDivGradient][1] = hesAns[1] + hesAns[13] + hesAns[25]; pvl->directAnswer[gageVecDivGradient][2] = hesAns[2] + hesAns[14] + hesAns[26]; } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecCurlGradient)) { pvl->directAnswer[gageVecCurlGradient][0] = hesAns[21]-hesAns[15]; pvl->directAnswer[gageVecCurlGradient][1] = hesAns[22]-hesAns[16]; pvl->directAnswer[gageVecCurlGradient][2] = hesAns[23]-hesAns[17]; pvl->directAnswer[gageVecCurlGradient][3] = hesAns[ 6]-hesAns[18]; pvl->directAnswer[gageVecCurlGradient][4] = hesAns[ 7]-hesAns[19]; pvl->directAnswer[gageVecCurlGradient][5] = hesAns[ 8]-hesAns[20]; pvl->directAnswer[gageVecCurlGradient][6] = hesAns[ 9]-hesAns[ 1]; pvl->directAnswer[gageVecCurlGradient][7] = hesAns[10]-hesAns[ 2]; pvl->directAnswer[gageVecCurlGradient][8] = hesAns[11]-hesAns[ 3]; } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecCurlNormGrad)) { norm = 1./ELL_3V_LEN(curlAns); tmpVec[0] = hesAns[21] - hesAns[15]; tmpVec[1] = hesAns[ 6] - hesAns[18]; tmpVec[2] = hesAns[ 9] - hesAns[ 3]; pvl->directAnswer[gageVecCurlNormGrad][0]= AIR_CAST(gage_t, norm*ELL_3V_DOT(tmpVec, curlAns)); tmpVec[0] = hesAns[22] - hesAns[16]; tmpVec[1] = hesAns[ 7] - hesAns[19]; tmpVec[2] = hesAns[10] - hesAns[ 4]; pvl->directAnswer[gageVecCurlNormGrad][1]= AIR_CAST(gage_t, norm*ELL_3V_DOT(tmpVec, curlAns)); tmpVec[0] = hesAns[23] - hesAns[17]; tmpVec[1] = hesAns[ 8] - hesAns[20]; tmpVec[2] = hesAns[11] - hesAns[ 5]; pvl->directAnswer[gageVecCurlNormGrad][2]= AIR_CAST(gage_t, norm*ELL_3V_DOT(tmpVec, curlAns)); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecNCurlNormGrad)) { norm = 1./ELL_3V_LEN(curlnormgradAns); ELL_3V_SCALE_TT(pvl->directAnswer[gageVecNCurlNormGrad], gage_t, norm, pvl->directAnswer[gageVecCurlNormGrad]); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecHelGradient)) { pvl->directAnswer[gageVecHelGradient][0] = jacAns[0]*curlAns[0]+ jacAns[3]*curlAns[1]+ jacAns[6]*curlAns[2]+ curlGradAns[0]*vecAns[0]+ curlGradAns[3]*vecAns[1]+ curlGradAns[6]*vecAns[2]; pvl->directAnswer[gageVecHelGradient][1] = jacAns[1]*curlAns[0]+ jacAns[4]*curlAns[1]+ jacAns[7]*curlAns[2]+ curlGradAns[1]*vecAns[0]+ curlGradAns[4]*vecAns[1]+ curlGradAns[7]*vecAns[2]; pvl->directAnswer[gageVecHelGradient][0] = jacAns[2]*curlAns[0]+ jacAns[5]*curlAns[1]+ jacAns[8]*curlAns[2]+ curlGradAns[2]*vecAns[0]+ curlGradAns[5]*vecAns[1]+ curlGradAns[8]*vecAns[2]; } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecDirHelDeriv)) { pvl->directAnswer[gageVecDirHelDeriv][0] = ELL_3V_DOT(normAns, helGradAns); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecProjHelGradient)) { pvl->directAnswer[gageVecDirHelDeriv][0] = helGradAns[0]-dirHelDirAns[0]*normAns[0]; pvl->directAnswer[gageVecDirHelDeriv][1] = helGradAns[1]-dirHelDirAns[0]*normAns[1]; pvl->directAnswer[gageVecDirHelDeriv][2] = helGradAns[2]-dirHelDirAns[0]*normAns[2]; } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecGradient0)) { ELL_3V_SET(pvl->directAnswer[gageVecGradient0], jacAns[0], jacAns[1], jacAns[2]); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecGradient1)) { ELL_3V_SET(pvl->directAnswer[gageVecGradient1], jacAns[3], jacAns[4], jacAns[5]); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecGradient2)) { ELL_3V_SET(pvl->directAnswer[gageVecGradient2], jacAns[6], jacAns[7], jacAns[8]); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecMultiGrad)) { ELL_3M_IDENTITY_SET(pvl->directAnswer[gageVecMultiGrad]); ELL_3MV_OUTER_ADD(pvl->directAnswer[gageVecMultiGrad], pvl->directAnswer[gageVecGradient0], pvl->directAnswer[gageVecGradient0]); ELL_3MV_OUTER_ADD(pvl->directAnswer[gageVecMultiGrad], pvl->directAnswer[gageVecGradient1], pvl->directAnswer[gageVecGradient1]); ELL_3MV_OUTER_ADD(pvl->directAnswer[gageVecMultiGrad], pvl->directAnswer[gageVecGradient2], pvl->directAnswer[gageVecGradient2]); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecMGFrob)) { pvl->directAnswer[gageVecMGFrob][0] = AIR_CAST(gage_t, ELL_3M_FROB(pvl->directAnswer[gageVecMultiGrad])); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecMGEval)) { ELL_3M_COPY(tmpMat, pvl->directAnswer[gageVecMultiGrad]); /* HEY: look at the return value for root multiplicity? */ ell_3m_eigensolve_d(mgeval, mgevec, tmpMat, AIR_TRUE); ELL_3V_COPY_TT(pvl->directAnswer[gageVecMGEval], gage_t, mgeval); } if (GAGE_QUERY_ITEM_TEST(pvl->query, gageVecMGEvec)) { ELL_3M_COPY_TT(pvl->directAnswer[gageVecMGEvec], gage_t, mgevec); } return; }
int main(int argc, const char *argv[]) { const char *me; char *err, *outS; double scale[3], matA[9], matB[9], matC[9], sval[3], uu[9], vv[9]; float matAf[9], matBf[16]; float p[3], q[4], mR[9], len, gamma; float os, vs, rad, AB[2], ten[7], view[3]; hestOpt *hopt=NULL; airArray *mop; limnObject *obj; limnLook *look; int lookRod, lookSoid; int partIdx=-1; /* sssh */ int res, sphere; FILE *file; me = argv[0]; hestOptAdd(&hopt, "sc", "scalings", airTypeDouble, 3, 3, scale, "1 1 1", "axis-aligned scaling to do on ellipsoid"); hestOptAdd(&hopt, "AB", "A, B exponents", airTypeFloat, 2, 2, AB, "nan nan", "Directly set the A, B parameters to the superquadric surface, " "over-riding the default behavior of determining them from the " "scalings \"-sc\" as superquadric tensor glyphs"); hestOptAdd(&hopt, "os", "over-all scaling", airTypeFloat, 1, 1, &os, "1", "over-all scaling (multiplied by scalings)"); hestOptAdd(&hopt, "vs", "over-all scaling", airTypeFloat, 1, 1, &vs, "1", "scaling along view-direction (to show off bas-relief " "ambibuity of ellipsoids versus superquads)"); hestOptAdd(&hopt, "fr", "from (eye) point", airTypeFloat, 3, 3, &view, "4 4 4", "eye point, needed for non-unity \"-vs\""); hestOptAdd(&hopt, "gamma", "superquad sharpness", airTypeFloat, 1, 1, &gamma, "0", "how much to sharpen edges as a " "function of differences between eigenvalues"); hestOptAdd(&hopt, "sphere", NULL, airTypeInt, 0, 0, &sphere, NULL, "use a sphere instead of a superquadric"); hestOptAdd(&hopt, "p", "x y z", airTypeFloat, 3, 3, p, "0 0 0", "location in quaternion quotient space"); hestOptAdd(&hopt, "r", "radius", airTypeFloat, 1, 1, &rad, "0.015", "black axis cylinder radius (or 0.0 to not drawn these)"); hestOptAdd(&hopt, "res", "resolution", airTypeInt, 1, 1, &res, "25", "tesselation resolution for both glyph and axis cylinders"); hestOptAdd(&hopt, "o", "output OFF", airTypeString, 1, 1, &outS, "out.off", "output file to save OFF into"); hestParseOrDie(hopt, argc-1, argv+1, NULL, me, info, AIR_TRUE, AIR_TRUE, AIR_TRUE); mop = airMopNew(); airMopAdd(mop, hopt, (airMopper)hestOptFree, airMopAlways); airMopAdd(mop, hopt, (airMopper)hestParseFree, airMopAlways); obj = limnObjectNew(1000, AIR_TRUE); airMopAdd(mop, obj, (airMopper)limnObjectNix, airMopAlways); /* create limnLooks for ellipsoid and for rods */ lookSoid = limnObjectLookAdd(obj); look = obj->look + lookSoid; ELL_4V_SET(look->rgba, 1, 1, 1, 1); ELL_3V_SET(look->kads, 0.2, 0.8, 0); look->spow = 0; lookRod = limnObjectLookAdd(obj); look = obj->look + lookRod; ELL_4V_SET(look->rgba, 0, 0, 0, 1); ELL_3V_SET(look->kads, 1, 0, 0); look->spow = 0; ELL_3M_IDENTITY_SET(matA); ELL_3V_SCALE(scale, os, scale); ELL_3M_SCALE_SET(matB, scale[0], scale[1], scale[2]); ell_3m_post_mul_d(matA, matB); if (1 != vs) { ELL_3V_NORM(view, view, len); if (!len) { /* HEY: perhaps do more diplomatic error message here */ fprintf(stderr, "%s: stupido!\n", me); exit(1); } ELL_3MV_OUTER(matB, view, view); ELL_3M_SCALE(matB, vs-1, matB); ELL_3M_IDENTITY_SET(matC); ELL_3M_ADD2(matB, matC, matB); ell_3m_post_mul_d(matA, matB); } ell_3m_svd_d(uu, sval, vv, matA, AIR_TRUE); /* fprintf(stderr, "%s: ____________________________________\n", me); fprintf(stderr, "%s: mat = \n", me); ell_3m_print_d(stderr, matA); fprintf(stderr, "%s: uu = \n", me); ell_3m_print_d(stderr, uu); ELL_3M_TRANSPOSE(matC, uu); ELL_3M_MUL(matB, uu, matC); fprintf(stderr, "%s: uu * uu^T = \n", me); ell_3m_print_d(stderr, matB); fprintf(stderr, "%s: sval = %g %g %g\n", me, sval[0], sval[1], sval[2]); fprintf(stderr, "%s: vv = \n", me); ell_3m_print_d(stderr, vv); ELL_3M_MUL(matB, vv, vv); fprintf(stderr, "%s: vv * vv^T = \n", me); ELL_3M_TRANSPOSE(matC, vv); ELL_3M_MUL(matB, vv, matC); ell_3m_print_d(stderr, matB); ELL_3M_IDENTITY_SET(matA); ell_3m_pre_mul_d(matA, uu); ELL_3M_SCALE_SET(matB, sval[0], sval[1], sval[2]); ell_3m_pre_mul_d(matA, matB); ell_3m_pre_mul_d(matA, vv); fprintf(stderr, "%s: uu * diag(sval) * vv = \n", me); ell_3m_print_d(stderr, matA); fprintf(stderr, "%s: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", me); */ ELL_3M_IDENTITY_SET(matA); ell_3m_pre_mul_d(matA, uu); ELL_3M_SCALE_SET(matB, sval[0], sval[1], sval[2]); ell_3m_pre_mul_d(matA, matB); ELL_3M_TRANSPOSE(matB, uu); ell_3m_pre_mul_d(matA, matB); TEN_M2T(ten, matA); partIdx = soidDoit(obj, lookSoid, sphere, gamma, res, (AIR_EXISTS(AB[0]) && AIR_EXISTS(AB[1])) ? AB : NULL, ten); ELL_4V_SET(q, 1, p[0], p[1], p[2]); ELL_4V_NORM(q, q, len); ell_q_to_3m_f(mR, q); ELL_43M_INSET(matBf, mR); limnObjectPartTransform(obj, partIdx, matBf); if (rad) { partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, (1-scale[0])/2, rad, rad); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, (1+scale[0])/2, 0.0, 0.0); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 0, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, (1-scale[0])/2, rad, rad); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, -(1+scale[0])/2, 0.0, 0.0); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, rad, (1-scale[1])/2, rad); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, 0.0, (1+scale[1])/2, 0.0); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 1, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, rad, (1-scale[1])/2, rad); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, 0.0, -(1+scale[1])/2, 0.0); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, rad, rad, (1-scale[2])/2); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, 0.0, 0.0, (1+scale[2])/2); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); partIdx = limnObjectCylinderAdd(obj, lookRod, 2, res); ELL_4M_IDENTITY_SET(matAf); ELL_4M_SCALE_SET(matBf, rad, rad, (1-scale[2])/2); ell_4m_post_mul_f(matAf, matBf); ELL_4M_TRANSLATE_SET(matBf, 0.0, 0.0, -(1+scale[2])/2); ell_4m_post_mul_f(matAf, matBf); limnObjectPartTransform(obj, partIdx, matAf); } file = airFopen(outS, stdout, "w"); airMopAdd(mop, file, (airMopper)airFclose, airMopAlways); if (limnObjectWriteOFF(file, obj)) { airMopAdd(mop, err = biffGetDone(LIMN), airFree, airMopAlways); fprintf(stderr, "%s: trouble:\n%s\n", me, err); airMopError(mop); return 1; } airMopOkay(mop); return 0; }
/* Calculates 2 new centroids (and a new segmentation) from distances between Q-balls and centroids, returns true if segmentation changed */ int _tenCalccent2(const int gradcount, const double qpoints[], const double dists[], double centroid[6], unsigned int seg[]) { #if 0 /* HEY: Attempt to implement better line-adding by adding outerproducts of points and estimating major eigenvector afterwards */ int i,changed=AIR_FALSE; double sum0[9],sum1[9],mat[9], eval[3],evec[9]; ELL_3M_ZERO_SET( sum0 ); ELL_3M_ZERO_SET( sum1 ); for( i = 0; i < gradcount; i++ ) { if( dists[i] < dists[gradcount+i] ) { ELL_3MV_OUTER( mat, qpoints +3*i, qpoints +3*i ); ELL_3M_ADD2( sum0, sum0, mat ); changed = changed || (seg[i] != 0); seg[i] = 0; } else { ELL_3MV_OUTER( mat, qpoints +3*i +gradcount, qpoints +3*i +gradcount ); ELL_3M_ADD2( sum1, sum1, mat ); changed = changed || (seg[i] != 1); seg[i] = 1; } } ell_3m_eigensolve_d( eval, evec, sum0, 0 ); ELL_3V_COPY( centroid, evec + 3*ELL_MAX3_IDX( eval[0], eval[1], eval[2] ) ); /* ELL_3V_SCALE( centroid, ELL_3V_LEN( centroid ), centroid ); */ ell_3m_eigensolve_d( eval, evec, sum1, 0 ); ELL_3V_COPY( centroid +3, evec + 3*ELL_MAX3_IDX( eval[0], eval[1], eval[2] ) ); /* ELL_3V_SCALE( centroid +3, ELL_3V_LEN( centroid ), centroid +3); Normalize */ return changed; #endif int i, sign, seg0count=0, seg1count=0, changed=AIR_FALSE; double oldcentroid[6], diff[3], sum[3]; memcpy( oldcentroid, centroid, 6 * sizeof( double )); for( i = 0; i < gradcount; i++ ) { if( dists[ 0*gradcount +i] < dists[1*gradcount +i] ) { /* Try to resolve sign so that centroid do not end up as all 0 */ /* Choose signs so that the point lies "on the same side" as */ /* the previous centroid. */ diff[0] = oldcentroid[0] - qpoints[3*i +0]; diff[1] = oldcentroid[1] - qpoints[3*i +1]; diff[2] = oldcentroid[2] - qpoints[3*i +2]; sum[0] = oldcentroid[0] + qpoints[3*i +0]; sum[1] = oldcentroid[1] + qpoints[3*i +1]; sum[2] = oldcentroid[2] + qpoints[3*i +2]; sign = (diff[0]*diff[0] + diff[1]*diff[1] + diff[2]*diff[2]) < (sum[0]*sum[0] + sum[1]*sum[1] + sum[2]*sum[2]) ? -1 : +1; changed = changed || (seg[i] != 0); seg[i] = 0; centroid[0] += sign * qpoints[3*i +0]; centroid[1] += sign * qpoints[3*i +1]; centroid[2] += sign * qpoints[3*i +2]; seg0count++; } else { diff[0] = oldcentroid[3+0] - qpoints[3*i +0]; diff[1] = oldcentroid[3+1] - qpoints[3*i +1]; diff[2] = oldcentroid[3+2] - qpoints[3*i +2]; sum[0] = oldcentroid[3+0] + qpoints[3*i +0]; sum[1] = oldcentroid[3+1] + qpoints[3*i +1]; sum[2] = oldcentroid[3+2] + qpoints[3*i +2]; sign = (diff[0]*diff[0] + diff[1]*diff[1] + diff[2]*diff[2]) < (sum[0]*sum[0] + sum[1]*sum[1] + sum[2]*sum[2]) ? -1 : +1; changed = changed || (seg[i] != 1); seg[i] = 1; centroid[3+0] += sign * qpoints[3*i +0]; centroid[3+1] += sign * qpoints[3*i +1]; centroid[3+2] += sign * qpoints[3*i +2]; seg1count++; } } centroid[0] /= seg0count; centroid[1] /= seg0count; centroid[2] /= seg0count; centroid[3+0] /= seg1count; centroid[3+1] /= seg1count; centroid[3+2] /= seg1count; /* printf("cent = %f %f %f %f %f %f\n", centroid[0],centroid[1],centroid[2],centroid[3],centroid[4],centroid[5] ); */ /* Should give error if any segment contains less than 6 elements, i.e. if( seg0count < 6 || seg1count < 6 ), since that would imply that a tensor cannot be computed for that segment. */ return changed; }