コード例 #1
0
ファイル: stm32f7xx_hal_sai_ex.c プロジェクト: 0xBADCA7/lk
/**
* @brief  Get SAI Input Clock based on SAI source clock selection
* @param  hsai: pointer to a SAI_HandleTypeDef structure that contains
*               the configuration information for SAI module.
* @retval SAI Clock Input
*/
uint32_t SAI_GetInputClock(SAI_HandleTypeDef *hsai)
{
    /* This variable used to store the SAI_CK_x (value in Hz) */
    uint32_t saiclocksource = 0;

    if ((hsai->Instance == SAI1_Block_A) || (hsai->Instance == SAI1_Block_B)) {
        saiclocksource = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SAI1);
    } else { /* SAI2_Block_A || SAI2_Block_B*/
        saiclocksource = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SAI2);
    }
    /* the return result is the value of SAI clock */
    return saiclocksource;
}
コード例 #2
0
/**
  * @brief  Perform an ADC automatic self-calibration
  *         Calibration prerequisite: ADC must be disabled (execute this
  *         function before HAL_ADC_Start() or after HAL_ADC_Stop() ).
  *         During calibration process, ADC is enabled. ADC is let enabled at
  *         the completion of this function.
  * @param  hadc: ADC handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADCEx_Calibration_Start(ADC_HandleTypeDef* hadc)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  uint32_t tickstart;
  __IO uint32_t wait_loop_index = 0;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  /* Process locked */
  __HAL_LOCK(hadc);
    
  /* 1. Calibration prerequisite:                                             */
  /*    - ADC must be disabled for at least two ADC clock cycles in disable   */
  /*      mode before ADC enable                                              */
  /* Stop potential conversion on going, on regular and injected groups       */
  /* Disable ADC peripheral */
  tmp_hal_status = ADC_ConversionStop_Disable(hadc);
  
  /* Check if ADC is effectively disabled */
  if (tmp_hal_status != HAL_ERROR)
  {
    /* Hardware prerequisite: delay before starting the calibration.          */
    /*  - Computation of CPU clock cycles corresponding to ADC clock cycles.  */
    /*  - Wait for the expected ADC clock cycles delay */
    wait_loop_index = ((SystemCoreClock
                        / HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_ADC))
                       * ADC_PRECALIBRATION_DELAY_ADCCLOCKCYCLES        );

    while(wait_loop_index != 0)
    {
      wait_loop_index--;
    }
    
    /* 2. Enable the ADC peripheral */
    ADC_Enable(hadc);
    

    /* 3. Resets ADC calibration registers */  
    SET_BIT(hadc->Instance->CR2, ADC_CR2_RSTCAL);
    
    tickstart = HAL_GetTick();  

    /* Wait for calibration reset completion */
    while(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_RSTCAL))
    {
      if((HAL_GetTick() - tickstart) > ADC_CALIBRATION_TIMEOUT)
      {
        /* Update ADC state machine to error */
        hadc->State = HAL_ADC_STATE_ERROR;
        
        /* Process unlocked */
        __HAL_UNLOCK(hadc);
        
        return HAL_ERROR;
      }
    }
    
    
    /* 4. Start ADC calibration */
    SET_BIT(hadc->Instance->CR2, ADC_CR2_CAL);
    
    tickstart = HAL_GetTick();  

    /* Wait for calibration completion */
    while(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_CAL))
    {
      if((HAL_GetTick() - tickstart) > ADC_CALIBRATION_TIMEOUT)
      {
        /* Update ADC state machine to error */
        hadc->State = HAL_ADC_STATE_ERROR;
        
        /* Process unlocked */
        __HAL_UNLOCK(hadc);
        
        return HAL_ERROR;
      }
    }
    
  }
  
  /* Process unlocked */
  __HAL_UNLOCK(hadc);
  
  /* Return function status */
  return tmp_hal_status;
}
コード例 #3
0
/**
  * @brief  Wait for injected group conversion to be completed.
  * @param  hadc: ADC handle
  * @param  Timeout: Timeout value in millisecond.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADCEx_InjectedPollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
{
  uint32_t tickstart;

  /* Variables for polling in case of scan mode enabled and polling for each  */
  /* conversion.                                                              */
  __IO uint32_t Conversion_Timeout_CPU_cycles = 0;
  uint32_t Conversion_Timeout_CPU_cycles_max = 0;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  /* Get timeout */
  tickstart = HAL_GetTick();  
     
  /* Polling for end of conversion: differentiation if single/sequence        */
  /* conversion.                                                              */
  /* For injected group, flag JEOC is set only at the end of the sequence,    */
  /* not for each conversion within the sequence.                             */
  /*  - If single conversion for injected group (scan mode disabled or        */
  /*    InjectedNbrOfConversion ==1), flag jEOC is used to determine the      */
  /*    conversion completion.                                                */
  /*  - If sequence conversion for injected group (scan mode enabled and      */
  /*    InjectedNbrOfConversion >=2), flag JEOC is set only at the end of the */
  /*    sequence.                                                             */
  /*    To poll for each conversion, the maximum conversion time is computed  */
  /*    from ADC conversion time (selected sampling time + conversion time of */
  /*    12.5 ADC clock cycles) and APB2/ADC clock prescalers (depending on    */
  /*    settings, conversion time range can be from 28 to 32256 CPU cycles).  */
  if ((hadc->Instance->JSQR & ADC_JSQR_JL) == RESET)
  {
    /* Wait until End of Conversion flag is raised */
    while(HAL_IS_BIT_CLR(hadc->Instance->SR, ADC_FLAG_JEOC))
    {
      /* Check if timeout is disabled (set to infinite wait) */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0) || ((HAL_GetTick() - tickstart ) > Timeout))
        {
          /* Update ADC state machine to timeout */
          hadc->State = HAL_ADC_STATE_TIMEOUT;
          
          /* Process unlocked */
          __HAL_UNLOCK(hadc);
          
          return HAL_ERROR;
        }
      }
    }
  }
  else
  {
    /* Poll with maximum conversion time */
    /*  - Computation of CPU clock cycles corresponding to ADC clock cycles   */
    /*    and ADC maximum conversion cycles on all channels.                  */
    /*  - Wait for the expected ADC clock cycles delay                        */
    Conversion_Timeout_CPU_cycles_max = ((SystemCoreClock
                                          / HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_ADC))
                                         * ADC_CONVCYCLES_MAX_RANGE(hadc)                 );

    while(Conversion_Timeout_CPU_cycles < Conversion_Timeout_CPU_cycles_max)
    {
      /* Check if timeout is disabled (set to infinite wait) */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
        {
          /* Update ADC state machine to timeout */
          hadc->State = HAL_ADC_STATE_TIMEOUT;

          /* Process unlocked */
          __HAL_UNLOCK(hadc);
          
          return HAL_ERROR;
        }
      }
      Conversion_Timeout_CPU_cycles ++;
    }
  }

  /* Clear injected group conversion flag (and regular conversion flag raised */
  /* simultaneously)                                                          */
  __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JSTRT | ADC_FLAG_JEOC | ADC_FLAG_EOC);
  
  /* Update state machine on conversion status if not in error state */
  if(hadc->State != HAL_ADC_STATE_ERROR)
  {
    /* Update ADC state machine */
    if(hadc->State != HAL_ADC_STATE_EOC_INJ_REG)
    {

      if(hadc->State == HAL_ADC_STATE_EOC_REG)
      {
        /* Change ADC state */
        hadc->State = HAL_ADC_STATE_EOC_INJ_REG;  
      }
      else
      {
        /* Change ADC state */
        hadc->State = HAL_ADC_STATE_EOC_INJ;
      }
    }
  }
      
  /* Return ADC state */
  return HAL_OK;
}
コード例 #4
0
/**
  * @brief Initializes the I2S according to the specified parameters 
  *         in the I2S_InitTypeDef and create the associated handle.
  * @param  hi2s: pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_I2S_Init(I2S_HandleTypeDef *hi2s)
{
  uint32_t i2sdiv = 2, i2sodd = 0, packetlength = 1;
  uint32_t tmp = 0, i2sclk = 0;
  
  /* Check the I2S handle allocation */
  if(hi2s == NULL)
  {
    return HAL_ERROR;
  }
  
  /* Check the I2S parameters */
  assert_param(IS_I2S_ALL_INSTANCE(hi2s->Instance));
  assert_param(IS_I2S_MODE(hi2s->Init.Mode));
  assert_param(IS_I2S_STANDARD(hi2s->Init.Standard));
  assert_param(IS_I2S_DATA_FORMAT(hi2s->Init.DataFormat));
  assert_param(IS_I2S_MCLK_OUTPUT(hi2s->Init.MCLKOutput));
  assert_param(IS_I2S_AUDIO_FREQ(hi2s->Init.AudioFreq));
  assert_param(IS_I2S_CPOL(hi2s->Init.CPOL));  
  
  if(hi2s->State == HAL_I2S_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    hi2s-> Lock = HAL_UNLOCKED;
    
    /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */
    HAL_I2S_MspInit(hi2s);
  }
  
  hi2s->State = HAL_I2S_STATE_BUSY;

  /* If the default value has to be written, reinitialize i2sdiv and i2sodd*/
  if(hi2s->Init.AudioFreq == I2S_AUDIOFREQ_DEFAULT)
  {
    i2sodd = (uint32_t)0;
    i2sdiv = (uint32_t)2;   
  }
  /* If the requested audio frequency is not the default, compute the prescaler */
  else
  {
    /* Check the frame length (For the Prescaler computing) *******************/
    if(hi2s->Init.DataFormat == I2S_DATAFORMAT_16B)
    {
      /* Packet length is 16 bits */
      packetlength = 1;
    }
    else
    {
      /* Packet length is 32 bits */
      packetlength = 2;
    }
    
    if(hi2s->Instance == SPI2)
    {
      /* Get the source clock value: based on SPI2 Instance */
      i2sclk = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_I2S2);
    }
    else if(hi2s->Instance == SPI3)
    {
      /* Get the source clock value: based on SPI3 Instance */
      i2sclk = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_I2S3);
    }
    else
    {
      /* Get the source clock value: based on System Clock value */
      i2sclk = HAL_RCC_GetSysClockFreq();   
    }
    if(i2sclk == 0)
    {
      return HAL_ERROR;
    }
    
    /* Compute the Real divider depending on the MCLK output state, with a floating point */
    if(hi2s->Init.MCLKOutput == I2S_MCLKOUTPUT_ENABLE)
    {
      /* MCLK output is enabled */
      tmp = (uint32_t)(((((i2sclk / 256) * 10) / hi2s->Init.AudioFreq)) + 5);
    }
    else
    {
      /* MCLK output is disabled */
      tmp = (uint32_t)(((((i2sclk / (32 * packetlength)) *10 ) / hi2s->Init.AudioFreq)) + 5);
    }

    /* Remove the flatting point */
    tmp = tmp / 10;  

    /* Check the parity of the divider */
    i2sodd = (uint32_t)(tmp & (uint32_t)1);

    /* Compute the i2sdiv prescaler */
    i2sdiv = (uint32_t)((tmp - i2sodd) / 2);

    /* Get the Mask for the Odd bit (SPI_I2SPR[8]) register */
    i2sodd = (uint32_t) (i2sodd << 8);
  }

  /* Test if the divider is 1 or 0 or greater than 0xFF */
  if((i2sdiv < 2) || (i2sdiv > 0xFF))
  {
    /* Set the default values */
    i2sdiv = 2;
    i2sodd = 0;
  }

  /*----------------------- SPIx I2SCFGR & I2SPR Configuration ----------------*/
  /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */
  /* And configure the I2S with the I2S_InitStruct values                      */
  MODIFY_REG( hi2s->Instance->I2SCFGR, (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN |\
                                        SPI_I2SCFGR_CKPOL | SPI_I2SCFGR_I2SSTD |\
                                        SPI_I2SCFGR_PCMSYNC | SPI_I2SCFGR_I2SCFG |\
                                        SPI_I2SCFGR_I2SE  | SPI_I2SCFGR_I2SMOD),\
                                       (SPI_I2SCFGR_I2SMOD | hi2s->Init.Mode |\
                                        hi2s->Init.Standard | hi2s->Init.DataFormat |\
                                        hi2s->Init.CPOL));

  /* Write to SPIx I2SPR register the computed value */
  hi2s->Instance->I2SPR = (uint32_t)((uint32_t)i2sdiv | (uint32_t)(i2sodd | (uint32_t)hi2s->Init.MCLKOutput));

  hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
  hi2s->State= HAL_I2S_STATE_READY;

  return HAL_OK;
}