コード例 #1
0
static void 
intermediate_point (gsl_multimin_function_fdf * fdf,
                    const gsl_vector * x, const gsl_vector * p,
                    double lambda, 
                    double pg,
                    double stepa, double stepc,
                    double fa, double fc,
                    gsl_vector * x1, gsl_vector * dx, gsl_vector * gradient,
                    double * step, double * f)
{
  double stepb, fb;

trial:
  {
    double u = fabs (pg * lambda * stepc);
    stepb = 0.5 * stepc * u / ((fc - fa) + u);
  }

  take_step (x, p, stepb, lambda, x1, dx);

  if (gsl_vector_equal (x, x1)) 
    {
      /* Take fast exit if trial point does not move from initial point */
#ifdef DEBUG
      printf ("fast exit x == x1 for stepb = %g\n", stepb);
#endif
      *step = 0;
      *f = fa;
      GSL_MULTIMIN_FN_EVAL_DF(fdf, x1, gradient);
      return ; 
    }

  fb = GSL_MULTIMIN_FN_EVAL_F (fdf, x1);

#ifdef DEBUG
  printf ("trying stepb = %g  fb = %.18e\n", stepb, fb);
#endif

  if (fb >= fa  && stepb > 0.0)
    {
      /* downhill step failed, reduce step-size and try again */
      fc = fb;
      stepc = stepb;
      goto trial;
    }
#ifdef DEBUG
  printf ("ok!\n");
#endif

  *step = stepb;
  *f = fb;
  GSL_MULTIMIN_FN_EVAL_DF(fdf, x1, gradient);
}
コード例 #2
0
ファイル: bfgs3.c プロジェクト: ccowingzitron/inla
static double wrap_df(double alpha, void *params)
{
	wrapper_t *w = (wrapper_t *) params;
	if (alpha == w->df_cache_key) {			       /* using previously cached df(alpha) */
		return w->df_alpha;
	}

	moveto(alpha, w);

	if (alpha != w->g_cache_key) {
		GSL_MULTIMIN_FN_EVAL_DF(w->fdf, w->x_alpha, w->g_alpha);
		w->g_cache_key = alpha;
	}

	w->df_alpha = slope(w);
	w->df_cache_key = alpha;

	return w->df_alpha;
}
コード例 #3
0
static void
minimize (gsl_multimin_function_fdf * fdf,
          const gsl_vector * x, const gsl_vector * p,
          double lambda,
          double stepa, double stepb, double stepc,
          double fa, double fb, double fc, double tol,
          gsl_vector * x1, gsl_vector * dx1, 
          gsl_vector * x2, gsl_vector * dx2, gsl_vector * gradient,          
          double * step, double * f, double * gnorm)
{
  /* Starting at (x0, f0) move along the direction p to find a minimum
     f(x0 - lambda * p), returning the new point x1 = x0-lambda*p,
     f1=f(x1) and g1 = grad(f) at x1.  */

  double u = stepb;
  double v = stepa;
  double w = stepc;
  double fu = fb;
  double fv = fa;
  double fw = fc;

  double old2 = fabs(w - v);
  double old1 = fabs(v - u);

  double stepm, fm, pg, gnorm1;

  int iter = 0;

  gsl_vector_memcpy (x2, x1);
  gsl_vector_memcpy (dx2, dx1);

  *f = fb;
  *step = stepb;
  *gnorm = gsl_blas_dnrm2 (gradient);

mid_trial:

  iter++;

  if (iter > 10)
    {
      return;  /* MAX ITERATIONS */
    }

  {
    double dw = w - u;
    double dv = v - u;
    double du = 0.0;

    double e1 = ((fv - fu) * dw * dw + (fu - fw) * dv * dv);
    double e2 = 2.0 * ((fv - fu) * dw + (fu - fw) * dv);

    if (e2 != 0.0)
      {
        du = e1 / e2;
      }

    if (du > 0.0 && du < (stepc - stepb) && fabs(du) < 0.5 * old2)
      {
        stepm = u + du;
      }
    else if (du < 0.0 && du > (stepa - stepb) && fabs(du) < 0.5 * old2)
      {
        stepm = u + du;
      }
    else if ((stepc - stepb) > (stepb - stepa))
      {
        stepm = 0.38 * (stepc - stepb) + stepb;
      }
    else
      {
        stepm = stepb - 0.38 * (stepb - stepa);
      }
  }

  take_step (x, p, stepm, lambda, x1, dx1);

  fm = GSL_MULTIMIN_FN_EVAL_F (fdf, x1);

#ifdef DEBUG
  printf ("trying stepm = %g  fm = %.18e\n", stepm, fm);
#endif

  if (fm > fb)
    {
      if (fm < fv)
        {
          w = v;
          v = stepm;
          fw = fv;
          fv = fm;
        }
      else if (fm < fw)
        {
          w = stepm;
          fw = fm;
        }

      if (stepm < stepb)
        {
          stepa = stepm;
          fa = fm;
        }
      else
        {
          stepc = stepm;
          fc = fm;
        }
      goto mid_trial;
    }
  else if (fm <= fb)
    {
      old2 = old1;
      old1 = fabs(u - stepm);
      w = v;
      v = u;
      u = stepm;
      fw = fv;
      fv = fu;
      fu = fm;

      gsl_vector_memcpy (x2, x1);
      gsl_vector_memcpy (dx2, dx1);

      GSL_MULTIMIN_FN_EVAL_DF (fdf, x1, gradient);
      gsl_blas_ddot (p, gradient, &pg);
      gnorm1 = gsl_blas_dnrm2 (gradient);

#ifdef DEBUG
      printf ("p: "); gsl_vector_fprintf(stdout, p, "%g");
      printf ("g: "); gsl_vector_fprintf(stdout, gradient, "%g");
      printf ("gnorm: %.18e\n", gnorm1);
      printf ("pg: %.18e\n", pg);
      printf ("orth: %g\n", fabs (pg * lambda/ gnorm1));
#endif
      *f = fm;
      *step = stepm;
      *gnorm = gnorm1;

      if (fabs (pg * lambda / gnorm1) < tol)
        {
#ifdef DEBUG
          printf("ok!\n");
#endif
          return; /* SUCCESS */
        }

      if (stepm < stepb)
        {
          stepc = stepb;
          fc = fb;
          stepb = stepm;
          fb = fm;
        }
      else
        {
          stepa = stepb;
          fa = fb;
          stepb = stepm;
          fb = fm;
        }
      goto mid_trial;
    }
}
コード例 #4
0
static int
conjugate_fr_iterate (void *vstate, gsl_multimin_function_fdf * fdf,
                      gsl_vector * x, double *f,
                      gsl_vector * gradient, gsl_vector * dx)
{
  conjugate_fr_state_t *state = (conjugate_fr_state_t *) vstate;

  gsl_vector *x1 = state->x1;
  gsl_vector *dx1 = state->dx1;
  gsl_vector *x2 = state->x2;
  gsl_vector *p = state->p;
  gsl_vector *g0 = state->g0;

  double pnorm = state->pnorm;
  double g0norm = state->g0norm;

  double fa = *f, fb, fc;
  double dir;
  double stepa = 0.0, stepb, stepc = state->step, tol = state->tol;

  double g1norm;
  double pg;

  if (pnorm == 0.0 || g0norm == 0.0)
    {
      gsl_vector_set_zero (dx);
      return GSL_ENOPROG;
    }
  
  /* Determine which direction is downhill, +p or -p */

  gsl_blas_ddot (p, gradient, &pg);

  dir = (pg >= 0.0) ? +1.0 : -1.0;

  /* Compute new trial point at x_c= x - step * p, where p is the
     current direction */

  take_step (x, p, stepc, dir / pnorm, x1, dx);

  /* Evaluate function and gradient at new point xc */

  fc = GSL_MULTIMIN_FN_EVAL_F (fdf, x1);

  if (fc < fa)
    {
      /* Success, reduced the function value */
      state->step = stepc * 2.0;
      *f = fc;
      gsl_vector_memcpy (x, x1);
      GSL_MULTIMIN_FN_EVAL_DF (fdf, x1, gradient);
      return GSL_SUCCESS;
    }

#ifdef DEBUG
  printf ("got stepc = %g fc = %g\n", stepc, fc);
#endif

  /* Do a line minimisation in the region (xa,fa) (xc,fc) to find an
     intermediate (xb,fb) satisifying fa > fb < fc.  Choose an initial
     xb based on parabolic interpolation */

  intermediate_point (fdf, x, p, dir / pnorm, pg,
                      stepa, stepc, fa, fc, x1, dx1, gradient, &stepb, &fb);

  if (stepb == 0.0)
    {
      return GSL_ENOPROG;
    }

  minimize (fdf, x, p, dir / pnorm,
            stepa, stepb, stepc, fa, fb, fc, tol,
            x1, dx1, x2, dx, gradient, &(state->step), f, &g1norm);

  gsl_vector_memcpy (x, x2);

  /* Choose a new conjugate direction for the next step */

  state->iter = (state->iter + 1) % x->size;

  if (state->iter == 0)
    {
      gsl_vector_memcpy (p, gradient);
      state->pnorm = g1norm;
    }
  else
    {
      /* p' = g1 - beta * p */

      double beta = -pow (g1norm / g0norm, 2.0);
      gsl_blas_dscal (-beta, p);
      gsl_blas_daxpy (1.0, gradient, p);
      state->pnorm = gsl_blas_dnrm2 (p);
    }

  state->g0norm = g1norm;
  gsl_vector_memcpy (g0, gradient);

#ifdef DEBUG
  printf ("updated conjugate directions\n");
  printf ("p: ");
  gsl_vector_fprintf (stdout, p, "%g");
  printf ("g: ");
  gsl_vector_fprintf (stdout, gradient, "%g");
#endif

  return GSL_SUCCESS;
}
コード例 #5
0
static int
vector_bfgs_iterate (void *vstate, gsl_multimin_function_fdf * fdf,
                     gsl_vector * x, double *f,
                     gsl_vector * gradient, gsl_vector * dx)
{
  vector_bfgs_state_t *state = (vector_bfgs_state_t *) vstate;

  gsl_vector *x1 = state->x1;
  gsl_vector *dx1 = state->dx1;
  gsl_vector *x2 = state->x2;
  gsl_vector *p = state->p;
  gsl_vector *g0 = state->g0;
  gsl_vector *x0 = state->x0;

  double pnorm = state->pnorm;
  double g0norm = state->g0norm;

  double fa = *f, fb, fc;
  double dir;
  double stepa = 0.0, stepb, stepc = state->step, tol = state->tol;

  double g1norm;
  double pg;

  if (pnorm == 0.0 || g0norm == 0.0)
    {
      gsl_vector_set_zero (dx);
      return GSL_ENOPROG;
    }

  /* Determine which direction is downhill, +p or -p */

  gsl_blas_ddot (p, gradient, &pg);

  dir = (pg >= 0.0) ? +1.0 : -1.0;

  /* Compute new trial point at x_c= x - step * p, where p is the
     current direction */

  take_step (x, p, stepc, dir / pnorm, x1, dx);

  /* Evaluate function and gradient at new point xc */

  fc = GSL_MULTIMIN_FN_EVAL_F (fdf, x1);

  if (fc < fa)
    {
      /* Success, reduced the function value */
      state->step = stepc * 2.0;
      *f = fc;
      gsl_vector_memcpy (x, x1);
      GSL_MULTIMIN_FN_EVAL_DF (fdf, x1, gradient);
      return GSL_SUCCESS;
    }

#ifdef DEBUG
  printf ("got stepc = %g fc = %g\n", stepc, fc);
#endif

  /* Do a line minimisation in the region (xa,fa) (xc,fc) to find an
     intermediate (xb,fb) satisifying fa > fb < fc.  Choose an initial
     xb based on parabolic interpolation */

  intermediate_point (fdf, x, p, dir / pnorm, pg,
                      stepa, stepc, fa, fc, x1, dx1, gradient, &stepb, &fb);

  if (stepb == 0.0)
    {
      return GSL_ENOPROG;
    }

  minimize (fdf, x, p, dir / pnorm,
            stepa, stepb, stepc, fa, fb, fc, tol,
            x1, dx1, x2, dx, gradient, &(state->step), f, &g1norm);

  gsl_vector_memcpy (x, x2);

  /* Choose a new direction for the next step */

  state->iter = (state->iter + 1) % x->size;

  if (state->iter == 0)
    {
      gsl_vector_memcpy (p, gradient);
      state->pnorm = g1norm;
    }
  else
    {
      /* This is the BFGS update: */
      /* p' = g1 - A dx - B dg */
      /* A = - (1+ dg.dg/dx.dg) B + dg.g/dx.dg */
      /* B = dx.g/dx.dg */

      gsl_vector *dx0 = state->dx0;
      gsl_vector *dg0 = state->dg0;

      double dxg, dgg, dxdg, dgnorm, A, B;

      /* dx0 = x - x0 */
      gsl_vector_memcpy (dx0, x);
      gsl_blas_daxpy (-1.0, x0, dx0);

      /* dg0 = g - g0 */
      gsl_vector_memcpy (dg0, gradient);
      gsl_blas_daxpy (-1.0, g0, dg0);

      gsl_blas_ddot (dx0, gradient, &dxg);
      gsl_blas_ddot (dg0, gradient, &dgg);
      gsl_blas_ddot (dx0, dg0, &dxdg);

      dgnorm = gsl_blas_dnrm2 (dg0);

      if (dxdg != 0) 
        {
          B = dxg / dxdg;
          A = -(1.0 + dgnorm * dgnorm / dxdg) * B + dgg / dxdg;
        }
      else
        {
          B = 0;
          A = 0; 
        }

      gsl_vector_memcpy (p, gradient);
      gsl_blas_daxpy (-A, dx0, p);
      gsl_blas_daxpy (-B, dg0, p);

      state->pnorm = gsl_blas_dnrm2 (p);
    }

  gsl_vector_memcpy (g0, gradient);
  gsl_vector_memcpy (x0, x);
  state->g0norm = gsl_blas_dnrm2 (g0);

#ifdef DEBUG
  printf ("updated directions\n");
  printf ("p: ");
  gsl_vector_fprintf (stdout, p, "%g");
  printf ("g: ");
  gsl_vector_fprintf (stdout, gradient, "%g");
#endif

  return GSL_SUCCESS;
}