コード例 #1
0
void FPhysScene::TermPhysScene(uint32 SceneType)
{
	check(SceneType < NumPhysScenes);

#if WITH_PHYSX
	PxScene* PScene = GetPhysXScene(SceneType);
	if(PScene != NULL)
	{
#if WITH_APEX
		NxApexScene* ApexScene = GetApexScene(SceneType);
		if(ApexScene != NULL)
		{
			GPhysCommandHandler->DeferredRelease(ApexScene);
		}
#endif // #if WITH_APEX

		if ( SceneType == PST_Sync && VehicleManager != NULL )
		{
			delete VehicleManager;
			VehicleManager = NULL;
		}

#if WITH_SUBSTEPPING
		delete PhysSubSteppers[SceneType];
		PhysSubSteppers[SceneType] = NULL;
#endif

		// @todo block on any running scene before calling this
		GPhysCommandHandler->DeferredRelease(PScene);

		// Remove from the map
		GPhysXSceneMap.Remove(PhysXSceneIndex[SceneType]);
	}
#endif
}
コード例 #2
0
ファイル: PhysScene.cpp プロジェクト: didixp/Ark-Dev-Kit
void FPhysScene::ProcessPhysScene(uint32 SceneType)
{
	SCOPE_CYCLE_COUNTER(STAT_TotalPhysicsTime);
	SCOPE_CYCLE_COUNTER(STAT_PhysicsFetchDynamicsTime);

	check(SceneType < NumPhysScenes);
	if (bPhysXSceneExecuting[SceneType] == 0)
	{
		// Not executing this scene, must call TickPhysScene before calling this function again.
		UE_LOG(LogPhysics, Log, TEXT("WaitPhysScene`: Not executing this scene (%d) - aborting."), SceneType);
		return;
	}

	if (FrameLagAsync())
	{
		static_assert(PST_MAX == 3, "Physics scene static test failed."); // Here we assume the PST_Sync is the master and never fame lagged
		if (SceneType == PST_Sync)
		{
			// the one frame lagged one should be done by now.
			check(!FrameLaggedPhysicsSubsceneCompletion[PST_Async].GetReference() || FrameLaggedPhysicsSubsceneCompletion[PST_Async]->IsComplete());
		}
		else if (SceneType == PST_Async)
		{
			FrameLaggedPhysicsSubsceneCompletion[PST_Async] = NULL;
		}
	}


	// Reset execution flag

//This fetches and gets active transforms. It's important that the function that calls this locks because getting the transforms and using the data must be an atomic operation
#if WITH_PHYSX
	PxScene* PScene = GetPhysXScene(SceneType);
	check(PScene);
	PxU32 OutErrorCode = 0;

#if !WITH_APEX
	PScene->lockWrite();
	PScene->fetchResults(true, &OutErrorCode);
	PScene->unlockWrite();
#else	//	#if !WITH_APEX
	// The APEX scene calls the fetchResults function for the PhysX scene, so we only call ApexScene->fetchResults().
	NxApexScene* ApexScene = GetApexScene(SceneType);
	check(ApexScene);
	ApexScene->fetchResults(true, &OutErrorCode);
#endif	//	#if !WITH_APEX

	UpdateActiveTransforms(SceneType);
	if (OutErrorCode != 0)
	{
		UE_LOG(LogPhysics, Log, TEXT("PHYSX FETCHRESULTS ERROR: %d"), OutErrorCode);
	}
#endif // WITH_PHYSX

	PhysicsSubsceneCompletion[SceneType] = NULL;
	bPhysXSceneExecuting[SceneType] = false;
}
コード例 #3
0
void FPhysScene::ProcessPhysScene(uint32 SceneType)
{
	SCOPE_CYCLE_COUNTER(STAT_TotalPhysicsTime);
	SCOPE_CYCLE_COUNTER(STAT_PhysicsFetchDynamicsTime);

	check(SceneType < NumPhysScenes);
	if(	bPhysXSceneExecuting[SceneType] == 0 )
	{
		// Not executing this scene, must call TickPhysScene before calling this function again.
		UE_LOG(LogPhysics, Log, TEXT("WaitPhysScene`: Not executing this scene (%d) - aborting."), SceneType);
		return;
	}
	PhysicsSubsceneCompletion[SceneType] = NULL;
	if (FrameLagAsync())
	{
		checkAtCompileTime(PST_MAX == 2, Assumtiopns_about_physics_scenes); // Here we assume the PST_Sync is the master and never fame lagged
		if (SceneType == PST_Sync)
		{
			// the one frame lagged one should be done by now.
			check(!FrameLaggedPhysicsSubsceneCompletion[PST_Async].GetReference() || FrameLaggedPhysicsSubsceneCompletion[PST_Async]->IsComplete());
		}
		else
		{
			FrameLaggedPhysicsSubsceneCompletion[PST_Async] = NULL;
		}
	}

#if WITH_PHYSX
	PxScene* PScene = GetPhysXScene(SceneType);
	check(PScene);

	PxU32 OutErrorCode = 0;
#if !WITH_APEX
	PScene->lockWrite();
	PScene->fetchResults( true, &OutErrorCode );
	PScene->unlockWrite();
#else	//	#if !WITH_APEX
	// The APEX scene calls the fetchResults function for the PhysX scene, so we only call ApexScene->fetchResults().
	NxApexScene* ApexScene = GetApexScene(SceneType);
	check(ApexScene);
	ApexScene->fetchResults( true, &OutErrorCode );
#endif	//	#if !WITH_APEX
	if(OutErrorCode != 0)
	{
		UE_LOG(LogPhysics, Log, TEXT("PHYSX FETCHRESULTS ERROR: %d"), OutErrorCode);
	}
#endif // WITH_PHYSX

	// Reset execution flag
	bPhysXSceneExecuting[SceneType] = false;
}
コード例 #4
0
ファイル: PhysScene.cpp プロジェクト: colwalder/unrealengine
void FPhysScene::TermPhysScene(uint32 SceneType)
{
	check(SceneType < NumPhysScenes);

#if WITH_PHYSX
	PxScene* PScene = GetPhysXScene(SceneType);
	if (PScene != NULL)
	{
#if WITH_APEX
		NxApexScene* ApexScene = GetApexScene(SceneType);
		if (ApexScene != NULL)
		{
			GPhysCommandHandler->DeferredRelease(ApexScene);
		}
#endif // #if WITH_APEX

#if WITH_VEHICLE
		if (SceneType == PST_Sync && VehicleManager != NULL)
		{
			delete VehicleManager;
			VehicleManager = NULL;
		}
#endif

#if WITH_SUBSTEPPING

		if (SceneType == PST_Sync && PhysSubSteppers[SceneType])
		{
			PhysSubSteppers[SceneType]->SetVehicleManager(NULL);
		}

		delete PhysSubSteppers[SceneType];
		PhysSubSteppers[SceneType] = NULL;
#endif

		// @todo block on any running scene before calling this
		GPhysCommandHandler->DeferredRelease(PScene);
		GPhysCommandHandler->DeferredDeleteSimEventCallback(SimEventCallback[SceneType]);

		// Commands may have accumulated as the scene is terminated - flush any commands for this scene.
		GPhysCommandHandler->Flush();

		// Remove from the map
		GPhysXSceneMap.Remove(PhysXSceneIndex[SceneType]);
	}
#endif
}
コード例 #5
0
bool FPhysScene::SubstepSimulation(uint32 SceneType, FGraphEventRef &InOutCompletionEvent)
{
	float UseDelta = UseSyncTime(SceneType)? SyncDeltaSeconds : DeltaSeconds;
	float SubTime = PhysSubSteppers[SceneType]->UpdateTime(UseDelta);
	PxScene* PScene = GetPhysXScene(SceneType);
#if WITH_APEX
	NxApexScene* ApexScene = GetApexScene(SceneType);
	if(!ApexScene || SubTime <= 0.f)
	{
		return false;
	}else
	{
		//we have valid scene and subtime so enqueue task
		PhysXCompletionTask* Task = new PhysXCompletionTask(InOutCompletionEvent, PScene->getTaskManager());
		FSimpleDelegateGraphTask::CreateAndDispatchWhenReady(FSimpleDelegateGraphTask::FDelegate::CreateRaw(PhysSubSteppers[SceneType], &FPhysSubstepTask::StepSimulation, ApexScene, Task), TEXT("SubstepSimulationImp"));
		return true;
	}
#endif

}
コード例 #6
0
ファイル: PhysScene.cpp プロジェクト: didixp/Ark-Dev-Kit
/** Add any debug lines from the physics scene to the supplied line batcher. */
void FPhysScene::AddDebugLines(uint32 SceneType, class ULineBatchComponent* LineBatcherToUse)
{
	check(SceneType < NumPhysScenes);

	if (LineBatcherToUse)
	{
#if WITH_PHYSX
		// Render PhysX debug data
		PxScene* PScene = GetPhysXScene(SceneType);
		const PxRenderBuffer& DebugData = PScene->getRenderBuffer();
		BatchPxRenderBufferLines(*LineBatcherToUse, DebugData);
#if WITH_APEX
		// Render APEX debug data
		NxApexScene* ApexScene = GetApexScene(SceneType);
		const PxRenderBuffer* RenderBuffer = ApexScene->getRenderBuffer();
		if (RenderBuffer != NULL)
		{
			BatchPxRenderBufferLines(*LineBatcherToUse, *RenderBuffer);
			ApexScene->updateRenderResources();
		}
#endif	// WITH_APEX
#endif	// WITH_PHYSX
	}
}
コード例 #7
0
ファイル: PhysScene.cpp プロジェクト: didixp/Ark-Dev-Kit
/** Exposes creation of physics-engine scene outside Engine (for use with PhAT for example). */
FPhysScene::FPhysScene()
#if WITH_APEX
	: PendingApexDamageManager(new FPendingApexDamageManager)
#endif
{
	LineBatcher = NULL;
	OwningWorld = NULL;
#if WITH_PHYSX
#if WITH_VEHICLE
	VehicleManager = NULL;
#endif
	PhysxUserData = FPhysxUserData(this);

	// Create dispatcher for tasks
	if (PhysSingleThreadedMode())
	{
		CPUDispatcher = new FPhysXCPUDispatcherSingleThread();
	}
	else
	{
		CPUDispatcher = new FPhysXCPUDispatcher();
	}
	// Create sim event callback
	SimEventCallback = new FPhysXSimEventCallback();
#endif	//#if WITH_PHYSX

	// initialize console variable - this console variable change requires it to restart scene. 
	static bool bInitializeConsoleVariable = true;
	static float InitialAverageFrameRate = 0.016f;


	UPhysicsSettings * PhysSetting = UPhysicsSettings::Get();
	if (bInitializeConsoleVariable)
	{
		InitialAverageFrameRate = PhysSetting->InitialAverageFrameRate;
		FrameTimeSmoothingFactor[PST_Sync] = PhysSetting->SyncSceneSmoothingFactor;
		FrameTimeSmoothingFactor[PST_Async] = PhysSetting->AsyncSceneSmoothingFactor;
		bInitializeConsoleVariable = false;
	}

#if WITH_SUBSTEPPING
	bSubstepping = PhysSetting->bSubstepping;
	bSubsteppingAsync = PhysSetting->bSubsteppingAsync;
#endif
	bAsyncSceneEnabled = PhysSetting->bEnableAsyncScene;
	NumPhysScenes = bAsyncSceneEnabled ? PST_Async + 1 : PST_Cloth + 1;


	// Create scenes of all scene types
	for (uint32 SceneType = 0; SceneType < NumPhysScenes; ++SceneType)
	{
		// Create the physics scene
		InitPhysScene(SceneType);

		// Also initialize scene data
		bPhysXSceneExecuting[SceneType] = false;

		// Initialize to a value which would be acceptable if FrameTimeSmoothingFactor[i] = 1.0f, i.e. constant simulation substeps
		AveragedFrameTime[SceneType] = InitialAverageFrameRate;

		// gets from console variable, and clamp to [0, 1] - 1 should be fixed time as 30 fps
		FrameTimeSmoothingFactor[SceneType] = FMath::Clamp<float>(FrameTimeSmoothingFactor[SceneType], 0.f, 1.f);
	}

	if (!bAsyncSceneEnabled)
	{
		PhysXSceneIndex[PST_Async] = 0;
	}

	// Make sure we use the sync scene for apex world support of destructibles in the async scene
#if WITH_APEX
	NxApexScene* ApexScene = GetApexScene(bAsyncSceneEnabled ? PST_Async : PST_Sync);
	check(ApexScene);
	PxScene* SyncPhysXScene = GetPhysXScene(PST_Sync);
	check(SyncPhysXScene);
	check(GApexModuleDestructible);
	GApexModuleDestructible->setWorldSupportPhysXScene(*ApexScene, SyncPhysXScene);
	GApexModuleDestructible->setDamageApplicationRaycastFlags(NxDestructibleActorRaycastFlags::AllChunks, *ApexScene);
#endif
}
コード例 #8
0
ファイル: PhysScene.cpp プロジェクト: didixp/Ark-Dev-Kit
/** Exposes ticking of physics-engine scene outside Engine. */
void FPhysScene::TickPhysScene(uint32 SceneType, FGraphEventRef& InOutCompletionEvent)
{
	SCOPE_CYCLE_COUNTER(STAT_TotalPhysicsTime);
	SCOPE_CYCLE_COUNTER(STAT_PhysicsKickOffDynamicsTime);

	check(SceneType < NumPhysScenes);

	if (bPhysXSceneExecuting[SceneType] != 0)
	{
		// Already executing this scene, must call WaitPhysScene before calling this function again.
		UE_LOG(LogPhysics, Log, TEXT("TickPhysScene: Already executing scene (%d) - aborting."), SceneType);
		return;
	}

#if WITH_SUBSTEPPING
	if (IsSubstepping(SceneType))	//we don't bother sub-stepping cloth
	{
		//We're about to start stepping so swap buffers. Might want to find a better place for this?
		PhysSubSteppers[SceneType]->SwapBuffers();
	}
#endif

	/**
	* clamp down... if this happens we are simming physics slower than real-time, so be careful with it.
	* it can improve framerate dramatically (really, it is the same as scaling all velocities down and
	* enlarging all timesteps) but at the same time, it will screw with networking (client and server will
	* diverge a lot more.)
	*/

	float UseDelta = FMath::Min(UseSyncTime(SceneType) ? SyncDeltaSeconds : DeltaSeconds, MaxPhysicsDeltaTime);

	// Only simulate a positive time step.
	if (UseDelta <= 0.f)
	{
		if (UseDelta < 0.f)
		{
			// only do this if negative. Otherwise, whenever we pause, this will come up
			UE_LOG(LogPhysics, Warning, TEXT("TickPhysScene: Negative timestep (%f) - aborting."), UseDelta);
		}
		return;
	}

#if WITH_PHYSX
	GatherPhysXStats(GetPhysXScene(SceneType), SceneType);
#endif



	/**
	* Weight frame time according to PhysScene settings.
	*/
	AveragedFrameTime[SceneType] *= FrameTimeSmoothingFactor[SceneType];
	AveragedFrameTime[SceneType] += (1.0f - FrameTimeSmoothingFactor[SceneType])*UseDelta;

	// Set execution flag
	bPhysXSceneExecuting[SceneType] = true;

	check(!InOutCompletionEvent.GetReference()); // these should be gone because nothing is outstanding
	InOutCompletionEvent = FGraphEvent::CreateGraphEvent();
	bool bTaskOutstanding = false;

#if WITH_PHYSX

#if WITH_VEHICLE
	if (VehicleManager && SceneType == PST_Sync)
	{
		float TickTime = AveragedFrameTime[SceneType];
#if WITH_SUBSTEPPING
		if (IsSubstepping(SceneType))
		{
			TickTime = UseSyncTime(SceneType) ? SyncDeltaSeconds : DeltaSeconds;
		}
#endif
		VehicleManager->PreTick(TickTime);
#if WITH_SUBSTEPPING
		if (IsSubstepping(SceneType) == false)
#endif
		{
			VehicleManager->Update(AveragedFrameTime[SceneType]);
		}
	}
#endif

#if !WITH_APEX
	PxScene* PScene = GetPhysXScene(SceneType);
	if (PScene && (UseDelta > 0.f))
	{
		PhysXCompletionTask* Task = new PhysXCompletionTask(InOutCompletionEvent, PScene->getTaskManager());
		PScene->lockWrite();
		PScene->simulate(AveragedFrameTime[SceneType], Task);
		PScene->unlockWrite();
		Task->removeReference();
		bTaskOutstanding = true;
	}
#else	//	#if !WITH_APEX
	// The APEX scene calls the simulate function for the PhysX scene, so we only call ApexScene->simulate().
	NxApexScene* ApexScene = GetApexScene(SceneType);
	if(ApexScene && UseDelta > 0.f)
	{
#if WITH_SUBSTEPPING
		if (IsSubstepping(SceneType)) //we don't bother sub-stepping cloth
		{
			bTaskOutstanding = SubstepSimulation(SceneType, InOutCompletionEvent);
		}else
#endif
		{
			PhysXCompletionTask* Task = new PhysXCompletionTask(InOutCompletionEvent, ApexScene->getTaskManager());
			ApexScene->simulate(AveragedFrameTime[SceneType], true, Task);
			Task->removeReference();
			bTaskOutstanding = true;
		}
	}
#endif	//	#if !WITH_APEX
#endif // WITH_PHYSX
	if (!bTaskOutstanding)
	{
		InOutCompletionEvent->DispatchSubsequents(); // nothing to do, so nothing to wait for
	}
#if WITH_SUBSTEPPING
	bSubstepping = UPhysicsSettings::Get()->bSubstepping;
	bSubsteppingAsync = UPhysicsSettings::Get()->bSubsteppingAsync;
#endif
}