コード例 #1
0
void transform(const quint8 *srcU8, quint8 *dstU8, qint32 nPixels) const
{
    KisColorBalanceMath *bal = new KisColorBalanceMath();
    const RGBPixel* src = reinterpret_cast<const RGBPixel*>(srcU8);
    RGBPixel* dst = reinterpret_cast<RGBPixel*>(dstU8);
    float value_red, value_green, value_blue, hue, saturation, lightness;

    while(nPixels > 0) {

        float red = SCALE_TO_FLOAT(src->red);
        float green = SCALE_TO_FLOAT(src->green);
        float blue = SCALE_TO_FLOAT(src->blue);
        RGBToHSL(red, green, blue, &hue, &saturation, &lightness);

        value_red = bal->colorBalanceTransform(red, lightness, m_cyan_shadows, m_cyan_midtones, m_cyan_highlights);
        value_green = bal->colorBalanceTransform(green, lightness, m_magenta_shadows, m_magenta_midtones, m_magenta_highlights);
        value_blue = bal->colorBalanceTransform(blue, lightness, m_yellow_shadows, m_yellow_midtones, m_yellow_highlights);

        if(m_preserve_luminosity)
        {
            float h1, s1, l1, h2, s2, l2;
            RGBToHSL(SCALE_TO_FLOAT(src->red), SCALE_TO_FLOAT(src->green), SCALE_TO_FLOAT(src->blue), &h1, &s1, &l1);
            RGBToHSL(value_red, value_green, value_blue, &h2, &s2, &l2);
            HSLToRGB(h2, s2, l1, &value_red, &value_green, &value_blue);
        }
        dst->red = SCALE_FROM_FLOAT(value_red);
        dst->green = SCALE_FROM_FLOAT(value_green);
        dst->blue = SCALE_FROM_FLOAT(value_blue);
        dst->alpha = src->alpha;

        --nPixels;
        ++src;
        ++dst;
    }
}
コード例 #2
0
ファイル: Colour.cpp プロジェクト: mattcawley/mnews
void CColour::SetHSL(int h,int s,int l)
{
    double hd = (h / 240.0);
    double sd = (s / 240.0);
    double ld = (l / 240.0);

    double r,g,b;
    HSLToRGB(hd,sd,ld,r,g,b);

    SetRGB((int)(r*255.0),(int)(g*255.0),(int)(b*255.0));
}
コード例 #3
0
KoColor KisVisualColorSelectorShape::convertShapeCoordinateToKoColor(QPointF coordinates, bool cursor)
{
    //qDebug() << this  << ">>>>>>>>> convertShapeCoordinateToKoColor()" << coordinates;

    KoColor c = m_d->currentColor;
    QVector <float> channelValues (c.colorSpace()->channelCount());
    channelValues.fill(1.0);
    c.colorSpace()->normalisedChannelsValue(c.data(), channelValues);
    QVector <float> channelValuesDisplay = channelValues;
    QVector <qreal> maxvalue(c.colorSpace()->channelCount());
    maxvalue.fill(1.0);

    if (m_d->displayRenderer
            && (m_d->colorSpace->colorDepthId() == Float16BitsColorDepthID
                || m_d->colorSpace->colorDepthId() == Float32BitsColorDepthID
                || m_d->colorSpace->colorDepthId() == Float64BitsColorDepthID)
            && m_d->colorSpace->colorModelId() != LABAColorModelID
            && m_d->colorSpace->colorModelId() != CMYKAColorModelID) {

        for (int ch = 0; ch < maxvalue.size(); ch++) {
            KoChannelInfo *channel = m_d->colorSpace->channels()[ch];
            maxvalue[ch] = m_d->displayRenderer->maxVisibleFloatValue(channel);
            channelValues[ch] = channelValues[ch]/(maxvalue[ch]);
            channelValuesDisplay[KoChannelInfo::displayPositionToChannelIndex(ch, m_d->colorSpace->channels())] = channelValues[ch];
        }
    }
    else {
        for (int i =0; i < channelValues.size();i++) {
            channelValuesDisplay[KoChannelInfo::displayPositionToChannelIndex(i, m_d->colorSpace->channels())] = qBound((float)0.0,channelValues[i], (float)1.0);
        }
    }

    qreal huedivider = 1.0;
    qreal huedivider2 = 1.0;

    if (m_d->channel1 == 0) {
        huedivider = 360.0;
    }

    if (m_d->channel2 == 0) {
        huedivider2 = 360.0;
    }

    if (m_d->model != ColorModel::Channel && c.colorSpace()->colorModelId().id() == "RGBA") {

        if (m_d->model == ColorModel::HSV) {
            /*
             * RGBToHSV has a undefined hue possibility. This means that hue will be -1.
             * This can be annoying for dealing with a selector, but I understand it is being
             * used for the KoColorSelector... For now implement a qMax here.
             */
            QVector <float> inbetween(3);
            RGBToHSV(channelValuesDisplay[0],channelValuesDisplay[1], channelValuesDisplay[2], &inbetween[0], &inbetween[1], &inbetween[2]);
            inbetween = convertvectorqrealTofloat(getHSX(convertvectorfloatToqreal(inbetween)));
            inbetween[m_d->channel1] = coordinates.x()*huedivider;
            if (m_d->dimension == Dimensions::twodimensional) {
                inbetween[m_d->channel2] = coordinates.y()*huedivider2;
            }
            if (cursor) {
                setHSX(convertvectorfloatToqreal(inbetween));
                Q_EMIT sigHSXchange();
            }
            HSVToRGB(qMax(inbetween[0],(float)0.0), inbetween[1], inbetween[2], &channelValuesDisplay[0], &channelValuesDisplay[1], &channelValuesDisplay[2]);
        }
        else if (m_d->model == ColorModel::HSL) {
            /*
             * HSLToRGB can give negative values on the grey. I fixed the fromNormalisedChannel function to clamp,
             * but you might want to manually clamp for floating point values.
             */
            QVector <float> inbetween(3);
            RGBToHSL(channelValuesDisplay[0],channelValuesDisplay[1], channelValuesDisplay[2], &inbetween[0], &inbetween[1], &inbetween[2]);
            inbetween = convertvectorqrealTofloat(getHSX(convertvectorfloatToqreal(inbetween)));
            inbetween[m_d->channel1] = fmod(coordinates.x()*huedivider, 360.0);
            if (m_d->dimension == Dimensions::twodimensional) {
                inbetween[m_d->channel2] = coordinates.y()*huedivider2;
            }
            if (cursor) {
                setHSX(convertvectorfloatToqreal(inbetween));
                Q_EMIT sigHSXchange();
            }
            HSLToRGB(qMax(inbetween[0], (float)0.0), inbetween[1], inbetween[2], &channelValuesDisplay[0], &channelValuesDisplay[1], &channelValuesDisplay[2]);
        }
        else if (m_d->model == ColorModel::HSI) {
            /*
             * HSI is a modified HSY function.
             */
            QVector <qreal> chan2 = convertvectorfloatToqreal(channelValuesDisplay);
            QVector <qreal> inbetween(3);
            RGBToHSI(chan2[0],chan2[1], chan2[2], &inbetween[0], &inbetween[1], &inbetween[2]);
            inbetween = getHSX(inbetween);
            inbetween[m_d->channel1] = coordinates.x();
            if (m_d->dimension == Dimensions::twodimensional) {
                inbetween[m_d->channel2] = coordinates.y();
            }
            if (cursor) {
                setHSX(inbetween);
                Q_EMIT sigHSXchange();
            }
            HSIToRGB(inbetween[0], inbetween[1], inbetween[2],&chan2[0],&chan2[1], &chan2[2]);
            channelValuesDisplay = convertvectorqrealTofloat(chan2);
        }
        else /*if (m_d->model == ColorModel::HSY)*/ {
            /*
             * HSY is pretty slow to render due being a pretty over-the-top function.
             * Might be worth investigating whether HCY can be used instead, but I have had
             * some weird results with that.
             */
            QVector <qreal> luma= m_d->colorSpace->lumaCoefficients();
            QVector <qreal> chan2 = convertvectorfloatToqreal(channelValuesDisplay);
            QVector <qreal> inbetween(3);
            RGBToHSY(chan2[0],chan2[1], chan2[2], &inbetween[0], &inbetween[1], &inbetween[2],
                    luma[0], luma[1], luma[2]);
            inbetween = getHSX(inbetween);
            inbetween[m_d->channel1] = coordinates.x();
            if (m_d->dimension == Dimensions::twodimensional) {
                inbetween[m_d->channel2] = coordinates.y();
            }
            if (cursor) {
                setHSX(inbetween);
                Q_EMIT sigHSXchange();
            }
            HSYToRGB(inbetween[0], inbetween[1], inbetween[2],&chan2[0],&chan2[1], &chan2[2],
                    luma[0], luma[1], luma[2]);
            channelValuesDisplay = convertvectorqrealTofloat(chan2);
        }

    }
    else {
        channelValuesDisplay[m_d->channel1] = coordinates.x();
        if (m_d->dimension == Dimensions::twodimensional) {
            channelValuesDisplay[m_d->channel2] = coordinates.y();
        }
    }

    for (int i=0; i<channelValues.size();i++) {
        channelValues[i] = channelValuesDisplay[KoChannelInfo::displayPositionToChannelIndex(i, m_d->colorSpace->channels())]*(maxvalue[i]);
    }

    c.colorSpace()->fromNormalisedChannelsValue(c.data(), channelValues);

    return c;
}
コード例 #4
0
    void transform(const quint8 *srcU8, quint8 *dstU8, qint32 nPixels) const
    {

        //if (m_model="RGBA" || m_colorize) {
        /*It'd be nice to have LCH automatically selector for LAB in the future, but I don't know how to select LAB 
         * */
            const RGBPixel* src = reinterpret_cast<const RGBPixel*>(srcU8);
            RGBPixel* dst = reinterpret_cast<RGBPixel*>(dstU8);
            float h, s, v, r, g, b;
            qreal lumaR, lumaG, lumaB;
            //Default to rec 709 when there's no coefficients given//
            if (m_lumaRed<=0 || m_lumaGreen<=0 || m_lumaBlue<=0) {
                lumaR   = 0.2126;
                lumaG   = 0.7152;
                lumaB   = 0.0722;
            } else {
                lumaR   = m_lumaRed;
                lumaG   = m_lumaGreen;
                lumaB   = m_lumaBlue;
            }
            while (nPixels > 0) {

                if (m_colorize) {
                    h = m_adj_h * 360;
                    if (h >= 360.0) h = 0;

                    s = m_adj_s;

                    r = SCALE_TO_FLOAT(src->red);
                    g = SCALE_TO_FLOAT(src->green);
                    b = SCALE_TO_FLOAT(src->blue);

                    float luminance = r * lumaR + g * lumaG + b * lumaB;

                    if (m_adj_v > 0) {
                        luminance *= (1.0 - m_adj_v);
                        luminance += 1.0 - (1.0 - m_adj_v);
                    }
                    else if (m_adj_v < 0 ){
                        luminance *= (m_adj_v + 1.0);
                    }
                    v = luminance;
                    HSLToRGB(h, s, v, &r, &g, &b);

                }
                else {

                    if (m_type == 0) {
                        RGBToHSV(SCALE_TO_FLOAT(src->red), SCALE_TO_FLOAT(src->green), SCALE_TO_FLOAT(src->blue), &h, &s, &v);
                        h += m_adj_h * 180;
                        if (h > 360) h -= 360;
                        if (h < 0) h += 360;
                        s += m_adj_s;
                        v += m_adj_v;
                        HSVToRGB(h, s, v, &r, &g, &b);
                    } else if (m_type == 1) {

                        RGBToHSL(SCALE_TO_FLOAT(src->red), SCALE_TO_FLOAT(src->green), SCALE_TO_FLOAT(src->blue), &h, &s, &v);

                        h += m_adj_h * 180;
                        if (h > 360) h -= 360;
                        if (h < 0) h += 360;

                        s *= (m_adj_s + 1.0);
                        if (s < 0.0) s = 0.0;
                        if (s > 1.0) s = 1.0;

                        if (m_adj_v < 0)
                            v *= (m_adj_v + 1.0);
                        else
                            v += (m_adj_v * (1.0 - v));


                        HSLToRGB(h, s, v, &r, &g, &b);
                    } else if (m_type == 2){

                        qreal red = SCALE_TO_FLOAT(src->red);
                        qreal green = SCALE_TO_FLOAT(src->green);
                        qreal blue = SCALE_TO_FLOAT(src->blue);
                        qreal hue, sat, intensity;
                        RGBToHCI(red, green, blue, &hue, &sat, &intensity);

                        hue *=360.0;
                        hue += m_adj_h * 180;
                        //if (intensity+m_adj_v>1.0){hue+=180.0;}
                        if (hue < 0) hue += 360;
                        hue = fmod(hue, 360.0);

                        sat *= (m_adj_s + 1.0);
                        //sat = qBound(0.0, sat, 1.0);
                        
                        intensity += (m_adj_v);

                        HCIToRGB(hue/360.0, sat, intensity, &red, &green, &blue);

                        r = red;
                        g = green;
                        b = blue;
                    } else if (m_type == 3){

                        qreal red = SCALE_TO_FLOAT(src->red);
                        qreal green = SCALE_TO_FLOAT(src->green);
                        qreal blue = SCALE_TO_FLOAT(src->blue);
                        qreal hue, sat, luma;
                        RGBToHCY(red, green, blue, &hue, &sat, &luma, lumaR, lumaG, lumaB);

                        hue *=360.0;
                        hue += m_adj_h * 180;
                        //if (luma+m_adj_v>1.0){hue+=180.0;}
                        if (hue < 0) hue += 360;
                        hue = fmod(hue, 360.0);

                        sat *= (m_adj_s + 1.0);
                        //sat = qBound(0.0, sat, 1.0);

                        luma += m_adj_v;


                        HCYToRGB(hue/360.0, sat, luma, &red, &green, &blue, lumaR, lumaG, lumaB);
                        r = red;
                        g = green;
                        b = blue;
                        
                    } else if (m_type == 4){

                        qreal red = SCALE_TO_FLOAT(src->red);
                        qreal green = SCALE_TO_FLOAT(src->green);
                        qreal blue = SCALE_TO_FLOAT(src->blue);
                        qreal y, cb, cr;
                        RGBToYUV(red, green, blue, &y, &cb, &cr, lumaR, lumaG, lumaB);

                        cb *= (m_adj_h + 1.0);
                        //cb = qBound(0.0, cb, 1.0);

                        cr *= (m_adj_s + 1.0);
                        //cr = qBound(0.0, cr, 1.0);

                        
                        
                        y += (m_adj_v);


                        YUVToRGB(y, cb, cr, &red, &green, &blue, lumaR, lumaG, lumaB);
                        r = red;
                        g = green;
                        b = blue;
                    }
                }

                clamp< _channel_type_ >(&r, &g, &b);
                dst->red = SCALE_FROM_FLOAT(r);
                dst->green = SCALE_FROM_FLOAT(g);
                dst->blue = SCALE_FROM_FLOAT(b);
                dst->alpha = src->alpha;

                --nPixels;
                ++src;
                ++dst;
            }
        /*} else if (m_model="LABA"){
            const LABPixel* src = reinterpret_cast<const LABPixel*>(srcU8);
            LABPixel* dst = reinterpret_cast<LABPixel*>(dstU8);
            qreal lightness = SCALE_TO_FLOAT(src->L);
            qreal a = SCALE_TO_FLOAT(src->a);
            qreal b = SCALE_TO_FLOAT(src->b);
            qreal L, C, H;
            
            while (nPixels > 0) {
                if (m_type = 4) {
                    a *= (m_adj_h + 1.0);
                    a = qBound(0.0, a, 1.0);

                    b *= (m_adj_s + 1.0);
                    b = qBound(0.0, b, 1.0);

                    if (m_adj_v < 0)
                        lightness *= (m_adj_v + 1.0);
                    else
                        lightness += (m_adj_v * (1.0 - lightness));
                } else {//lch
                    LABToLCH(lightness, a, b, &L, &C, &H);
                    H *=360;
                    H += m_adj_h * 180;
                    if (H > 360) h -= 360;
                    if (H < 0) h += 360;
                    C += m_adj_s;
                    C = qBound(0.0,C,1.0);
                    L += m_adj_v;
                    L = qBound(0.0,L,1.0);
                    LCHToLAB(L, C, H/360.0, &lightness, &a, &b);
                }
                clamp< _channel_type_ >(&lightness, &a, &b);
                dst->L = SCALE_FROM_FLOAT(lightness);
                dst->a = SCALE_FROM_FLOAT(a);
                dst->b = SCALE_FROM_FLOAT(b);
                dst->alpha = src->alpha;

                --nPixels;
                ++src;
                ++dst;
                }
        }*/
    }