コード例 #1
0
ファイル: srefine.c プロジェクト: rondiplomatico/parmetis3.2
/*************************************************************************
* This function is the entry point of the separator refinement
**************************************************************************/
void Refine2WayNode(CtrlType *ctrl, GraphType *orggraph, GraphType *graph, float ubfactor)
{

  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->UncoarsenTmr));

  for (;;) {
    IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->RefTmr));
    if (ctrl->RType != 15)
      FM_2WayNodeBalance(ctrl, graph, ubfactor); 

    switch (ctrl->RType) {
      case 1:
        FM_2WayNodeRefine(ctrl, graph, ubfactor, 8); 
        break;
      case 2:
        FM_2WayNodeRefine_OneSided(ctrl, graph, ubfactor, 8); 
        break;
      case 3:
        FM_2WayNodeRefine(ctrl, graph, ubfactor, 8); 
        FM_2WayNodeRefine_OneSided(ctrl, graph, ubfactor, 8); 
        break;
      case 4:
        FM_2WayNodeRefine_OneSided(ctrl, graph, ubfactor, 8); 
        FM_2WayNodeRefine(ctrl, graph, ubfactor, 8); 
        break;
      case 5:
        FM_2WayNodeRefineEqWgt(ctrl, graph, 8); 
        break;
    }
    IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->RefTmr));

    if (graph == orggraph) 
      break;

    graph = graph->finer;
    IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->ProjectTmr));
    Project2WayNodePartition(ctrl, graph);
    IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->ProjectTmr));
  }

  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->UncoarsenTmr));
}
コード例 #2
0
ファイル: separator.c プロジェクト: Nasrollah/phasta
/*************************************************************************
* This function takes a bisection and constructs a minimum weight vertex 
* separator out of it. It uses an unweighted minimum-cover algorithm
* followed by node-based separator refinement.
**************************************************************************/
void ConstructMinCoverSeparator(CtrlType *ctrl, GraphType *graph, float ubfactor)
{
  int i, ii, j, jj, k, l, nvtxs, nbnd, bnvtxs[3], bnedges[2], csize;
  idxtype *xadj, *adjncy, *bxadj, *badjncy;
  idxtype *where, *bndind, *bndptr, *vmap, *ivmap, *cover;


  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  adjncy = graph->adjncy;

  nbnd = graph->nbnd;
  bndind = graph->bndind;
  bndptr = graph->bndptr;
  where = graph->where;

  vmap = idxwspacemalloc(ctrl, nvtxs);
  ivmap = idxwspacemalloc(ctrl, nbnd);
  cover = idxwspacemalloc(ctrl, nbnd);

  if (nbnd > 0) {
    /* Go through the boundary and determine the sizes of the bipartite graph */
    bnvtxs[0] = bnvtxs[1] = bnedges[0] = bnedges[1] = 0;
    for (i=0; i<nbnd; i++) {
      j = bndind[i];
      k = where[j];
      if (xadj[j+1]-xadj[j] > 0) {
        bnvtxs[k]++;
        bnedges[k] += xadj[j+1]-xadj[j];
      }
    }

    bnvtxs[2] = bnvtxs[0]+bnvtxs[1];
    bnvtxs[1] = bnvtxs[0];
    bnvtxs[0] = 0;

    bxadj = idxmalloc(bnvtxs[2]+1, "ConstructMinCoverSeparator: bxadj");
    badjncy = idxmalloc(bnedges[0]+bnedges[1]+1, "ConstructMinCoverSeparator: badjncy");

    /* Construct the ivmap and vmap */
    ASSERT(idxset(nvtxs, -1, vmap) == vmap);
    for (i=0; i<nbnd; i++) {
      j = bndind[i];
      k = where[j];
      if (xadj[j+1]-xadj[j] > 0) {
        vmap[j] = bnvtxs[k];
        ivmap[bnvtxs[k]++] = j;
      }
    }

    /* OK, go through and put the vertices of each part starting from 0 */
    bnvtxs[1] = bnvtxs[0];
    bnvtxs[0] = 0;
    bxadj[0] = l = 0;
    for (k=0; k<2; k++) {
      for (ii=0; ii<nbnd; ii++) {
        i = bndind[ii];
        if (where[i] == k && xadj[i] < xadj[i+1]) {
          for (j=xadj[i]; j<xadj[i+1]; j++) {
            jj = adjncy[j];
            if (where[jj] != k) {
              ASSERT(bndptr[jj] != -1); 
              ASSERTP(vmap[jj] != -1, ("%d %d %d\n", jj, vmap[jj], graph->bndptr[jj]));
              badjncy[l++] = vmap[jj];
            }
          }
          bxadj[++bnvtxs[k]] = l;
        }
      }
    }

    ASSERT(l <= bnedges[0]+bnedges[1]);

    MinCover(bxadj, badjncy, bnvtxs[0], bnvtxs[1], cover, &csize);

    IFSET(ctrl->dbglvl, DBG_SEPINFO,
      printf("Nvtxs: %6d, [%5d %5d], Cut: %6d, SS: [%6d %6d], Cover: %6d\n", nvtxs, graph->pwgts[0], graph->pwgts[1], graph->mincut, bnvtxs[0], bnvtxs[1]-bnvtxs[0], csize));

    for (i=0; i<csize; i++) {
      j = ivmap[cover[i]];
      where[j] = 2;
    }

    GKfree(&bxadj, &badjncy, LTERM);
  }
  else {
    IFSET(ctrl->dbglvl, DBG_SEPINFO,
      printf("Nvtxs: %6d, [%5d %5d], Cut: %6d, SS: [%6d %6d], Cover: %6d\n", nvtxs, graph->pwgts[0], graph->pwgts[1], graph->mincut, 0, 0, 0));
  }

  /* Prepare to refine the vertex separator */
  idxcopy(nvtxs, graph->where, vmap);
  GKfree(&graph->rdata, LTERM);

  Allocate2WayNodePartitionMemory(ctrl, graph);
  idxcopy(nvtxs, vmap, graph->where);
  idxwspacefree(ctrl, nvtxs+2*graph->nbnd);

  Compute2WayNodePartitionParams(ctrl, graph);

  ASSERT(CheckNodePartitionParams(graph));

  FM_2WayNodeRefine_OneSided(ctrl, graph, ubfactor, 6); 

  ASSERT(IsSeparable(graph));
}