void processRcStickPositions(throttleStatus_e throttleStatus) { static uint8_t rcDelayCommand; // this indicates the number of time (multiple of RC measurement at 50Hz) the sticks must be maintained to run or switch off motors static uint8_t rcSticks; // this hold sticks position for command combos static uint8_t rcDisarmTicks; // this is an extra guard for disarming through switch to prevent that one frame can disarm it uint8_t stTmp = 0; int i; // ------------------ STICKS COMMAND HANDLER -------------------- // checking sticks positions for (i = 0; i < 4; i++) { stTmp >>= 2; if (rcData[i] > rxConfig()->mincheck) stTmp |= 0x80; // check for MIN if (rcData[i] < rxConfig()->maxcheck) stTmp |= 0x40; // check for MAX } if (stTmp == rcSticks) { if (rcDelayCommand < 250) rcDelayCommand++; } else rcDelayCommand = 0; rcSticks = stTmp; // perform actions if (!isUsingSticksToArm) { if (IS_RC_MODE_ACTIVE(BOXARM)) { rcDisarmTicks = 0; // Arming via ARM BOX tryArm(); } else { // Disarming via ARM BOX resetArmingDisabled(); if (ARMING_FLAG(ARMED) && rxIsReceivingSignal() && !failsafeIsActive() ) { rcDisarmTicks++; if (rcDisarmTicks > 3) { if (armingConfig()->disarm_kill_switch) { disarm(); } else if (throttleStatus == THROTTLE_LOW) { disarm(); } } } } } if (rcDelayCommand != 20) { return; } if (isUsingSticksToArm) { // Disarm on throttle down + yaw if (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_CE) { if (ARMING_FLAG(ARMED)) disarm(); else { beeper(BEEPER_DISARM_REPEAT); // sound tone while stick held rcDelayCommand = 0; // reset so disarm tone will repeat } } } if (ARMING_FLAG(ARMED)) { // actions during armed return; } // actions during not armed i = 0; if (rcSticks == THR_LO + YAW_LO + PIT_LO + ROL_CE) { // GYRO calibration gyroStartCalibration(false); #ifdef GPS if (feature(FEATURE_GPS)) { GPS_reset_home_position(); } #endif #ifdef BARO if (sensors(SENSOR_BARO)) baroSetCalibrationCycles(10); // calibrate baro to new ground level (10 * 25 ms = ~250 ms non blocking) #endif return; } if (feature(FEATURE_INFLIGHT_ACC_CAL) && (rcSticks == THR_LO + YAW_LO + PIT_HI + ROL_HI)) { // Inflight ACC Calibration handleInflightCalibrationStickPosition(); return; } // Multiple configuration profiles if (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_LO) // ROLL left -> Profile 1 i = 1; else if (rcSticks == THR_LO + YAW_LO + PIT_HI + ROL_CE) // PITCH up -> Profile 2 i = 2; else if (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_HI) // ROLL right -> Profile 3 i = 3; if (i) { changePidProfile(i - 1); return; } if (rcSticks == THR_LO + YAW_LO + PIT_LO + ROL_HI) { saveConfigAndNotify(); } if (isUsingSticksToArm) { if (rcSticks == THR_LO + YAW_HI + PIT_CE + ROL_CE) { // Arm via YAW tryArm(); return; } else { resetArmingDisabled(); } } if (rcSticks == THR_HI + YAW_LO + PIT_LO + ROL_CE) { // Calibrating Acc accSetCalibrationCycles(CALIBRATING_ACC_CYCLES); return; } if (rcSticks == THR_HI + YAW_HI + PIT_LO + ROL_CE) { // Calibrating Mag ENABLE_STATE(CALIBRATE_MAG); return; } // Accelerometer Trim rollAndPitchTrims_t accelerometerTrimsDelta; memset(&accelerometerTrimsDelta, 0, sizeof(accelerometerTrimsDelta)); bool shouldApplyRollAndPitchTrimDelta = false; if (rcSticks == THR_HI + YAW_CE + PIT_HI + ROL_CE) { accelerometerTrimsDelta.values.pitch = 2; shouldApplyRollAndPitchTrimDelta = true; } else if (rcSticks == THR_HI + YAW_CE + PIT_LO + ROL_CE) { accelerometerTrimsDelta.values.pitch = -2; shouldApplyRollAndPitchTrimDelta = true; } else if (rcSticks == THR_HI + YAW_CE + PIT_CE + ROL_HI) { accelerometerTrimsDelta.values.roll = 2; shouldApplyRollAndPitchTrimDelta = true; } else if (rcSticks == THR_HI + YAW_CE + PIT_CE + ROL_LO) { accelerometerTrimsDelta.values.roll = -2; shouldApplyRollAndPitchTrimDelta = true; } if (shouldApplyRollAndPitchTrimDelta) { applyAndSaveAccelerometerTrimsDelta(&accelerometerTrimsDelta); rcDelayCommand = 0; // allow autorepetition return; } #ifdef USE_DASHBOARD if (rcSticks == THR_LO + YAW_CE + PIT_HI + ROL_LO) { dashboardDisablePageCycling(); } if (rcSticks == THR_LO + YAW_CE + PIT_HI + ROL_HI) { dashboardEnablePageCycling(); } #endif #ifdef VTX_CONTROL if (rcSticks == THR_HI + YAW_LO + PIT_CE + ROL_HI) { vtxIncrementBand(); } if (rcSticks == THR_HI + YAW_LO + PIT_CE + ROL_LO) { vtxDecrementBand(); } if (rcSticks == THR_HI + YAW_HI + PIT_CE + ROL_HI) { vtxIncrementChannel(); } if (rcSticks == THR_HI + YAW_HI + PIT_CE + ROL_LO) { vtxDecrementChannel(); } #endif }
void loop(void) { static uint8_t rcDelayCommand; // this indicates the number of time (multiple of RC measurement at 50Hz) the sticks must be maintained to run or switch off motors uint8_t axis, i; int16_t error, errorAngle; int16_t delta, deltaSum; int16_t PTerm, ITerm, PTermACC, ITermACC = 0, PTermGYRO = 0, ITermGYRO = 0, DTerm; static int16_t lastGyro[3] = { 0, 0, 0 }; static int16_t delta1[3], delta2[3]; static int16_t errorGyroI[3] = { 0, 0, 0 }; static int16_t errorAngleI[2] = { 0, 0 }; static uint32_t rcTime = 0; static int16_t initialThrottleHold; static uint32_t loopTime; uint16_t auxState = 0; int16_t prop; // this will return false if spektrum is disabled. shrug. if (spektrumFrameComplete()) computeRC(); if ((int32_t)(currentTime - rcTime) >= 0) { // 50Hz rcTime = currentTime + 20000; // TODO clean this up. computeRC should handle this check if (!feature(FEATURE_SPEKTRUM)) computeRC(); // Failsafe routine if (feature(FEATURE_FAILSAFE)) { if (failsafeCnt > (5 * cfg.failsafe_delay) && f.ARMED) { // Stabilize, and set Throttle to specified level for (i = 0; i < 3; i++) rcData[i] = cfg.midrc; // after specified guard time after RC signal is lost (in 0.1sec) rcData[THROTTLE] = cfg.failsafe_throttle; if (failsafeCnt > 5 * (cfg.failsafe_delay + cfg.failsafe_off_delay)) { // Turn OFF motors after specified Time (in 0.1sec) f.ARMED = 0; // This will prevent the copter to automatically rearm if failsafe shuts it down and prevents f.OK_TO_ARM = 0; // to restart accidentely by just reconnect to the tx - you will have to switch off first to rearm } failsafeEvents++; } if (failsafeCnt > (5 * cfg.failsafe_delay) && !f.ARMED) { // Turn off "Ok To arm to prevent the motors from spinning after repowering the RX with low throttle and aux to arm f.ARMED = 0; // This will prevent the copter to automatically rearm if failsafe shuts it down and prevents f.OK_TO_ARM = 0; // to restart accidentely by just reconnect to the tx - you will have to switch off first to rearm } failsafeCnt++; } if (rcData[THROTTLE] < cfg.mincheck) { errorGyroI[ROLL] = 0; errorGyroI[PITCH] = 0; errorGyroI[YAW] = 0; errorAngleI[ROLL] = 0; errorAngleI[PITCH] = 0; rcDelayCommand++; if (rcData[YAW] < cfg.mincheck && rcData[PITCH] < cfg.mincheck && !f.ARMED) { if (rcDelayCommand == 20) { calibratingG = 1000; if (feature(FEATURE_GPS)) GPS_reset_home_position(); } } else if (feature(FEATURE_INFLIGHT_ACC_CAL) && (!f.ARMED && rcData[YAW] < cfg.mincheck && rcData[PITCH] > cfg.maxcheck && rcData[ROLL] > cfg.maxcheck)) { if (rcDelayCommand == 20) { if (AccInflightCalibrationMeasurementDone) { // trigger saving into eeprom after landing AccInflightCalibrationMeasurementDone = 0; AccInflightCalibrationSavetoEEProm = 1; } else { AccInflightCalibrationArmed = !AccInflightCalibrationArmed; if (AccInflightCalibrationArmed) { toggleBeep = 2; } else { toggleBeep = 3; } } } } else if (cfg.activate[BOXARM] > 0) { if (rcOptions[BOXARM] && f.OK_TO_ARM) { // TODO: feature(FEATURE_FAILSAFE) && failsafeCnt == 0 f.ARMED = 1; headFreeModeHold = heading; } else if (f.ARMED) f.ARMED = 0; rcDelayCommand = 0; } else if ((rcData[YAW] < cfg.mincheck || (cfg.retarded_arm == 1 && rcData[ROLL] < cfg.mincheck)) && f.ARMED) { if (rcDelayCommand == 20) f.ARMED = 0; // rcDelayCommand = 20 => 20x20ms = 0.4s = time to wait for a specific RC command to be acknowledged } else if ((rcData[YAW] > cfg.maxcheck || (rcData[ROLL] > cfg.maxcheck && cfg.retarded_arm == 1)) && rcData[PITCH] < cfg.maxcheck && !f.ARMED && calibratingG == 0 && f.ACC_CALIBRATED) { if (rcDelayCommand == 20) { f.ARMED = 1; headFreeModeHold = heading; } } else rcDelayCommand = 0; } else if (rcData[THROTTLE] > cfg.maxcheck && !f.ARMED) { if (rcData[YAW] < cfg.mincheck && rcData[PITCH] < cfg.mincheck) { // throttle=max, yaw=left, pitch=min if (rcDelayCommand == 20) calibratingA = 400; rcDelayCommand++; } else if (rcData[YAW] > cfg.maxcheck && rcData[PITCH] < cfg.mincheck) { // throttle=max, yaw=right, pitch=min if (rcDelayCommand == 20) f.CALIBRATE_MAG = 1; // MAG calibration request rcDelayCommand++; } else if (rcData[PITCH] > cfg.maxcheck) { cfg.angleTrim[PITCH] += 2; writeParams(1); #ifdef LEDRING if (feature(FEATURE_LED_RING)) ledringBlink(); #endif } else if (rcData[PITCH] < cfg.mincheck) { cfg.angleTrim[PITCH] -= 2; writeParams(1); #ifdef LEDRING if (feature(FEATURE_LED_RING)) ledringBlink(); #endif } else if (rcData[ROLL] > cfg.maxcheck) { cfg.angleTrim[ROLL] += 2; writeParams(1); #ifdef LEDRING if (feature(FEATURE_LED_RING)) ledringBlink(); #endif } else if (rcData[ROLL] < cfg.mincheck) { cfg.angleTrim[ROLL] -= 2; writeParams(1); #ifdef LEDRING if (feature(FEATURE_LED_RING)) ledringBlink(); #endif } else { rcDelayCommand = 0; } } if (feature(FEATURE_INFLIGHT_ACC_CAL)) { if (AccInflightCalibrationArmed && f.ARMED && rcData[THROTTLE] > cfg.mincheck && !rcOptions[BOXARM]) { // Copter is airborne and you are turning it off via boxarm : start measurement InflightcalibratingA = 50; AccInflightCalibrationArmed = 0; } if (rcOptions[BOXPASSTHRU]) { // Use the Passthru Option to activate : Passthru = TRUE Meausrement started, Land and passtrhu = 0 measurement stored if (!AccInflightCalibrationActive && !AccInflightCalibrationMeasurementDone) InflightcalibratingA = 50; } else if (AccInflightCalibrationMeasurementDone && !f.ARMED) { AccInflightCalibrationMeasurementDone = 0; AccInflightCalibrationSavetoEEProm = 1; } } for(i = 0; i < 4; i++) auxState |= (rcData[AUX1 + i] < 1300) << (3 * i) | (1300 < rcData[AUX1 + i] && rcData[AUX1 + i] < 1700) << (3 * i + 1) | (rcData[AUX1 + i] > 1700) << (3 * i + 2); for(i = 0; i < CHECKBOXITEMS; i++) rcOptions[i] = (auxState & cfg.activate[i]) > 0; // note: if FAILSAFE is disable, failsafeCnt > 5*FAILSAVE_DELAY is always false if ((rcOptions[BOXANGLE] || (failsafeCnt > 5 * cfg.failsafe_delay)) && (sensors(SENSOR_ACC))) { // bumpless transfer to Level mode if (!f.ANGLE_MODE) { errorAngleI[ROLL] = 0; errorAngleI[PITCH] = 0; f.ANGLE_MODE = 1; } } else { f.ANGLE_MODE = 0; // failsave support } if (rcOptions[BOXHORIZON]) { if (!f.HORIZON_MODE) { errorAngleI[ROLL] = 0; errorAngleI[PITCH] = 0; f.HORIZON_MODE = 1; } } else { f.HORIZON_MODE = 0; } if ((rcOptions[BOXARM]) == 0) f.OK_TO_ARM = 1; if (f.ANGLE_MODE || f.HORIZON_MODE) { LED1_ON; } else { LED1_OFF; } #ifdef BARO if (sensors(SENSOR_BARO)) { if (rcOptions[BOXBARO]) { if (!f.BARO_MODE) { f.BARO_MODE = 1; AltHold = EstAlt; initialThrottleHold = rcCommand[THROTTLE]; errorAltitudeI = 0; BaroPID = 0; } } else f.BARO_MODE = 0; } #endif #ifdef MAG if (sensors(SENSOR_MAG)) { if (rcOptions[BOXMAG]) { if (!f.MAG_MODE) { f.MAG_MODE = 1; magHold = heading; } } else f.MAG_MODE = 0; if (rcOptions[BOXHEADFREE]) { if (!f.HEADFREE_MODE) { f.HEADFREE_MODE = 1; } } else { f.HEADFREE_MODE = 0; } if (rcOptions[BOXHEADADJ]) { headFreeModeHold = heading; // acquire new heading } } #endif if (sensors(SENSOR_GPS)) { if (f.GPS_FIX && GPS_numSat >= 5) { if (rcOptions[BOXGPSHOME]) { if (!f.GPS_HOME_MODE) { f.GPS_HOME_MODE = 1; GPS_set_next_wp(&GPS_home[LAT], &GPS_home[LON]); nav_mode = NAV_MODE_WP; } } else { f.GPS_HOME_MODE = 0; } if (rcOptions[BOXGPSHOLD]) { if (!f.GPS_HOLD_MODE) { f.GPS_HOLD_MODE = 1; GPS_hold[LAT] = GPS_coord[LAT]; GPS_hold[LON] = GPS_coord[LON]; GPS_set_next_wp(&GPS_hold[LAT], &GPS_hold[LON]); nav_mode = NAV_MODE_POSHOLD; } } else { f.GPS_HOLD_MODE = 0; } } } if (rcOptions[BOXPASSTHRU]) { f.PASSTHRU_MODE = 1; } else { f.PASSTHRU_MODE = 0; } if (cfg.mixerConfiguration == MULTITYPE_FLYING_WING || cfg.mixerConfiguration == MULTITYPE_AIRPLANE) { f.HEADFREE_MODE = 0; } } else { // not in rc loop static int8_t taskOrder = 0; // never call all function in the same loop, to avoid high delay spikes switch (taskOrder++ % 4) { case 0: #ifdef MAG if (sensors(SENSOR_MAG)) Mag_getADC(); #endif break; case 1: #ifdef BARO if (sensors(SENSOR_BARO)) Baro_update(); #endif break; case 2: #ifdef BARO if (sensors(SENSOR_BARO)) getEstimatedAltitude(); #endif break; case 3: #ifdef SONAR if (sensors(SENSOR_SONAR)) { Sonar_update(); debug[2] = sonarAlt; } #endif break; default: taskOrder = 0; break; } } currentTime = micros(); if (cfg.looptime == 0 || (int32_t)(currentTime - loopTime) >= 0) { loopTime = currentTime + cfg.looptime; computeIMU(); // Measure loop rate just afer reading the sensors currentTime = micros(); cycleTime = (int32_t)(currentTime - previousTime); previousTime = currentTime; #ifdef MPU6050_DMP mpu6050DmpLoop(); #endif #ifdef MAG if (sensors(SENSOR_MAG)) { if (abs(rcCommand[YAW]) < 70 && f.MAG_MODE) { int16_t dif = heading - magHold; if (dif <= -180) dif += 360; if (dif >= +180) dif -= 360; if (f.SMALL_ANGLES_25) rcCommand[YAW] -= dif * cfg.P8[PIDMAG] / 30; // 18 deg } else magHold = heading; } #endif #ifdef BARO if (sensors(SENSOR_BARO)) { if (f.BARO_MODE) { if (abs(rcCommand[THROTTLE] - initialThrottleHold) > cfg.alt_hold_throttle_neutral) { f.BARO_MODE = 0; // so that a new althold reference is defined } rcCommand[THROTTLE] = initialThrottleHold + BaroPID; } } #endif if (sensors(SENSOR_GPS)) { // Check that we really need to navigate ? if ((!f.GPS_HOME_MODE && !f.GPS_HOLD_MODE) || !f.GPS_FIX_HOME) { // If not. Reset nav loops and all nav related parameters GPS_reset_nav(); } else { float sin_yaw_y = sinf(heading * 0.0174532925f); float cos_yaw_x = cosf(heading * 0.0174532925f); if (cfg.nav_slew_rate) { nav_rated[LON] += constrain(wrap_18000(nav[LON] - nav_rated[LON]), -cfg.nav_slew_rate, cfg.nav_slew_rate); // TODO check this on uint8 nav_rated[LAT] += constrain(wrap_18000(nav[LAT] - nav_rated[LAT]), -cfg.nav_slew_rate, cfg.nav_slew_rate); GPS_angle[ROLL] = (nav_rated[LON] * cos_yaw_x - nav_rated[LAT] * sin_yaw_y) / 10; GPS_angle[PITCH] = (nav_rated[LON] * sin_yaw_y + nav_rated[LAT] * cos_yaw_x) / 10; } else { GPS_angle[ROLL] = (nav[LON] * cos_yaw_x - nav[LAT] * sin_yaw_y) / 10; GPS_angle[PITCH] = (nav[LON] * sin_yaw_y + nav[LAT] * cos_yaw_x) / 10; } } } // **** PITCH & ROLL & YAW PID **** prop = max(abs(rcCommand[PITCH]), abs(rcCommand[ROLL])); // range [0;500] for (axis = 0; axis < 3; axis++) { if ((f.ANGLE_MODE || f.HORIZON_MODE) && axis < 2) { // MODE relying on ACC // 50 degrees max inclination errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -500, +500) - angle[axis] + cfg.angleTrim[axis]; #ifdef LEVEL_PDF PTermACC = -(int32_t)angle[axis] * cfg.P8[PIDLEVEL] / 100; #else PTermACC = (int32_t)errorAngle * cfg.P8[PIDLEVEL] / 100; // 32 bits is needed for calculation: errorAngle*P8[PIDLEVEL] could exceed 32768 16 bits is ok for result #endif PTermACC = constrain(PTermACC, -cfg.D8[PIDLEVEL] * 5, +cfg.D8[PIDLEVEL] * 5); errorAngleI[axis] = constrain(errorAngleI[axis] + errorAngle, -10000, +10000); // WindUp ITermACC = ((int32_t)errorAngleI[axis] * cfg.I8[PIDLEVEL]) >> 12; } if (!f.ANGLE_MODE || axis == 2) { // MODE relying on GYRO or YAW axis error = (int32_t)rcCommand[axis] * 10 * 8 / cfg.P8[axis]; error -= gyroData[axis]; PTermGYRO = rcCommand[axis]; errorGyroI[axis] = constrain(errorGyroI[axis] + error, -16000, +16000); // WindUp if (abs(gyroData[axis]) > 640) errorGyroI[axis] = 0; ITermGYRO = (errorGyroI[axis] / 125 * cfg.I8[axis]) >> 6; }
void GPS_NewData(void) { static uint32_t nav_loopTimer; uint32_t dist; int32_t dir; uint8_t axis; int16_t speed; uint16_t c = GPSBufferAvailable(); while (c--) { if (GPS_newFrame(GPSBufferRead())) { if (GPS_Info.GPS_update == 1) GPS_Info.GPS_update = 0; else GPS_Info.GPS_update = 1; if (fgps.GPS_FIX && GPS_Info.GPS_numSat >= 5) { if (!checkArm()) { fgps.GPS_FIX_HOME = 0; } if (!fgps.GPS_FIX_HOME && checkArm()) { GPS_reset_home_position(); } //Apply moving average filter to GPS data #if defined(GPS_FILTERING) GPS_filter_index = (GPS_filter_index+1) % GPS_FILTER_VECTOR_LENGTH; for (axis = 0; axis< 2; axis++) { GPS_data[axis] = GPS_Info.GPS_coord[axis]; //latest unfiltered data is in GPS_latitude and GPS_longitude GPS_degree[axis] = GPS_data[axis] / 10000000; // get the degree to assure the sum fits to the int32_t // How close we are to a degree line ? its the first three digits from the fractions of degree // later we use it to Check if we are close to a degree line, if yes, disable averaging, fraction3[axis] = (GPS_data[axis]- GPS_degree[axis]*10000000) / 10000; GPS_filter_sum[axis] -= GPS_filter[axis][GPS_filter_index]; GPS_filter[axis][GPS_filter_index] = GPS_data[axis] - (GPS_degree[axis]*10000000); GPS_filter_sum[axis] += GPS_filter[axis][GPS_filter_index]; GPS_filtered[axis] = GPS_filter_sum[axis] / GPS_FILTER_VECTOR_LENGTH + (GPS_degree[axis]*10000000); if ( nav_mode == NAV_MODE_POSHOLD) { //we use gps averaging only in poshold mode... if ( fraction3[axis]>1 && fraction3[axis]<999 ) GPS_Info.GPS_coord[axis] = GPS_filtered[axis]; } } #endif //Time for calculating x,y speed and navigation pids dTnav = (float)(getTickCount() - nav_loopTimer)/ 10000.0f; nav_loopTimer = getTickCount(); // prevent runup from bad GPS dTnav = min(dTnav, 1.0f); //calculate distance and bearings for gui and other stuff continously - From home to copter GPS_distance_cm_bearing(&GPS_Info.GPS_coord[LAT],&GPS_Info.GPS_coord[LON],&GPS_Info.GPS_home[LAT],&GPS_Info.GPS_home[LON],&dist,&dir); GPS_Info.GPS_distanceToHome = dist/100; GPS_Info.GPS_directionToHome = dir/100; if (!fgps.GPS_FIX_HOME) { //If we don't have home set, do not display anything GPS_Info.GPS_distanceToHome = 0; GPS_Info.GPS_directionToHome = 0; } //calculate the current velocity based on gps coordinates continously to get a valid speed at the moment when we start navigating GPS_calc_velocity(); if (fgps.GPS_HOLD_MODE || fgps.GPS_HOME_MODE){ //ok we are navigating //do gps nav calculations here, these are common for nav and poshold #if defined(GPS_LEAD_FILTER) GPS_distance_cm_bearing(&GPS_coord_lead[LAT],&GPS_coord_lead[LON],&GPS_WP[LAT],&GPS_WP[LON],&wp_distance,&target_bearing); GPS_calc_location_error(&GPS_WP[LAT],&GPS_WP[LON],&GPS_coord_lead[LAT],&GPS_coord_lead[LON]); #else GPS_distance_cm_bearing(&GPS_coord[LAT],&GPS_coord[LON],&GPS_WP[LAT],&GPS_WP[LON],&wp_distance,&target_bearing); GPS_calc_location_error(&GPS_WP[LAT],&GPS_WP[LON],&GPS_coord[LAT],&GPS_coord[LON]); #endif switch (nav_mode) { case NAV_MODE_POSHOLD: //Desired output is in nav_lat and nav_lon where 1deg inclination is 100 GPS_calc_poshold(); break; case NAV_MODE_WP: speed = GPS_calc_desired_speed(NAV_SPEED_MAX, NAV_SLOW_NAV); //slow navigation // use error as the desired rate towards the target //Desired output is in nav_lat and nav_lon where 1deg inclination is 100 GPS_calc_nav_rate(speed); //Tail control if (NAV_CONTROLS_HEADING) { if (NAV_TAIL_FIRST) { magHold = wrap_18000(nav_bearing-18000)/100; } else { magHold = nav_bearing/100; } } // Are we there yet ?(within 2 meters of the destination) if ((wp_distance <= GPS_wp_radius) || check_missed_wp()){ //if yes switch to poshold mode nav_mode = NAV_MODE_POSHOLD; if (NAV_SET_TAKEOFF_HEADING) { magHold = nav_takeoff_bearing; } } break; } } //end of gps calcs } } } }
void onGpsNewData(void) { int axis; static uint32_t nav_loopTimer; uint16_t speed; if (!(STATE(GPS_FIX) && GPS_numSat >= 5)) { return; } if (!ARMING_FLAG(ARMED)) DISABLE_STATE(GPS_FIX_HOME); if (!STATE(GPS_FIX_HOME) && ARMING_FLAG(ARMED)) GPS_reset_home_position(); // Apply moving average filter to GPS data #if defined(GPS_FILTERING) GPS_filter_index = (GPS_filter_index + 1) % GPS_FILTER_VECTOR_LENGTH; for (axis = 0; axis < 2; axis++) { GPS_read[axis] = GPS_coord[axis]; // latest unfiltered data is in GPS_latitude and GPS_longitude GPS_degree[axis] = GPS_read[axis] / 10000000; // get the degree to assure the sum fits to the int32_t // How close we are to a degree line ? its the first three digits from the fractions of degree // later we use it to Check if we are close to a degree line, if yes, disable averaging, fraction3[axis] = (GPS_read[axis] - GPS_degree[axis] * 10000000) / 10000; GPS_filter_sum[axis] -= GPS_filter[axis][GPS_filter_index]; GPS_filter[axis][GPS_filter_index] = GPS_read[axis] - (GPS_degree[axis] * 10000000); GPS_filter_sum[axis] += GPS_filter[axis][GPS_filter_index]; GPS_filtered[axis] = GPS_filter_sum[axis] / GPS_FILTER_VECTOR_LENGTH + (GPS_degree[axis] * 10000000); if (nav_mode == NAV_MODE_POSHOLD) { // we use gps averaging only in poshold mode... if (fraction3[axis] > 1 && fraction3[axis] < 999) GPS_coord[axis] = GPS_filtered[axis]; } } #endif // // Calculate time delta for navigation loop, range 0-1.0f, in seconds // // Time for calculating x,y speed and navigation pids dTnav = (float)(millis() - nav_loopTimer) / 1000.0f; nav_loopTimer = millis(); // prevent runup from bad GPS dTnav = min(dTnav, 1.0f); GPS_calculateDistanceAndDirectionToHome(); // calculate the current velocity based on gps coordinates continously to get a valid speed at the moment when we start navigating GPS_calc_velocity(); if (FLIGHT_MODE(GPS_HOLD_MODE) || FLIGHT_MODE(GPS_HOME_MODE)) { // we are navigating // gps nav calculations, these are common for nav and poshold GPS_distance_cm_bearing(&GPS_coord[LAT], &GPS_coord[LON], &GPS_WP[LAT], &GPS_WP[LON], &wp_distance, &target_bearing); GPS_calc_location_error(&GPS_WP[LAT], &GPS_WP[LON], &GPS_coord[LAT], &GPS_coord[LON]); switch (nav_mode) { case NAV_MODE_POSHOLD: // Desired output is in nav_lat and nav_lon where 1deg inclination is 100 GPS_calc_poshold(); break; case NAV_MODE_WP: speed = GPS_calc_desired_speed(gpsProfile->nav_speed_max, NAV_SLOW_NAV); // slow navigation // use error as the desired rate towards the target // Desired output is in nav_lat and nav_lon where 1deg inclination is 100 GPS_calc_nav_rate(speed); // Tail control if (gpsProfile->nav_controls_heading) { if (NAV_TAIL_FIRST) { magHold = wrap_18000(nav_bearing - 18000) / 100; } else { magHold = nav_bearing / 100; } } // Are we there yet ?(within x meters of the destination) if ((wp_distance <= gpsProfile->gps_wp_radius) || check_missed_wp()) { // if yes switch to poshold mode nav_mode = NAV_MODE_POSHOLD; if (NAV_SET_TAKEOFF_HEADING) { magHold = nav_takeoff_bearing; } } break; default: break; } } //end of gps calcs }
uint8_t GPS_NewData(void) { uint8_t axis; #if defined(I2C_GPS) static uint8_t _i2c_gps_status; //Do not use i2c_writereg, since writing a register does not work if an i2c_stop command is issued at the end //Still investigating, however with separated i2c_repstart and i2c_write commands works... and did not caused i2c errors on a long term test. GPS_numSat = (_i2c_gps_status & 0xf0) >> 4; _i2c_gps_status = i2c_readReg(I2C_GPS_ADDRESS,I2C_GPS_STATUS_00); //Get status register uint8_t *varptr; #if defined(I2C_GPS_SONAR) i2c_rep_start(I2C_GPS_ADDRESS<<1); i2c_write(I2C_GPS_SONAR_ALT); i2c_rep_start((I2C_GPS_ADDRESS<<1)|1); varptr = (uint8_t *)&sonarAlt; // altitude (in cm? maybe) *varptr++ = i2c_readAck(); *varptr = i2c_readNak(); #endif if (_i2c_gps_status & I2C_GPS_STATUS_3DFIX) { //Check is we have a good 3d fix (numsats>5) f.GPS_FIX = 1; if (_i2c_gps_status & I2C_GPS_STATUS_NEW_DATA) { //Check about new data GPS_Frame = 1; i2c_rep_start(I2C_GPS_ADDRESS<<1); i2c_write(I2C_GPS_LOCATION); //Start read from here 2x2 bytes distance and direction i2c_rep_start((I2C_GPS_ADDRESS<<1)|1); varptr = (uint8_t *)&GPS_coord[LAT]; // for latitude displaying *varptr++ = i2c_readAck(); *varptr++ = i2c_readAck(); *varptr++ = i2c_readAck(); *varptr = i2c_readAck(); varptr = (uint8_t *)&GPS_coord[LON]; // for longitude displaying *varptr++ = i2c_readAck(); *varptr++ = i2c_readAck(); *varptr++ = i2c_readAck(); *varptr = i2c_readNak(); i2c_rep_start(I2C_GPS_ADDRESS<<1); i2c_write(I2C_GPS_GROUND_SPEED); i2c_rep_start((I2C_GPS_ADDRESS<<1)|1); varptr = (uint8_t *)&GPS_speed; // speed in cm/s for OSD *varptr++ = i2c_readAck(); *varptr = i2c_readAck(); varptr = (uint8_t *)&GPS_altitude; // altitude in meters for OSD *varptr++ = i2c_readAck(); *varptr = i2c_readAck(); varptr = (uint8_t *)&GPS_ground_course; *varptr++ = i2c_readAck(); *varptr = i2c_readNak(); } else { return 0; } } else { f.GPS_FIX = 0; return 0; } #endif #if defined(GPS_SERIAL) || defined(GPS_FROM_OSD) #if defined(GPS_SERIAL) uint8_t c = SerialAvailable(GPS_SERIAL); if (c==0) return 0; while (c--) { if (GPS_newFrame(SerialRead(GPS_SERIAL))) { #elif defined(GPS_FROM_OSD) { if(GPS_update & 2) { // Once second bit of GPS_update is set, indicate new GPS datas is readed from OSD - all in right format. GPS_update &= 1; // We have: GPS_fix(0-2), GPS_numSat(0-15), GPS_coord[LAT & LON](signed, in 1/10 000 000 degres), GPS_altitude(signed, in meters) and GPS_speed(in cm/s) #endif GPS_Frame = 1; } } #endif return 1; } uint8_t GPS_Compute(void) { if (GPS_Frame == 0) return 0; else GPS_Frame = 0; if (GPS_update == 1) GPS_update = 0; else GPS_update = 1; if (f.GPS_FIX && GPS_numSat >= 5) { #if !defined(DONT_RESET_HOME_AT_ARM) if (!f.ARMED) {f.GPS_FIX_HOME = 0;} #endif if (!f.GPS_FIX_HOME && f.ARMED) { GPS_reset_home_position(); } //Apply moving average filter to GPS data #if defined(GPS_FILTERING) GPS_filter_index = (GPS_filter_index+1) % GPS_FILTER_VECTOR_LENGTH; for (uint8_t axis = 0; axis< 2; axis++) { GPS_read[axis] = GPS_coord[axis]; //latest unfiltered data is in GPS_latitude and GPS_longitude GPS_degree[axis] = GPS_read[axis] / 10000000; // get the degree to assure the sum fits to the int32_t // How close we are to a degree line ? its the first three digits from the fractions of degree // later we use it to Check if we are close to a degree line, if yes, disable averaging, fraction3[axis] = (GPS_read[axis]- GPS_degree[axis]*10000000) / 10000; GPS_filter_sum[axis] -= GPS_filter[axis][GPS_filter_index]; GPS_filter[axis][GPS_filter_index] = GPS_read[axis] - (GPS_degree[axis]*10000000); GPS_filter_sum[axis] += GPS_filter[axis][GPS_filter_index]; GPS_filtered[axis] = GPS_filter_sum[axis] / GPS_FILTER_VECTOR_LENGTH + (GPS_degree[axis]*10000000); if ( nav_mode == NAV_MODE_POSHOLD) { //we use gps averaging only in poshold mode... if ( fraction3[axis]>1 && fraction3[axis]<999 ) GPS_coord[axis] = GPS_filtered[axis]; } } #endif //dTnav calculation //Time for calculating x,y speed and navigation pids static uint32_t nav_loopTimer; dTnav = (float)(millis() - nav_loopTimer)/ 1000.0; nav_loopTimer = millis(); // prevent runup from bad GPS dTnav = min(dTnav, 1.0); //calculate distance and bearings for gui and other stuff continously - From home to copter uint32_t dist; int32_t dir; GPS_distance_cm_bearing(&GPS_coord[LAT],&GPS_coord[LON],&GPS_home[LAT],&GPS_home[LON],&dist,&dir); GPS_distanceToHome = dist/100; GPS_directionToHome = dir/100; if (!f.GPS_FIX_HOME) { //If we don't have home set, do not display anything GPS_distanceToHome = 0; GPS_directionToHome = 0; } //calculate the current velocity based on gps coordinates continously to get a valid speed at the moment when we start navigating GPS_calc_velocity(); if (f.GPS_HOLD_MODE || f.GPS_HOME_MODE){ //ok we are navigating //do gps nav calculations here, these are common for nav and poshold #if defined(GPS_LEAD_FILTER) GPS_distance_cm_bearing(&GPS_coord_lead[LAT],&GPS_coord_lead[LON],&GPS_WP[LAT],&GPS_WP[LON],&wp_distance,&target_bearing); GPS_calc_location_error(&GPS_WP[LAT],&GPS_WP[LON],&GPS_coord_lead[LAT],&GPS_coord_lead[LON]); #else GPS_distance_cm_bearing(&GPS_coord[LAT],&GPS_coord[LON],&GPS_WP[LAT],&GPS_WP[LON],&wp_distance,&target_bearing); GPS_calc_location_error(&GPS_WP[LAT],&GPS_WP[LON],&GPS_coord[LAT],&GPS_coord[LON]); #endif switch (nav_mode) { case NAV_MODE_POSHOLD: //Desired output is in nav_lat and nav_lon where 1deg inclination is 100 GPS_calc_poshold(); break; case NAV_MODE_WP: int16_t speed = GPS_calc_desired_speed(NAV_SPEED_MAX, NAV_SLOW_NAV); //slow navigation // use error as the desired rate towards the target //Desired output is in nav_lat and nav_lon where 1deg inclination is 100 GPS_calc_nav_rate(speed); //Tail control if (NAV_CONTROLS_HEADING) { if (NAV_TAIL_FIRST) { magHold = wrap_18000(nav_bearing-18000)/100; } else { magHold = nav_bearing/100; } } // Are we there yet ?(within 2 meters of the destination) if ((wp_distance <= GPS_wp_radius) || check_missed_wp()){ //if yes switch to poshold mode nav_mode = NAV_MODE_POSHOLD; if (NAV_SET_TAKEOFF_HEADING) { magHold = nav_takeoff_bearing; } } break; } } //end of gps calcs } } void GPS_reset_home_position(void) { if (f.GPS_FIX && GPS_numSat >= 5) { GPS_home[LAT] = GPS_coord[LAT]; GPS_home[LON] = GPS_coord[LON]; GPS_calc_longitude_scaling(GPS_coord[LAT]); //need an initial value for distance and bearing calc nav_takeoff_bearing = att.heading; //save takeoff heading //Set ground altitude f.GPS_FIX_HOME = 1; } } //reset navigation (stop the navigation processor, and clear nav) void GPS_reset_nav(void) { uint8_t i; for(i=0;i<2;i++) { nav_rated[i] = 0; nav[i] = 0; reset_PID(&posholdPID[i]); reset_PID(&poshold_ratePID[i]); reset_PID(&navPID[i]); nav_mode = NAV_MODE_NONE; } } //Get the relevant P I D values and set the PID controllers void GPS_set_pids(void) { posholdPID_PARAM.kP = (float)conf.pid[PIDPOS].P8/100.0; posholdPID_PARAM.kI = (float)conf.pid[PIDPOS].I8/100.0; posholdPID_PARAM.Imax = POSHOLD_RATE_IMAX * 100; poshold_ratePID_PARAM.kP = (float)conf.pid[PIDPOSR].P8/10.0; poshold_ratePID_PARAM.kI = (float)conf.pid[PIDPOSR].I8/100.0; poshold_ratePID_PARAM.kD = (float)conf.pid[PIDPOSR].D8/1000.0; poshold_ratePID_PARAM.Imax = POSHOLD_RATE_IMAX * 100; navPID_PARAM.kP = (float)conf.pid[PIDNAVR].P8/10.0; navPID_PARAM.kI = (float)conf.pid[PIDNAVR].I8/100.0; navPID_PARAM.kD = (float)conf.pid[PIDNAVR].D8/1000.0; navPID_PARAM.Imax = POSHOLD_RATE_IMAX * 100; }
void loop(void) { static uint8_t rcDelayCommand; // this indicates the number of time (multiple of RC measurement at 50Hz) the sticks must be maintained to run or switch off motors static uint8_t rcSticks; // this hold sticks position for command combos uint8_t stTmp = 0; uint8_t axis, i; int16_t error, errorAngle; int16_t PTerm, ITerm, PTermACC, ITermACC = 0, PTermGYRO = 0, ITermGYRO = 0, DTerm; static int16_t errorGyroI[3] = { 0, 0, 0 }; static int16_t errorAngleI[2] = { 0, 0 }; int16_t delta; static int16_t lastGyro[3] = { 0, 0, 0 }; static int16_t delta1[3], delta2[3]; int16_t deltaSum; static uint32_t rcTime = 0; static int16_t initialThrottleHold; static uint32_t loopTime; uint16_t auxState = 0; int16_t prop; static uint8_t GPSNavReset = 1; // this will return false if spektrum is disabled. shrug. if (spektrumFrameComplete()) computeRC(); if ((int32_t)(currentTime - rcTime) >= 0) { // 50Hz rcTime = currentTime + 20000; // TODO clean this up. computeRC should handle this check if (!feature(FEATURE_SPEKTRUM)) computeRC(); if (feature(FEATURE_GPS) && mcfg.gps_type == GPS_I2C) GPS_NewData('c'); // Failsafe routine if (feature(FEATURE_FAILSAFE)) { if (failsafeCnt > (5 * cfg.failsafe_delay) && f.ARMED) { // Stabilize, and set Throttle to specified level for (i = 0; i < 3; i++) rcData[i] = mcfg.midrc; // after specified guard time after RC signal is lost (in 0.1sec) rcData[THROTTLE] = cfg.failsafe_throttle; if (failsafeCnt > 5 * (cfg.failsafe_delay + cfg.failsafe_off_delay)) { // Turn OFF motors after specified Time (in 0.1sec) mwDisarm(); // This will prevent the copter to automatically rearm if failsafe shuts it down and prevents f.OK_TO_ARM = 0; // to restart accidentely by just reconnect to the tx - you will have to switch off first to rearm } failsafeEvents++; } if (failsafeCnt > (5 * cfg.failsafe_delay) && !f.ARMED) { // Turn off "Ok To arm to prevent the motors from spinning after repowering the RX with low throttle and aux to arm mwDisarm(); // This will prevent the copter to automatically rearm if failsafe shuts it down and prevents f.OK_TO_ARM = 0; // to restart accidentely by just reconnect to the tx - you will have to switch off first to rearm } failsafeCnt++; } // end of failsafe routine - next change is made with RcOptions setting // ------------------ STICKS COMMAND HANDLER -------------------- // checking sticks positions for (i = 0; i < 4; i++) { stTmp >>= 2; if (rcData[i] > mcfg.mincheck) stTmp |= 0x80; // check for MIN if (rcData[i] < mcfg.maxcheck) stTmp |= 0x40; // check for MAX } if (stTmp == rcSticks) { if (rcDelayCommand < 250) rcDelayCommand++; } else rcDelayCommand = 0; rcSticks = stTmp; // perform actions if (rcData[THROTTLE] < mcfg.mincheck) { errorGyroI[ROLL] = 0; errorGyroI[PITCH] = 0; errorGyroI[YAW] = 0; errorAngleI[ROLL] = 0; errorAngleI[PITCH] = 0; if (cfg.activate[BOXARM] > 0) { // Arming/Disarming via ARM BOX if (rcOptions[BOXARM] && f.OK_TO_ARM) mwArm(); else if (f.ARMED) mwDisarm(); } } if (rcDelayCommand == 20) { if (f.ARMED) { // actions during armed // Disarm on throttle down + yaw if (cfg.activate[BOXARM] == 0 && (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_CE)) mwDisarm(); // Disarm on roll (only when retarded_arm is enabled) if (mcfg.retarded_arm && cfg.activate[BOXARM] == 0 && (rcSticks == THR_LO + YAW_CE + PIT_CE + ROL_LO)) mwDisarm(); } else { // actions during not armed i = 0; // GYRO calibration if (rcSticks == THR_LO + YAW_LO + PIT_LO + ROL_CE) { calibratingG = 1000; if (feature(FEATURE_GPS)) GPS_reset_home_position(); if (sensors(SENSOR_BARO)) calibratingB = 10; // calibrate baro to new ground level (10 * 25 ms = ~250 ms non blocking) // Inflight ACC Calibration } else if (feature(FEATURE_INFLIGHT_ACC_CAL) && (rcSticks == THR_LO + YAW_LO + PIT_HI + ROL_HI)) { if (AccInflightCalibrationMeasurementDone) { // trigger saving into eeprom after landing AccInflightCalibrationMeasurementDone = 0; AccInflightCalibrationSavetoEEProm = 1; } else { AccInflightCalibrationArmed = !AccInflightCalibrationArmed; if (AccInflightCalibrationArmed) { toggleBeep = 2; } else { toggleBeep = 3; } } } // Multiple configuration profiles if (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_LO) // ROLL left -> Profile 1 i = 1; else if (rcSticks == THR_LO + YAW_LO + PIT_HI + ROL_CE) // PITCH up -> Profile 2 i = 2; else if (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_HI) // ROLL right -> Profile 3 i = 3; if (i) { mcfg.current_profile = i - 1; writeEEPROM(0, false); blinkLED(2, 40, i); // TODO alarmArray[0] = i; } // Arm via YAW if (cfg.activate[BOXARM] == 0 && (rcSticks == THR_LO + YAW_HI + PIT_CE + ROL_CE)) mwArm(); // Arm via ROLL else if (mcfg.retarded_arm && cfg.activate[BOXARM] == 0 && (rcSticks == THR_LO + YAW_CE + PIT_CE + ROL_HI)) mwArm(); // Calibrating Acc else if (rcSticks == THR_HI + YAW_LO + PIT_LO + ROL_CE) calibratingA = 400; // Calibrating Mag else if (rcSticks == THR_HI + YAW_HI + PIT_LO + ROL_CE) f.CALIBRATE_MAG = 1; i = 0; // Acc Trim if (rcSticks == THR_HI + YAW_CE + PIT_HI + ROL_CE) { cfg.angleTrim[PITCH] += 2; i = 1; } else if (rcSticks == THR_HI + YAW_CE + PIT_LO + ROL_CE) { cfg.angleTrim[PITCH] -= 2; i = 1; } else if (rcSticks == THR_HI + YAW_CE + PIT_CE + ROL_HI) { cfg.angleTrim[ROLL] += 2; i = 1; } else if (rcSticks == THR_HI + YAW_CE + PIT_CE + ROL_LO) { cfg.angleTrim[ROLL] -= 2; i = 1; } if (i) { writeEEPROM(1, false); rcDelayCommand = 0; // allow autorepetition } } } if (feature(FEATURE_INFLIGHT_ACC_CAL)) { if (AccInflightCalibrationArmed && f.ARMED && rcData[THROTTLE] > mcfg.mincheck && !rcOptions[BOXARM]) { // Copter is airborne and you are turning it off via boxarm : start measurement InflightcalibratingA = 50; AccInflightCalibrationArmed = 0; } if (rcOptions[BOXCALIB]) { // Use the Calib Option to activate : Calib = TRUE Meausrement started, Land and Calib = 0 measurement stored if (!AccInflightCalibrationActive && !AccInflightCalibrationMeasurementDone) InflightcalibratingA = 50; } else if (AccInflightCalibrationMeasurementDone && !f.ARMED) { AccInflightCalibrationMeasurementDone = 0; AccInflightCalibrationSavetoEEProm = 1; } } // Check AUX switches for (i = 0; i < 4; i++) auxState |= (rcData[AUX1 + i] < 1300) << (3 * i) | (1300 < rcData[AUX1 + i] && rcData[AUX1 + i] < 1700) << (3 * i + 1) | (rcData[AUX1 + i] > 1700) << (3 * i + 2); for (i = 0; i < CHECKBOXITEMS; i++) rcOptions[i] = (auxState & cfg.activate[i]) > 0; // note: if FAILSAFE is disable, failsafeCnt > 5 * FAILSAVE_DELAY is always false if ((rcOptions[BOXANGLE] || (failsafeCnt > 5 * cfg.failsafe_delay)) && (sensors(SENSOR_ACC))) { // bumpless transfer to Level mode if (!f.ANGLE_MODE) { errorAngleI[ROLL] = 0; errorAngleI[PITCH] = 0; f.ANGLE_MODE = 1; } } else { f.ANGLE_MODE = 0; // failsave support } if (rcOptions[BOXHORIZON]) { f.ANGLE_MODE = 0; if (!f.HORIZON_MODE) { errorAngleI[ROLL] = 0; errorAngleI[PITCH] = 0; f.HORIZON_MODE = 1; } } else { f.HORIZON_MODE = 0; } if ((rcOptions[BOXARM]) == 0) f.OK_TO_ARM = 1; if (f.ANGLE_MODE || f.HORIZON_MODE) { LED1_ON; } else { LED1_OFF; } #ifdef BARO if (sensors(SENSOR_BARO)) { // Baro alt hold activate if (rcOptions[BOXBARO]) { if (!f.BARO_MODE) { f.BARO_MODE = 1; AltHold = EstAlt; initialThrottleHold = rcCommand[THROTTLE]; errorAltitudeI = 0; BaroPID = 0; } } else { f.BARO_MODE = 0; } // Vario signalling activate if (feature(FEATURE_VARIO)) { if (rcOptions[BOXVARIO]) { if (!f.VARIO_MODE) { f.VARIO_MODE = 1; } } else { f.VARIO_MODE = 0; } } } #endif #ifdef MAG if (sensors(SENSOR_MAG)) { if (rcOptions[BOXMAG]) { if (!f.MAG_MODE) { f.MAG_MODE = 1; magHold = heading; } } else { f.MAG_MODE = 0; } if (rcOptions[BOXHEADFREE]) { if (!f.HEADFREE_MODE) { f.HEADFREE_MODE = 1; } } else { f.HEADFREE_MODE = 0; } if (rcOptions[BOXHEADADJ]) { headFreeModeHold = heading; // acquire new heading } } #endif if (sensors(SENSOR_GPS)) { if (f.GPS_FIX && GPS_numSat >= 5) { // if both GPS_HOME & GPS_HOLD are checked => GPS_HOME is the priority if (rcOptions[BOXGPSHOME]) { if (!f.GPS_HOME_MODE) { f.GPS_HOME_MODE = 1; f.GPS_HOLD_MODE = 0; GPSNavReset = 0; GPS_set_next_wp(&GPS_home[LAT], &GPS_home[LON]); nav_mode = NAV_MODE_WP; } } else { f.GPS_HOME_MODE = 0; if (rcOptions[BOXGPSHOLD] && abs(rcCommand[ROLL]) < cfg.ap_mode && abs(rcCommand[PITCH]) < cfg.ap_mode) { if (!f.GPS_HOLD_MODE) { f.GPS_HOLD_MODE = 1; GPSNavReset = 0; GPS_hold[LAT] = GPS_coord[LAT]; GPS_hold[LON] = GPS_coord[LON]; GPS_set_next_wp(&GPS_hold[LAT], &GPS_hold[LON]); nav_mode = NAV_MODE_POSHOLD; } } else { f.GPS_HOLD_MODE = 0; // both boxes are unselected here, nav is reset if not already done if (GPSNavReset == 0) { GPSNavReset = 1; GPS_reset_nav(); } } } } else { f.GPS_HOME_MODE = 0; f.GPS_HOLD_MODE = 0; nav_mode = NAV_MODE_NONE; } } if (rcOptions[BOXPASSTHRU]) { f.PASSTHRU_MODE = 1; } else { f.PASSTHRU_MODE = 0; } if (mcfg.mixerConfiguration == MULTITYPE_FLYING_WING || mcfg.mixerConfiguration == MULTITYPE_AIRPLANE) { f.HEADFREE_MODE = 0; } } else { // not in rc loop
void processRcStickPositions(rxConfig_t *rxConfig, throttleStatus_e throttleStatus, bool retarded_arm, bool disarm_kill_switch) { static uint8_t rcDelayCommand; // this indicates the number of time (multiple of RC measurement at 50Hz) the sticks must be maintained to run or switch off motors static uint8_t rcSticks; // this hold sticks position for command combos uint8_t stTmp = 0; int i; // ------------------ STICKS COMMAND HANDLER -------------------- // checking sticks positions for (i = 0; i < 4; i++) { stTmp >>= 2; if (rcData[i] > rxConfig->mincheck) stTmp |= 0x80; // check for MIN if (rcData[i] < rxConfig->maxcheck) stTmp |= 0x40; // check for MAX } if (stTmp == rcSticks) { if (rcDelayCommand < 250) rcDelayCommand++; } else rcDelayCommand = 0; rcSticks = stTmp; // perform actions if (!isUsingSticksToArm) { if (rcModeIsActive(BOXARM)) { // Arming via ARM BOX if (throttleStatus == THROTTLE_LOW) { if (ARMING_FLAG(OK_TO_ARM)) { mwArm(); } } } else { // Disarming via ARM BOX if (ARMING_FLAG(ARMED) && rxIsReceivingSignal() && !failsafeIsActive() ) { if (disarm_kill_switch) { mwDisarm(); } else if (throttleStatus == THROTTLE_LOW) { mwDisarm(); } } } } if (rcDelayCommand != 20) { return; } if (isUsingSticksToArm) { // Disarm on throttle down + yaw if (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_CE) { if (ARMING_FLAG(ARMED)) mwDisarm(); else { beeper(BEEPER_DISARM_REPEAT); // sound tone while stick held rcDelayCommand = 0; // reset so disarm tone will repeat } } // Disarm on roll (only when retarded_arm is enabled) if (retarded_arm && (rcSticks == THR_LO + YAW_CE + PIT_CE + ROL_LO)) { if (ARMING_FLAG(ARMED)) mwDisarm(); else { beeper(BEEPER_DISARM_REPEAT); // sound tone while stick held rcDelayCommand = 0; // reset so disarm tone will repeat } } } if (ARMING_FLAG(ARMED)) { // actions during armed return; } // actions during not armed i = 0; if (rcSticks == THR_LO + YAW_LO + PIT_LO + ROL_CE) { // GYRO calibration gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES); #ifdef GPS if (feature(FEATURE_GPS)) { GPS_reset_home_position(); } #endif #ifdef BARO if (sensors(SENSOR_BARO)) baroSetCalibrationCycles(10); // calibrate baro to new ground level (10 * 25 ms = ~250 ms non blocking) #endif return; } if (feature(FEATURE_INFLIGHT_ACC_CAL) && (rcSticks == THR_LO + YAW_LO + PIT_HI + ROL_HI)) { // Inflight ACC Calibration handleInflightCalibrationStickPosition(); return; } // Multiple configuration profiles if (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_LO) // ROLL left -> Profile 1 i = 1; else if (rcSticks == THR_LO + YAW_LO + PIT_HI + ROL_CE) // PITCH up -> Profile 2 i = 2; else if (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_HI) // ROLL right -> Profile 3 i = 3; if (i) { changeProfile(i - 1); beeperConfirmationBeeps(i); return; } if (rcSticks == THR_LO + YAW_LO + PIT_LO + ROL_HI) { saveConfigAndNotify(); } if (isUsingSticksToArm) { if (rcSticks == THR_LO + YAW_HI + PIT_CE + ROL_CE) { // Arm via YAW mwArm(); return; } if (retarded_arm && (rcSticks == THR_LO + YAW_CE + PIT_CE + ROL_HI)) { // Arm via ROLL mwArm(); return; } } if (rcSticks == THR_HI + YAW_LO + PIT_LO + ROL_CE) { // Calibrating Acc accSetCalibrationCycles(CALIBRATING_ACC_CYCLES); return; } if (rcSticks == THR_HI + YAW_HI + PIT_LO + ROL_CE) { // Calibrating Mag ENABLE_STATE(CALIBRATE_MAG); return; } // Accelerometer Trim rollAndPitchTrims_t accelerometerTrimsDelta; memset(&accelerometerTrimsDelta, 0, sizeof(accelerometerTrimsDelta)); bool shouldApplyRollAndPitchTrimDelta = false; if (rcSticks == THR_HI + YAW_CE + PIT_HI + ROL_CE) { accelerometerTrimsDelta.values.pitch = 2; shouldApplyRollAndPitchTrimDelta = true; } else if (rcSticks == THR_HI + YAW_CE + PIT_LO + ROL_CE) { accelerometerTrimsDelta.values.pitch = -2; shouldApplyRollAndPitchTrimDelta = true; } else if (rcSticks == THR_HI + YAW_CE + PIT_CE + ROL_HI) { accelerometerTrimsDelta.values.roll = 2; shouldApplyRollAndPitchTrimDelta = true; } else if (rcSticks == THR_HI + YAW_CE + PIT_CE + ROL_LO) { accelerometerTrimsDelta.values.roll = -2; shouldApplyRollAndPitchTrimDelta = true; } if (shouldApplyRollAndPitchTrimDelta) { applyAndSaveAccelerometerTrimsDelta(&accelerometerTrimsDelta); rcDelayCommand = 0; // allow autorepetition return; } #ifdef DISPLAY if (rcSticks == THR_LO + YAW_CE + PIT_HI + ROL_LO) { displayDisablePageCycling(); } if (rcSticks == THR_LO + YAW_CE + PIT_HI + ROL_HI) { displayEnablePageCycling(); } #endif }
/** * @brief 遥控器动作处理函数 * * @param None * @retval None */ static void RC_DataSynth(void) { static uint8_t rcDelayCommand; if(RC_RawData[THROTTLE] < cfg.mincheck)//油门处于最低时 { rcDelayCommand++; if (RC_RawData[YAW] < cfg.mincheck && RC_RawData[PITCH] < cfg.mincheck && !f.ARMED) { //左边:左下角,右边:下,在没解锁 if (rcDelayCommand == 20) //也就是说本动作要保持20x20ms=0.4s才有效 { CalibratingG = 1000; //校准陀螺仪 CalibratingB=10; //校准气压计,也就是设定气压计原点 if (Feature(FEATURE_GPS)) GPS_reset_home_position();//重新设定原点 } } else if(!f.ARMED && RC_RawData[YAW] < cfg.mincheck && RC_RawData[PITCH] > cfg.maxcheck && RC_RawData[ROLL] > cfg.maxcheck) { //左边:左上角,右边:右下角,没解锁 if (rcDelayCommand == 20) { } } else if ((RC_RawData[YAW] < cfg.mincheck || (cfg.retarded_arm == 1 && RC_RawData[ROLL] < cfg.mincheck)) && f.ARMED)//上锁 { //上锁 if (rcDelayCommand == 20) f.ARMED = 0; //锁定 } else if ((RC_RawData[YAW] > cfg.maxcheck || (RC_RawData[ROLL] > cfg.maxcheck && cfg.retarded_arm == 1)) && RC_RawData[PITCH] < cfg.maxcheck && !f.ARMED )//没有正在进行校准且校准正常 { //解锁 if (rcDelayCommand == 20) { if(f.OK_TO_ARM)//允许解锁才能解锁 { f.ARMED = 1; HeadFreeModeHold = heading; f.AUTOLANDING=0; } } } else rcDelayCommand = 0; //清除动作保持时间计数 } else if(RC_RawData[THROTTLE] > cfg.maxcheck && !f.ARMED)//油门最大且没有解锁 { if (RC_RawData[YAW] < cfg.mincheck && RC_RawData[PITCH] < cfg.mincheck) { //左边:左下角,右边:上 if (rcDelayCommand == 20) CalibratingA = 400; //触发加速度计校准 400 rcDelayCommand++; } else if (RC_RawData[YAW] > cfg.maxcheck && RC_RawData[PITCH] < cfg.mincheck) { //左边:右下角,,,右边:上 if (rcDelayCommand == 20) f.CALIBRATE_MAG = 1; //电子罗盘校准请求 rcDelayCommand++; } else if (RC_RawData[PITCH] > cfg.maxcheck) //下面四个是加速度计微调 { //左边:上。。。右边:上 cfg.angleTrim[PITCH] += 2; //角度微调增大 前 WRITE_TO_FLASH;//将参数写入FLASH } else if (RC_RawData[PITCH] < cfg.mincheck) { //左边:下。。。右边:上 cfg.angleTrim[PITCH] -= 2; //角度微调减小 后 WRITE_TO_FLASH;//将参数写入FLASH } else if (RC_RawData[ROLL] > cfg.maxcheck) { //左边:中间。。。右边:右上角 cfg.angleTrim[ROLL] += 2; //微调 右 WRITE_TO_FLASH;//将参数写入FLASH } else if (RC_RawData[ROLL] < cfg.mincheck) { //左边:中间。。。右边:左上角 cfg.angleTrim[ROLL] -= 2; //微调 左 WRITE_TO_FLASH;//将参数写入FLASH } else rcDelayCommand = 0; } }
void processRcStickPositions(throttleStatus_e throttleStatus) { // time the sticks are maintained static int16_t rcDelayMs; // hold sticks position for command combos static uint8_t rcSticks; // an extra guard for disarming through switch to prevent that one frame can disarm it static uint8_t rcDisarmTicks; static bool doNotRepeat; #ifdef USE_CMS if (cmsInMenu) { return; } #endif // checking sticks positions uint8_t stTmp = 0; for (int i = 0; i < 4; i++) { stTmp >>= 2; if (rcData[i] > rxConfig()->mincheck) { stTmp |= 0x80; // check for MIN } if (rcData[i] < rxConfig()->maxcheck) { stTmp |= 0x40; // check for MAX } } if (stTmp == rcSticks) { if (rcDelayMs <= INT16_MAX - (getTaskDeltaTime(TASK_SELF) / 1000)) { rcDelayMs += getTaskDeltaTime(TASK_SELF) / 1000; } } else { rcDelayMs = 0; doNotRepeat = false; } rcSticks = stTmp; // perform actions if (!isUsingSticksToArm) { if (IS_RC_MODE_ACTIVE(BOXARM)) { rcDisarmTicks = 0; // Arming via ARM BOX tryArm(); } else { // Disarming via ARM BOX resetArmingDisabled(); if (ARMING_FLAG(ARMED) && rxIsReceivingSignal() && !failsafeIsActive() ) { rcDisarmTicks++; if (rcDisarmTicks > 3) { if (armingConfig()->disarm_kill_switch) { disarm(); } else if (throttleStatus == THROTTLE_LOW) { disarm(); } } } } } else if (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_CE) { if (rcDelayMs >= ARM_DELAY_MS && !doNotRepeat) { doNotRepeat = true; // Disarm on throttle down + yaw if (ARMING_FLAG(ARMED)) disarm(); else { beeper(BEEPER_DISARM_REPEAT); // sound tone while stick held repeatAfter(STICK_AUTOREPEAT_MS); // disarm tone will repeat } } return; } else if (rcSticks == THR_LO + YAW_HI + PIT_CE + ROL_CE) { if (rcDelayMs >= ARM_DELAY_MS && !doNotRepeat) { doNotRepeat = true; if (!ARMING_FLAG(ARMED)) { // Arm via YAW tryArm(); } else { resetArmingDisabled(); } } return; } if (ARMING_FLAG(ARMED) || doNotRepeat || rcDelayMs <= STICK_DELAY_MS) { return; } doNotRepeat = true; // actions during not armed if (rcSticks == THR_LO + YAW_LO + PIT_LO + ROL_CE) { // GYRO calibration gyroStartCalibration(false); #ifdef USE_GPS if (feature(FEATURE_GPS)) { GPS_reset_home_position(); } #endif #ifdef USE_BARO if (sensors(SENSOR_BARO)) baroSetCalibrationCycles(10); // calibrate baro to new ground level (10 * 25 ms = ~250 ms non blocking) #endif return; } if (feature(FEATURE_INFLIGHT_ACC_CAL) && (rcSticks == THR_LO + YAW_LO + PIT_HI + ROL_HI)) { // Inflight ACC Calibration handleInflightCalibrationStickPosition(); return; } // Change PID profile int newPidProfile = 0; if (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_LO) { // ROLL left -> PID profile 1 newPidProfile = 1; } else if (rcSticks == THR_LO + YAW_LO + PIT_HI + ROL_CE) { // PITCH up -> PID profile 2 newPidProfile = 2; } else if (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_HI) { // ROLL right -> PID profile 3 newPidProfile = 3; } if (newPidProfile) { changePidProfile(newPidProfile - 1); return; } if (rcSticks == THR_LO + YAW_LO + PIT_LO + ROL_HI) { saveConfigAndNotify(); } if (rcSticks == THR_HI + YAW_LO + PIT_LO + ROL_CE) { // Calibrating Acc accSetCalibrationCycles(CALIBRATING_ACC_CYCLES); return; } if (rcSticks == THR_HI + YAW_HI + PIT_LO + ROL_CE) { // Calibrating Mag ENABLE_STATE(CALIBRATE_MAG); return; } if (FLIGHT_MODE(ANGLE_MODE|HORIZON_MODE)) { // in ANGLE or HORIZON mode, so use sticks to apply accelerometer trims rollAndPitchTrims_t accelerometerTrimsDelta; memset(&accelerometerTrimsDelta, 0, sizeof(accelerometerTrimsDelta)); bool shouldApplyRollAndPitchTrimDelta = false; if (rcSticks == THR_HI + YAW_CE + PIT_HI + ROL_CE) { accelerometerTrimsDelta.values.pitch = 2; shouldApplyRollAndPitchTrimDelta = true; } else if (rcSticks == THR_HI + YAW_CE + PIT_LO + ROL_CE) { accelerometerTrimsDelta.values.pitch = -2; shouldApplyRollAndPitchTrimDelta = true; } else if (rcSticks == THR_HI + YAW_CE + PIT_CE + ROL_HI) { accelerometerTrimsDelta.values.roll = 2; shouldApplyRollAndPitchTrimDelta = true; } else if (rcSticks == THR_HI + YAW_CE + PIT_CE + ROL_LO) { accelerometerTrimsDelta.values.roll = -2; shouldApplyRollAndPitchTrimDelta = true; } if (shouldApplyRollAndPitchTrimDelta) { applyAndSaveAccelerometerTrimsDelta(&accelerometerTrimsDelta); repeatAfter(STICK_AUTOREPEAT_MS); return; } } else { // in ACRO mode, so use sticks to change RATE profile switch (rcSticks) { case THR_HI + YAW_CE + PIT_HI + ROL_CE: changeControlRateProfile(0); return; case THR_HI + YAW_CE + PIT_LO + ROL_CE: changeControlRateProfile(1); return; case THR_HI + YAW_CE + PIT_CE + ROL_HI: changeControlRateProfile(2); return; case THR_HI + YAW_CE + PIT_CE + ROL_LO: changeControlRateProfile(3); return; } } #ifdef USE_DASHBOARD if (rcSticks == THR_LO + YAW_CE + PIT_HI + ROL_LO) { dashboardDisablePageCycling(); } if (rcSticks == THR_LO + YAW_CE + PIT_HI + ROL_HI) { dashboardEnablePageCycling(); } #endif #ifdef USE_VTX_CONTROL if (rcSticks == THR_HI + YAW_LO + PIT_CE + ROL_HI) { vtxIncrementBand(); } if (rcSticks == THR_HI + YAW_LO + PIT_CE + ROL_LO) { vtxDecrementBand(); } if (rcSticks == THR_HI + YAW_HI + PIT_CE + ROL_HI) { vtxIncrementChannel(); } if (rcSticks == THR_HI + YAW_HI + PIT_CE + ROL_LO) { vtxDecrementChannel(); } #endif #ifdef USE_CAMERA_CONTROL if (rcSticks == THR_CE + YAW_HI + PIT_CE + ROL_CE) { cameraControlKeyPress(CAMERA_CONTROL_KEY_ENTER, 0); repeatAfter(3 * STICK_DELAY_MS); } else if (rcSticks == THR_CE + YAW_CE + PIT_CE + ROL_LO) { cameraControlKeyPress(CAMERA_CONTROL_KEY_LEFT, 0); repeatAfter(3 * STICK_DELAY_MS); } else if (rcSticks == THR_CE + YAW_CE + PIT_HI + ROL_CE) { cameraControlKeyPress(CAMERA_CONTROL_KEY_UP, 0); repeatAfter(3 * STICK_DELAY_MS); } else if (rcSticks == THR_CE + YAW_CE + PIT_CE + ROL_HI) { cameraControlKeyPress(CAMERA_CONTROL_KEY_RIGHT, 0); repeatAfter(3 * STICK_DELAY_MS); } else if (rcSticks == THR_CE + YAW_CE + PIT_LO + ROL_CE) { cameraControlKeyPress(CAMERA_CONTROL_KEY_DOWN, 0); repeatAfter(3 * STICK_DELAY_MS); } else if (rcSticks == THR_LO + YAW_CE + PIT_HI + ROL_CE) { cameraControlKeyPress(CAMERA_CONTROL_KEY_UP, 2000); } #endif }
/******************************************************************************* ** Main Function main() *******************************************************************************/ int main (void) { /* Basic chip initialization is taken care of in SystemInit() called * from the startup code. SystemInit() and chip settings are defined * in the CMSIS system_<part family>.c file. */ setup(); static uint8_t rcDelayCommand; // this indicates the number of time (multiple of RC measurement at 50Hz) the sticks must be maintained to run or switch off motors uint8_t axis,i; int16_t delta,deltaSum; int16_t PTerm,ITerm,DTerm; static int16_t lastGyro[3] = {0,0,0}; static int16_t delta1[3],delta2[3]; static int16_t errorAngleI[2] = {0,0}; static uint32_t rcTime = 0; static int16_t initialThrottleHold; int16_t error,errorAngle =0; #if PIDcontroller ==1 static int16_t errorGyroI[3] = {0,0,0}; #elif PIDcontroller == 2 int32_t AngleRateTmp = 0, RateError = 0, AngleITerm = 0; static int32_t errorGyroI[3] = {0,0,0}; #endif #define RC_FREQ 50 while(1) { #ifdef LCD_TELEMETRY_STEP static char telemetryStepSequence [] = LCD_TELEMETRY_STEP; static uint8_t telemetryStepIndex = 0; #endif #if defined(SPEKTRUM) if (rcFrameComplete) computeRC(); #endif #if defined(OPENLRSv2MULTI) Read_OpenLRS_RC(); #endif if ((currentTime > rcTime) || rcTime > (currentTime + 20000)) { // 50Hz + additional check to ensure rcTime can reach currentTime rcTime = currentTime + 20000; computeRC(); //reset watchdog timer in RC loop to ensure user is not locked out of control feedWatchDog(); // Failsafe routine - added by MIS #if defined(FAILSAFE) if ( failsafeCnt > (5*FAILSAVE_DELAY) && f.ARMED) { // Stabilize, and set Throttle to specified level for(i=0; i<3; i++) rcData[i] = MIDRC; // after specified guard time after RC signal is lost (in 0.1sec) rcData[THROTTLE] = FAILSAVE_THROTTLE; if (failsafeCnt > 5*(FAILSAVE_DELAY+FAILSAVE_OFF_DELAY)) { // Turn OFF motors after specified Time (in 0.1sec) f.ARMED = 0; // This will prevent the copter to automatically rearm if failsafe shuts it down and prevents f.OK_TO_ARM = 0; // to restart accidentely by just reconnect to the tx - you will have to switch off first to rearm } failsafeEvents++; } if ( failsafeCnt > (5*FAILSAVE_DELAY) && !f.ARMED) { //Turn of "Ok To arm to prevent the motors from spinning after repowering the RX with low throttle and aux to arm f.ARMED = 0; // This will prevent the copter to automatically rearm if failsafe shuts it down and prevents f.OK_TO_ARM = 0; // to restart accidentely by just reconnect to the tx - you will have to switch off first to rearm } failsafeCnt++; #endif // end of failsave routine - next change is made with RcOptions setting if (rcData[THROTTLE] < MINCHECK) { errorGyroI[ROLL] = 0; errorGyroI[PITCH] = 0; errorGyroI[YAW] = 0; errorAngleI[ROLL] = 0; errorAngleI[PITCH] = 0; rcDelayCommand++; if (rcData[YAW] < MINCHECK && rcData[PITCH] < MINCHECK && !f.ARMED) { if (rcDelayCommand == 20) { calibratingG=400; #if GPS GPS_reset_home_position(); #endif } } else if (rcData[YAW] > MAXCHECK && rcData[PITCH] > MAXCHECK && !f.ARMED) { if (rcDelayCommand == 20) { #ifdef TRI servo[5] = 1500; // we center the yaw servo in conf mode writeServos(); #endif #ifdef FLYING_WING servo[0] = conf.wing_left_mid; servo[1] = conf.wing_right_mid; writeServos(); #endif #ifdef AIRPLANE for(i = 4; i<7 ;i++) servo[i] = 1500; writeServos(); #endif #if defined(LCD_CONF) configurationLoop(); // beginning LCD configuration #endif previousTime = micros(); } } #if defined(INFLIGHT_ACC_CALIBRATION) else if (!f.ARMED && rcData[YAW] < MINCHECK && rcData[PITCH] > MAXCHECK && rcData[ROLL] > MAXCHECK){ if (rcDelayCommand == 20){ if (AccInflightCalibrationMeasurementDone){ // trigger saving into eeprom after landing AccInflightCalibrationMeasurementDone = 0; AccInflightCalibrationSavetoEEProm = 1; }else{ AccInflightCalibrationArmed = !AccInflightCalibrationArmed; #if defined(BUZZER) if (AccInflightCalibrationArmed){ toggleBeep = 2; } else { toggleBeep = 3; } #endif } } } #endif else if (conf.activate[BOXARM] > 0) { if ( rcOptions[BOXARM] && f.OK_TO_ARM #if defined(FAILSAFE) && failsafeCnt <= 1 #endif ) { f.ARMED = 1; headFreeModeHold = heading; } else if (f.ARMED) f.ARMED = 0; rcDelayCommand = 0; #ifdef ALLOW_ARM_DISARM_VIA_TX_YAW } else if ( (rcData[YAW] < MINCHECK ) && f.ARMED) { if (rcDelayCommand == 20) f.ARMED = 0; // rcDelayCommand = 20 => 20x20ms = 0.4s = time to wait for a specific RC command to be acknowledged } else if ( (rcData[YAW] > MAXCHECK ) && rcData[PITCH] < MAXCHECK && !f.ARMED && calibratingG == 0 && f.ACC_CALIBRATED) { if (rcDelayCommand == 20) { f.ARMED = 1; headFreeModeHold = heading; } #endif #ifdef ALLOW_ARM_DISARM_VIA_TX_ROLL } else if ( (rcData[ROLL] < MINCHECK) && f.ARMED) { if (rcDelayCommand == 20) f.ARMED = 0; // rcDelayCommand = 20 => 20x20ms = 0.4s = time to wait for a specific RC command to be acknowledged } else if ( (rcData[ROLL] > MAXCHECK) && rcData[PITCH] < MAXCHECK && !f.ARMED && calibratingG == 0 && f.ACC_CALIBRATED) { if (rcDelayCommand == 20) { f.ARMED = 1; headFreeModeHold = heading; } #endif #ifdef LCD_TELEMETRY_AUTO } else if (rcData[ROLL] < MINCHECK && rcData[PITCH] > MAXCHECK && !f.ARMED) { if (rcDelayCommand == 20) { if (telemetry_auto) { telemetry_auto = 0; telemetry = 0; } else telemetry_auto = 1; } #endif #ifdef LCD_TELEMETRY_STEP } else if (rcData[ROLL] > MAXCHECK && rcData[PITCH] > MAXCHECK && !f.ARMED) { if (rcDelayCommand == 20) { telemetry = telemetryStepSequence[++telemetryStepIndex % strlen(telemetryStepSequence)]; LCDclear(); // make sure to clear away remnants } #endif } else rcDelayCommand = 0; } else if (rcData[THROTTLE] > MAXCHECK && !f.ARMED) { if (rcData[YAW] < MINCHECK && rcData[PITCH] < MINCHECK) { // throttle=max, yaw=left, pitch=min if (rcDelayCommand == 20) calibratingA=400; rcDelayCommand++; } else if (rcData[YAW] > MAXCHECK && rcData[PITCH] < MINCHECK) { // throttle=max, yaw=right, pitch=min if (rcDelayCommand == 20) f.CALIBRATE_MAG = 1; // MAG calibration request rcDelayCommand++; } else if (rcData[PITCH] > MAXCHECK) { conf.angleTrim[PITCH]+=2;writeParams(1); #if defined(LED_RING) blinkLedRing(); #endif } else if (rcData[PITCH] < MINCHECK) { conf.angleTrim[PITCH]-=2;writeParams(1); #if defined(LED_RING) blinkLedRing(); #endif } else if (rcData[ROLL] > MAXCHECK) { conf.angleTrim[ROLL]+=2;writeParams(1); #if defined(LED_RING) blinkLedRing(); #endif } else if (rcData[ROLL] < MINCHECK) { conf.angleTrim[ROLL]-=2;writeParams(1); #if defined(LED_RING) blinkLedRing(); #endif } else { rcDelayCommand = 0; } } #if defined(LED_FLASHER) led_flasher_autoselect_sequence(); #endif #if defined(INFLIGHT_ACC_CALIBRATION) if (AccInflightCalibrationArmed && f.ARMED && rcData[THROTTLE] > MINCHECK && !rcOptions[BOXARM] ){ // Copter is airborne and you are turning it off via boxarm : start measurement InflightcalibratingA = 50; AccInflightCalibrationArmed = 0; } if (rcOptions[BOXPASSTHRU]) { // Use the Passthru Option to activate : Passthru = TRUE Meausrement started, Land and passtrhu = 0 measurement stored if (!AccInflightCalibrationActive && !AccInflightCalibrationMeasurementDone){ InflightcalibratingA = 50; } }else if(AccInflightCalibrationMeasurementDone && !f.ARMED){ AccInflightCalibrationMeasurementDone = 0; AccInflightCalibrationSavetoEEProm = 1; } #endif uint16_t auxState = 0; for(i=0;i<4;i++) auxState |= (rcData[AUX1+i]<1300)<<(3*i) | (1300<rcData[AUX1+i] && rcData[AUX1+i]<1700)<<(3*i+1) | (rcData[AUX1+i]>1700)<<(3*i+2); for(i=0;i<CHECKBOXITEMS;i++) rcOptions[i] = (auxState & conf.activate[i])>0; // note: if FAILSAFE is disable, failsafeCnt > 5*FAILSAVE_DELAY is always false if (( rcOptions[BOXACC] || (failsafeCnt > 5*FAILSAVE_DELAY) ) && ACC ) { // bumpless transfer to Level mode if (!f.ACC_MODE) { errorAngleI[ROLL] = 0; errorAngleI[PITCH] = 0; f.ACC_MODE = 1; } } else { // failsafe support f.ACC_MODE = 0; } if (rcOptions[BOXARM] == 0) f.OK_TO_ARM = 1; //if (f.ACC_MODE) {STABLEPIN_ON;} else {STABLEPIN_OFF;} #if BARO if (rcOptions[BOXBARO]) { if (!f.BARO_MODE) { f.BARO_MODE = 1; AltHold = EstAlt; initialThrottleHold = rcCommand[THROTTLE]; errorAltitudeI = 0; BaroPID=0; } } else { f.BARO_MODE = 0; } #endif #if MAG if (rcOptions[BOXMAG]) { if (!f.MAG_MODE) { f.MAG_MODE = 1; magHold = heading; } } else { f.MAG_MODE = 0; } if (rcOptions[BOXHEADFREE]) { if (!f.HEADFREE_MODE) { f.HEADFREE_MODE = 1; } } else { f.HEADFREE_MODE = 0; } if (rcOptions[BOXHEADADJ]) { headFreeModeHold = heading; // acquire new heading } #endif #if GPS #if defined(I2C_NAV) static uint8_t GPSNavReset = 1; if (f.GPS_FIX && GPS_numSat >= 5 ) { if (!rcOptions[BOXGPSHOME] && !rcOptions[BOXGPSHOLD] ) { //Both boxes are unselected if (GPSNavReset == 0 ) { GPSNavReset = 1; GPS_reset_nav(); } } if (rcOptions[BOXGPSHOME]) { if (!f.GPS_HOME_MODE) { f.GPS_HOME_MODE = 1; GPSNavReset = 0; GPS_I2C_command(I2C_GPS_COMMAND_START_NAV,0); //waypoint zero } } else { f.GPS_HOME_MODE = 0; } if (rcOptions[BOXGPSHOLD]) { if (!f.GPS_HOLD_MODE & !f.GPS_HOME_MODE) { f.GPS_HOLD_MODE = 1; GPSNavReset = 0; GPS_I2C_command(I2C_GPS_COMMAND_POSHOLD,0); } } else { f.GPS_HOLD_MODE = 0; } } #endif #if defined(GPS_SERIAL) || defined(TINY_GPS) || defined(GPS_FROM_OSD)||defined(I2C_GPS) if (f.GPS_FIX && GPS_numSat >= 5 ) { if (rcOptions[BOXGPSHOME]) { if (!f.GPS_HOME_MODE) { f.GPS_HOME_MODE = 1; GPS_set_next_wp(&GPS_home[LAT],&GPS_home[LON]); nav_mode = NAV_MODE_WP; } } else { f.GPS_HOME_MODE = 0; } if (rcOptions[BOXGPSHOLD]) { if (!f.GPS_HOLD_MODE) { f.GPS_HOLD_MODE = 1; GPS_hold[LAT] = GPS_coord[LAT]; GPS_hold[LON] = GPS_coord[LON]; GPS_set_next_wp(&GPS_hold[LAT],&GPS_hold[LON]); nav_mode = NAV_MODE_POSHOLD; } } else { f.GPS_HOLD_MODE = 0; } } #endif #endif #ifdef FLOW if(rcOptions[BOXFLOWHOLD]) { if (!f.FLOW_HOLD_MODE) { f.FLOW_HOLD_MODE = 1; GPS_hold[LAT] = GPS_coord[LAT]; GPS_hold[LON] = GPS_coord[LON]; flow_set_next_wp(&GPS_hold[LAT],&GPS_hold[LON]); nav_mode = NAV_MODE_POSHOLD; } //debug[1] = 1; } else { f.FLOW_HOLD_MODE = 0; //debug[1] = 0; } #endif if (rcOptions[BOXPASSTHRU]) {f.PASSTHRU_MODE = 1;} else {f.PASSTHRU_MODE = 0;} #ifdef FIXEDWING f.HEADFREE_MODE = 0; #endif } else { // not in rc loop static uint8_t taskOrder=0; // never call all functions in the same loop, to avoid high delay spikes if(taskOrder>4) taskOrder-=5; switch (taskOrder) { case 0: taskOrder++; #if MAG if (Mag_getADC()) break; // max 350 µs (HMC5883) // only break when we actually did something #endif case 1: taskOrder++; #if BARO if (Baro_update() != 0 ) break; #endif case 2: taskOrder++; #if BARO if (getEstimatedAltitude() !=0) break; #endif case 3: taskOrder++; if(flowUpdate() !=0) break; #if GPS if(GPS_Enable) GPS_NewData(); break; #endif case 4: taskOrder++; #if SONAR #if !defined(MAXSONAR_PWM) && !defined(FLOW) Sonar_update(); #endif //debug[2] = sonarAlt; #endif #ifdef LANDING_LIGHTS_DDR auto_switch_landing_lights(); #endif #ifdef VARIOMETER if (f.VARIO_MODE) vario_signaling(); #endif break; } } computeIMU(); // Measure loop rate just afer reading the sensors currentTime = micros(); cycleTime = currentTime - previousTime; previousTime = currentTime; //delayMs(500); //if(cycleTime > 3150) // debug[0]++; #if MAG if (fabs(rcCommand[YAW]) <70 && f.MAG_MODE) { int16_t dif = heading - magHold; if (dif <= - 180) dif += 360; if (dif >= + 180) dif -= 360; if ( f.SMALL_ANGLES_25 ) rcCommand[YAW] -= dif*conf.P8[PIDMAG]/30; // 18 deg } else magHold = heading; #endif #if BARO if (f.BARO_MODE) { if (fabs(rcCommand[THROTTLE]-initialThrottleHold)>ALT_HOLD_THROTTLE_NEUTRAL_ZONE) { f.BARO_MODE = 0; // so that a new althold reference is defined } rcCommand[THROTTLE] = initialThrottleHold + BaroPID; } #endif #if GPS if ( (!f.GPS_HOME_MODE && !f.GPS_HOLD_MODE) || !f.GPS_FIX_HOME ) { GPS_reset_nav(); // If GPS is not activated. Reset nav loops and all nav related parameters GPS_angle[ROLL] = 0; GPS_angle[PITCH] = 0; } else { float sin_yaw_y = sinf(heading*0.0174532925f); float cos_yaw_x = cosf(heading*0.0174532925f); #if defined(NAV_SLEW_RATE) nav_rated[LON] += constrain(wrap_18000(nav[LON]-nav_rated[LON]),-NAV_SLEW_RATE,NAV_SLEW_RATE); nav_rated[LAT] += constrain(wrap_18000(nav[LAT]-nav_rated[LAT]),-NAV_SLEW_RATE,NAV_SLEW_RATE); GPS_angle[ROLL] = (nav_rated[LON]*cos_yaw_x - nav_rated[LAT]*sin_yaw_y) /10; GPS_angle[PITCH] = (nav_rated[LON]*sin_yaw_y + nav_rated[LAT]*cos_yaw_x) /10; #else GPS_angle[ROLL] = (nav[LON]*cos_yaw_x - nav[LAT]*sin_yaw_y) /10; GPS_angle[PITCH] = (nav[LON]*sin_yaw_y + nav[LAT]*cos_yaw_x) /10; #endif } //debug[2] = GPS_angle[ROLL]; //debug[3] = GPS_angle[PITCH]; #endif #ifdef FLOW if (!f.FLOW_HOLD_MODE) { flow_reset_nav(); // If GPS is not activated. Reset nav loops and all nav related parameters GPS_angle[ROLL] = 0; GPS_angle[PITCH] = 0; } else { float sin_yaw_y = sinf(heading*0.0174532925f); float cos_yaw_x = cosf(heading*0.0174532925f); #if defined(NAV_SLEW_RATE) nav_rated[LON] += constrain(wrap_18000(nav[LON]-nav_rated[LON]),-NAV_SLEW_RATE,NAV_SLEW_RATE); nav_rated[LAT] += constrain(wrap_18000(nav[LAT]-nav_rated[LAT]),-NAV_SLEW_RATE,NAV_SLEW_RATE); GPS_angle[ROLL] = (nav_rated[LON]*cos_yaw_x - nav_rated[LAT]*sin_yaw_y) /10; GPS_angle[PITCH] = (nav_rated[LON]*sin_yaw_y + nav_rated[LAT]*cos_yaw_x) /10; #else GPS_angle[ROLL] = (nav[LON]*cos_yaw_x - nav[LAT]*sin_yaw_y) /10; GPS_angle[PITCH] = (nav[LON]*sin_yaw_y + nav[LAT]*cos_yaw_x) /10; #endif } //debug[2] = GPS_angle[ROLL]; //debug[3] = GPS_angle[PITCH]; #endif #if PIDcontroller == 1 //**** PITCH & ROLL & YAW PID **** for(axis=0;axis<3;axis++) { if (f.ACC_MODE && axis<2 ) { //LEVEL MODE // 50 degrees max inclination errorAngle = constrain(2*rcCommand[axis] + GPS_angle[axis],-500,+500) - angle[axis] + conf.angleTrim[axis]; //16 bits is ok here #ifdef LEVEL_PDF PTerm = -(int32_t)angle[axis]*conf.P8[PIDLEVEL]/100 ; #else PTerm = (int32_t)errorAngle*conf.P8[PIDLEVEL]/100 ; // 32 bits is needed for calculation: errorAngle*P8[PIDLEVEL] could exceed 32768 16 bits is ok for result #endif PTerm = constrain(PTerm,-conf.D8[PIDLEVEL]*5,+conf.D8[PIDLEVEL]*5); errorAngleI[axis] = constrain(errorAngleI[axis]+errorAngle,-10000,+10000); // WindUp //16 bits is ok here ITerm = ((int32_t)errorAngleI[axis]*conf.I8[PIDLEVEL])>>12; // 32 bits is needed for calculation:10000*I8 could exceed 32768 16 bits is ok for result } else { //ACRO MODE or YAW axis if (fabs(rcCommand[axis])<350) error = rcCommand[axis]*10*8/conf.P8[axis] ; // 16 bits is needed for calculation: 350*10*8 = 28000 16 bits is ok for result if P8>2 (P>0.2) else error = (int32_t)rcCommand[axis]*10*8/conf.P8[axis] ; // 32 bits is needed for calculation: 500*5*10*8 = 200000 16 bits is ok for result if P8>2 (P>0.2) error -= gyroData[axis]; PTerm = rcCommand[axis]; errorGyroI[axis] = constrain(errorGyroI[axis]+error,-16000,+16000); // WindUp 16 bits is ok here if (fabs(gyroData[axis])>640) errorGyroI[axis] = 0; ITerm = (errorGyroI[axis]/125*conf.I8[axis])>>6; // 16 bits is ok here 16000/125 = 128 ; 128*250 = 32000 } if (fabs(gyroData[axis])<160) PTerm -= gyroData[axis]*dynP8[axis]/10/8; // 16 bits is needed for calculation 160*200 = 32000 16 bits is ok for result else PTerm -= (int32_t)gyroData[axis]*dynP8[axis]/10/8; // 32 bits is needed for calculation delta = gyroData[axis] - lastGyro[axis]; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800 lastGyro[axis] = gyroData[axis]; deltaSum = delta1[axis]+delta2[axis]+delta; delta2[axis] = delta1[axis]; delta1[axis] = delta; if (fabs(deltaSum)<640) DTerm = (deltaSum*dynD8[axis])>>5; // 16 bits is needed for calculation 640*50 = 32000 16 bits is ok for result else DTerm = ((int32_t)deltaSum*dynD8[axis])>>5; // 32 bits is needed for calculation