BOOL CFlashManager::SetFlashAttributes(ElementInfo &ElemInfo, BOOL bContentEditable) { CFuncLog log(g_pLog, "CFlashManager::SetFlashAttributes()"); if (!ElemInfo.pTagDisp) return FALSE; CComQIPtr<IHTMLElement> spElem(ElemInfo.pTagDisp); if (!spElem) return FALSE; SetContentEditable(ElemInfo.pTagDisp, bContentEditable); //Flash_WMode(ElemInfo.pFlashDisp, _T("transparent")); // Content will handle Transparency? Flash_Start(ElemInfo.pFlashDisp); //SetMouseOverCallback(ElemInfo, false); SetDragEndCallback(ElemInfo, false); return TRUE; }
/** * @brief Main program * @param None * @retval None */ int main(void) { SysTick_Config(SystemCoreClock / 1000); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_Init(GPIOE, &GPIO_InitStructure); GPIO_ResetBits(GPIOE, GPIO_Pin_2); //start with gps off to make sure it activates when wanted GPIO_Start(); ADC_Start(); Flash_Start(); unsigned long tickey = getSysTick()+1000; GPIO_ResetBits(GPIOA, GPIO_Pin_10); //LCD Reset must be held 10us GPIO_SetBits(GPIOG, GPIO_Pin_3); //flash deselect GPIO_SetBits(GPIOC, GPIO_Pin_8); //flash #hold off, we have dedicated pins GPIO_SetBits(GPIOC, GPIO_Pin_1); //osc enable GPIO_ResetBits(GPIOC, GPIO_Pin_11); //xbee reset GPIO_SetBits(GPIOE, GPIO_Pin_6); //buck enable while(getSysTick()<tickey); GPIO_SetBits(GPIOE, GPIO_Pin_2); //gps on/off GPIO_SetBits(GPIOC, GPIO_Pin_11); //xbee reset GPIO_SetBits(GPIOA, GPIO_Pin_10); //LCD unreset UART4_Start(); UART5_Start(); MPU_Start(); //========================BUTTONS==================== InitButton(&button1, GPIOE, GPIO_Pin_4); #ifdef BOARD_V1 InitButton(&button2, GPIOE, GPIO_Pin_5); #else InitButton(&button2, GPIOA, GPIO_Pin_9); #endif //=======================END BUTTONS================== /* LCD Configuration */ LCD_Config(); /* Enable The LCD */ LTDC_Cmd(ENABLE); LCD_SetLayer(LCD_FOREGROUND_LAYER); GUI_ClearBackground(); int count = 0; delay(20000); #ifndef ORIGIN GUI_InitNode(1, 72, 83, 0xe8ec); GUI_InitNode(2, 86, 72, 0xfd20); GUI_InitNode(3, 'R', 'F', 0x001f); #endif int screencount = 0; #ifdef INSIDE origin_state.lati=KRESGE_LAT; origin_state.longi=KRESGE_LONG; origin_state.gpslock=1; #endif unsigned long tickey2 = getSysTick()+2000; //2 second counter unsigned long tickey3 = getSysTick()+4000; //4 second delay to check gps state /* Infinite loop */ while (1) { UpdateButton(&button1); UpdateButton(&button2); if( buttonRisingEdge(&button1)){//right GPIO_ToggleBits(GPIOC, GPIO_Pin_3);//yellow //UART_Transmit(&huart4, gps_init_msg, cmdData1Len, 500); origin_state.pingnum+=1; origin_state.pingactive=1; origin_state.whodunnit = origin_state.id; origin_state.pingclearedby = 0; } if(buttonRisingEdge(&button2)){//left //UART_Transmit(&huart4, gps_get_time_msg, cmdData2Len, 500); GPIO_ToggleBits(GPIOA, GPIO_Pin_2); //green if(origin_state.pingactive&&(origin_state.whodunnit != origin_state.id)){ origin_state.pingactive=0; } } if(origin_state.gpson>2 &&(getSysTick()>tickey3)){ GPIO_ResetBits(GPIOE, GPIO_Pin_2); delay(20000); GPIO_SetBits(GPIOE, GPIO_Pin_2); delay(20000); char setme[80]; sprintf(setme, "%s%c%c", gps_init_msg, 0x0D, 0x0A); UART_Transmit(UART4, setme, sizeof(setme)/sizeof(setme[0]), 5000); origin_state.gpson=0; tickey3+=4000; } if(getReset()){ NVIC_SystemReset(); } #ifdef ORIGIN // long actHeading=0; // inv_get_sensor_type_heading(&actHeading, &headingAcc, &headingTime); // degrees=((double)actHeading)/((double)65536.0); // origin_state.heading=degrees; long actHeading[3] = {0,0,0}; inv_get_sensor_type_euler(actHeading, &headingAcc, &headingTime); degrees=((double)actHeading[2])/((double)65536.0); //origin_state.heading=degrees; long tempyraiture; mpu_get_temperature(&tempyraiture, NULL); // short garbage[3]; // mpu_get_compass_reg(garbage, NULL); // double compass_angle = atan2(-garbage[0], -garbage[1])*180/3.1415; // //origin_state.heading = .9*degrees + .1*compass_angle; // origin_state.heading = compass_angle; #endif if(getSysTick()>tickey2){ tickey2 +=2000; sendMessage(); } processGPS(); processXbee(); if(getSysTick()>tickey){ tickey +=53; GPIO_ToggleBits(GPIOC, GPIO_Pin_3); #ifndef ORIGIN GUI_UpdateNode(1, degrees*3.1415/180.0+3.14*1.25, screencount, (screencount>10), 0); GUI_UpdateNode(2, degrees*3.1415/180.0+3.14, screencount, (screencount>30), 0); GUI_UpdateNode(3, degrees*3.1415/180.0+0, screencount, (screencount>50), 0); #else GUI_UpdateNodes(); #endif GUI_UpdateArrow(-degrees*3.1415/180.0); GUI_UpdateBattery(getBatteryStatus()); GUI_DrawTime(); if (count > 50){ GUI_UpdateBottomButton(1, 0xe8ec); } else { GUI_UpdateBottomButton(0, 0); } GUI_Redraw(); screencount += 1; #ifndef ORIGIN degrees += 3.6; if (screencount%100 == 0){ screencount = 0; degrees = 0; } #else if (screencount%100 == 0){ screencount = 0; } #endif } //Sensors_I2C_ReadRegister((unsigned char)0x68, (unsigned char)MPU_WHOAMI, 1, inImu); //==================================IMU================================ unsigned long sensor_timestamp; int new_data = 0; get_tick_count(×tamp); #ifdef COMPASS_ENABLED /* We're not using a data ready interrupt for the compass, so we'll * make our compass reads timer-based instead. */ if ((timestamp > hal.next_compass_ms) && !hal.lp_accel_mode && hal.new_gyro && (hal.sensors & COMPASS_ON)) { hal.next_compass_ms = timestamp + COMPASS_READ_MS; new_compass = 1; } #endif /* Temperature data doesn't need to be read with every gyro sample. * Let's make them timer-based like the compass reads. */ if (timestamp > hal.next_temp_ms) { hal.next_temp_ms = timestamp + TEMP_READ_MS; new_temp = 1; } if (hal.motion_int_mode) { /* Enable motion interrupt. */ mpu_lp_motion_interrupt(500, 1, 5); /* Notify the MPL that contiguity was broken. */ inv_accel_was_turned_off(); inv_gyro_was_turned_off(); inv_compass_was_turned_off(); inv_quaternion_sensor_was_turned_off(); /* Wait for the MPU interrupt. */ while (!hal.new_gyro) {} /* Restore the previous sensor configuration. */ mpu_lp_motion_interrupt(0, 0, 0); hal.motion_int_mode = 0; } if (!hal.sensors || !hal.new_gyro) { continue; } if (hal.new_gyro && hal.lp_accel_mode) { short accel_short[3]; long accel[3]; mpu_get_accel_reg(accel_short, &sensor_timestamp); accel[0] = (long)accel_short[0]; accel[1] = (long)accel_short[1]; accel[2] = (long)accel_short[2]; inv_build_accel(accel, 0, sensor_timestamp); new_data = 1; hal.new_gyro = 0; } else if (hal.new_gyro && hal.dmp_on) { short gyro[3], accel_short[3], sensors; unsigned char more; long accel[3], quat[4], temperature; /* This function gets new data from the FIFO when the DMP is in * use. The FIFO can contain any combination of gyro, accel, * quaternion, and gesture data. The sensors parameter tells the * caller which data fields were actually populated with new data. * For example, if sensors == (INV_XYZ_GYRO | INV_WXYZ_QUAT), then * the FIFO isn't being filled with accel data. * The driver parses the gesture data to determine if a gesture * event has occurred; on an event, the application will be notified * via a callback (assuming that a callback function was properly * registered). The more parameter is non-zero if there are * leftover packets in the FIFO. */ dmp_read_fifo(gyro, accel_short, quat, &sensor_timestamp, &sensors, &more); if (!more) hal.new_gyro = 0; if (sensors & INV_XYZ_GYRO) { /* Push the new data to the MPL. */ inv_build_gyro(gyro, sensor_timestamp); new_data = 1; if (new_temp) { new_temp = 0; /* Temperature only used for gyro temp comp. */ mpu_get_temperature(&temperature, &sensor_timestamp); inv_build_temp(temperature, sensor_timestamp); } } if (sensors & INV_XYZ_ACCEL) { accel[0] = (long)accel_short[0]; accel[1] = (long)accel_short[1]; accel[2] = (long)accel_short[2]; inv_build_accel(accel, 0, sensor_timestamp); new_data = 1; } if (sensors & INV_WXYZ_QUAT) { inv_build_quat(quat, 0, sensor_timestamp); new_data = 1; } } else if (hal.new_gyro) { short gyro[3], accel_short[3]; unsigned char sensors, more; long accel[3], temperature; /* This function gets new data from the FIFO. The FIFO can contain * gyro, accel, both, or neither. The sensors parameter tells the * caller which data fields were actually populated with new data. * For example, if sensors == INV_XYZ_GYRO, then the FIFO isn't * being filled with accel data. The more parameter is non-zero if * there are leftover packets in the FIFO. The HAL can use this * information to increase the frequency at which this function is * called. */ hal.new_gyro = 0; mpu_read_fifo(gyro, accel_short, &sensor_timestamp, &sensors, &more); if (more) hal.new_gyro = 1; if (sensors & INV_XYZ_GYRO) { /* Push the new data to the MPL. */ inv_build_gyro(gyro, sensor_timestamp); new_data = 1; if (new_temp) { new_temp = 0; /* Temperature only used for gyro temp comp. */ mpu_get_temperature(&temperature, &sensor_timestamp); inv_build_temp(temperature, sensor_timestamp); } } if (sensors & INV_XYZ_ACCEL) { accel[0] = (long)accel_short[0]; accel[1] = (long)accel_short[1]; accel[2] = (long)accel_short[2]; inv_build_accel(accel, 0, sensor_timestamp); new_data = 1; } } #ifdef COMPASS_ENABLED if (new_compass) { short compass_short[3]; long compass[3]; new_compass = 0; /* For any MPU device with an AKM on the auxiliary I2C bus, the raw * magnetometer registers are copied to special gyro registers. */ if (!mpu_get_compass_reg(compass_short, &sensor_timestamp)) { compass[0] = (long)compass_short[0]; compass[1] = (long)compass_short[1]; compass[2] = (long)compass_short[2]; /* NOTE: If using a third-party compass calibration library, * pass in the compass data in uT * 2^16 and set the second * parameter to INV_CALIBRATED | acc, where acc is the * accuracy from 0 to 3. */ inv_build_compass(compass, 0, sensor_timestamp); } new_data = 1; } #endif if (new_data) { inv_execute_on_data(); /* This function reads bias-compensated sensor data and sensor * fusion outputs from the MPL. The outputs are formatted as seen * in eMPL_outputs.c. This function only needs to be called at the * rate requested by the host. */ read_from_mpl(); } //========================================IMU================================== } }