コード例 #1
0
static size_t HUF_decompress1X4_usingDTable_internal(
          void* dst,  size_t dstSize,
    const void* cSrc, size_t cSrcSize,
    const HUF_DTable* DTable)
{
    BIT_DStream_t bitD;

    /* Init */
    {   size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
        if (HUF_isError(errorCode)) return errorCode;
    }

    /* decode */
    {   BYTE* const ostart = (BYTE*) dst;
        BYTE* const oend = ostart + dstSize;
        const void* const dtPtr = DTable+1;   /* force compiler to not use strict-aliasing */
        const HUF_DEltX4* const dt = (const HUF_DEltX4*)dtPtr;
        DTableDesc const dtd = HUF_getDTableDesc(DTable);
        HUF_decodeStreamX4(ostart, &bitD, oend, dt, dtd.tableLog);
    }

    /* check */
    if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);

    /* decoded size */
    return dstSize;
}
コード例 #2
0
ファイル: huf_decompress.c プロジェクト: derskeal/zstd
size_t HUF_readDTableX2_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize)
{
    U32 tableLog = 0;
    U32 nbSymbols = 0;
    size_t iSize;
    void* const dtPtr = DTable + 1;
    HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;

    U32* rankVal;
    BYTE* huffWeight;
    size_t spaceUsed32 = 0;

    rankVal = (U32 *)workSpace + spaceUsed32;
    spaceUsed32 += HUF_TABLELOG_ABSOLUTEMAX + 1;
    huffWeight = (BYTE *)((U32 *)workSpace + spaceUsed32);
    spaceUsed32 += HUF_ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2;

    if ((spaceUsed32 << 2) > wkspSize)
        return ERROR(tableLog_tooLarge);
    workSpace = (U32 *)workSpace + spaceUsed32;
    wkspSize -= (spaceUsed32 << 2);

    HUF_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
    /* memset(huffWeight, 0, sizeof(huffWeight)); */   /* is not necessary, even though some analyzer complain ... */

    iSize = HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
    if (HUF_isError(iSize)) return iSize;

    /* Table header */
    {   DTableDesc dtd = HUF_getDTableDesc(DTable);
        if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge);   /* DTable too small, Huffman tree cannot fit in */
        dtd.tableType = 0;
        dtd.tableLog = (BYTE)tableLog;
        memcpy(DTable, &dtd, sizeof(dtd));
    }

    /* Calculate starting value for each rank */
    {   U32 n, nextRankStart = 0;
        for (n=1; n<tableLog+1; n++) {
            U32 const current = nextRankStart;
            nextRankStart += (rankVal[n] << (n-1));
            rankVal[n] = current;
    }   }

    /* fill DTable */
    {   U32 n;
        for (n=0; n<nbSymbols; n++) {
            U32 const w = huffWeight[n];
            U32 const length = (1 << w) >> 1;
            U32 u;
            HUF_DEltX2 D;
            D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
            for (u = rankVal[w]; u < rankVal[w] + length; u++)
                dt[u] = D;
            rankVal[w] += length;
    }   }

    return iSize;
}
コード例 #3
0
size_t HUF_decompress4X4_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
    const BYTE* ip = (const BYTE*) cSrc;

    size_t hSize = HUF_readDTableX4 (dctx, cSrc, cSrcSize);
    if (HUF_isError(hSize)) return hSize;
    if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
    ip += hSize; cSrcSize -= hSize;

    return HUF_decompress4X4_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx);
}
コード例 #4
0
size_t HUF_decompress4X6 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
{
    HUF_CREATE_STATIC_DTABLEX6(DTable, HUF_TABLELOG_MAX);
    const BYTE* ip = (const BYTE*) cSrc;

    size_t const hSize = HUF_readDTableX6 (DTable, cSrc, cSrcSize);
    if (HUF_isError(hSize)) return hSize;
    if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
    ip += hSize;
    cSrcSize -= hSize;

    return HUF_decompress4X6_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
}
コード例 #5
0
ファイル: huf_decompress.c プロジェクト: derskeal/zstd
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
                                   const void* cSrc, size_t cSrcSize,
                                   void* workSpace, size_t wkspSize)
{
    const BYTE* ip = (const BYTE*) cSrc;

    size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize);
    if (HUF_isError(hSize)) return hSize;
    if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
    ip += hSize; cSrcSize -= hSize;

    return HUF_decompress1X2_usingDTable_internal (dst, dstSize, ip, cSrcSize, DCtx);
}
コード例 #6
0
size_t HUF_readDTableX2 (HUF_DTable* DTable, const void* src, size_t srcSize)
{
    BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
    U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];   /* large enough for values from 0 to 16 */
    U32 tableLog = 0;
    U32 nbSymbols = 0;
    size_t iSize;
    void* const dtPtr = DTable + 1;
    HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;

    HUF_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
    /* memset(huffWeight, 0, sizeof(huffWeight)); */   /* is not necessary, even though some analyzer complain ... */

    iSize = HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
    if (HUF_isError(iSize)) return iSize;

    /* Table header */
    {   DTableDesc dtd = HUF_getDTableDesc(DTable);
        if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge);   /* DTable too small, huffman tree cannot fit in */
        dtd.tableType = 0;
        dtd.tableLog = (BYTE)tableLog;
        memcpy(DTable, &dtd, sizeof(dtd));
    }

    /* Prepare ranks */
    {   U32 n, nextRankStart = 0;
        for (n=1; n<tableLog+1; n++) {
            U32 current = nextRankStart;
            nextRankStart += (rankVal[n] << (n-1));
            rankVal[n] = current;
    }   }

    /* fill DTable */
    {   U32 n;
        for (n=0; n<nbSymbols; n++) {
            U32 const w = huffWeight[n];
            U32 const length = (1 << w) >> 1;
            U32 i;
            HUF_DEltX2 D;
            D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
            for (i = rankVal[w]; i < rankVal[w] + length; i++)
                dt[i] = D;
            rankVal[w] += length;
    }   }

    return iSize;
}
コード例 #7
0
ファイル: lizard_compress.c プロジェクト: mcmilk/7-Zip-zstd
FORCE_INLINE int Lizard_writeStream(int useHuff, Lizard_stream_t* ctx, BYTE* streamPtr, uint32_t streamLen, BYTE** op, BYTE* oend)
{
    if (useHuff && streamLen > 1024) {
#ifndef LIZARD_NO_HUFFMAN
        int useHuffBuf;
        if (*op + 6 > oend) { LIZARD_LOG_COMPRESS("*op[%p] + 6 > oend[%p]\n", *op, oend); return -1; }

        useHuffBuf = ((size_t)(oend - (*op + 6)) < HUF_compressBound(streamLen)); 
        if (useHuffBuf) {
            if (streamLen > LIZARD_BLOCK_SIZE) { LIZARD_LOG_COMPRESS("streamLen[%d] > LIZARD_BLOCK_SIZE\n", streamLen); return -1; }
            ctx->comprStreamLen = (U32)HUF_compress(ctx->huffBase, ctx->huffEnd - ctx->huffBase, streamPtr, streamLen);
        } else {
            ctx->comprStreamLen = (U32)HUF_compress(*op + 6, oend - (*op + 6), streamPtr, streamLen);
        }

        if (!HUF_isError(ctx->comprStreamLen)) {
            if (ctx->comprStreamLen > 0 && (LIZARD_MINIMAL_HUFF_GAIN(ctx->comprStreamLen) < streamLen)) { /* compressible */
                MEM_writeLE24(*op, streamLen);
                MEM_writeLE24(*op+3, ctx->comprStreamLen);
                if (useHuffBuf) {
                    if ((size_t)(oend - (*op + 6)) < ctx->comprStreamLen) { LIZARD_LOG_COMPRESS("*op[%p] oend[%p] comprStreamLen[%d]\n", *op, oend, (int)ctx->comprStreamLen); return -1; }
                    memcpy(*op + 6, ctx->huffBase, ctx->comprStreamLen);
                }
                *op += ctx->comprStreamLen + 6;
                LIZARD_LOG_COMPRESS("HUF_compress streamLen=%d comprStreamLen=%d\n", (int)streamLen, (int)ctx->comprStreamLen);
                return 1;
            } else { LIZARD_LOG_COMPRESS("HUF_compress ERROR comprStreamLen=%d streamLen=%d\n", (int)ctx->comprStreamLen, (int)streamLen); }
        } else { LIZARD_LOG_COMPRESS("HUF_compress ERROR %d: %s\n", (int)ctx->comprStreamLen, HUF_getErrorName(ctx->comprStreamLen)); }
#else
        LIZARD_LOG_COMPRESS("compiled with LIZARD_NO_HUFFMAN\n");
        (void)ctx;
        return -1; 
#endif
    } else ctx->comprStreamLen = 0;

    if (*op + 3 + streamLen > oend) { LIZARD_LOG_COMPRESS("*op[%p] + 3 + streamLen[%d] > oend[%p]\n", *op, streamLen, oend); return -1; }
    MEM_writeLE24(*op, streamLen);
    *op += 3;
    memcpy(*op, streamPtr, streamLen);
    *op += streamLen;
    LIZARD_LOG_COMPRESS("Uncompressed streamLen=%d\n", (int)streamLen);
    return 0;
}
コード例 #8
0
static size_t HUF_decompress1X2_usingDTable_internal(
          void* dst,  size_t dstSize,
    const void* cSrc, size_t cSrcSize,
    const HUF_DTable* DTable)
{
    BYTE* op = (BYTE*)dst;
    BYTE* const oend = op + dstSize;
    const void* dtPtr = DTable + 1;
    const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
    BIT_DStream_t bitD;
    DTableDesc const dtd = HUF_getDTableDesc(DTable);
    U32 const dtLog = dtd.tableLog;

    { size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
      if (HUF_isError(errorCode)) return errorCode; }

    HUF_decodeStreamX2(op, &bitD, oend, dt, dtLog);

    /* check */
    if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);

    return dstSize;
}
コード例 #9
0
size_t HUF_decompress1X6_usingDTable(
          void* dst,  size_t dstSize,
    const void* cSrc, size_t cSrcSize,
    const U32* DTable)
{
    const BYTE* const istart = (const BYTE*) cSrc;
    BYTE* const ostart = (BYTE*) dst;
    BYTE* const oend = ostart + dstSize;
    BIT_DStream_t bitD;

    /* Init */
    { size_t const errorCode = BIT_initDStream(&bitD, istart, cSrcSize);
      if (HUF_isError(errorCode)) return errorCode; }

    /* finish bitStreams one by one */
    { U32 const dtLog = DTable[0];
      HUF_decodeStreamX6(ostart, &bitD, oend, DTable, dtLog); }

    /* check */
    if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);

    /* decoded size */
    return dstSize;
}
コード例 #10
0
static size_t HUF_decompress4X4_usingDTable_internal(
          void* dst,  size_t dstSize,
    const void* cSrc, size_t cSrcSize,
    const HUF_DTable* DTable)
{
    if (cSrcSize < 10) return ERROR(corruption_detected);   /* strict minimum : jump table + 1 byte per stream */

    {   const BYTE* const istart = (const BYTE*) cSrc;
        BYTE* const ostart = (BYTE*) dst;
        BYTE* const oend = ostart + dstSize;
        const void* const dtPtr = DTable+1;
        const HUF_DEltX4* const dt = (const HUF_DEltX4*)dtPtr;

        /* Init */
        BIT_DStream_t bitD1;
        BIT_DStream_t bitD2;
        BIT_DStream_t bitD3;
        BIT_DStream_t bitD4;
        size_t const length1 = MEM_readLE16(istart);
        size_t const length2 = MEM_readLE16(istart+2);
        size_t const length3 = MEM_readLE16(istart+4);
        size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
        const BYTE* const istart1 = istart + 6;  /* jumpTable */
        const BYTE* const istart2 = istart1 + length1;
        const BYTE* const istart3 = istart2 + length2;
        const BYTE* const istart4 = istart3 + length3;
        size_t const segmentSize = (dstSize+3) / 4;
        BYTE* const opStart2 = ostart + segmentSize;
        BYTE* const opStart3 = opStart2 + segmentSize;
        BYTE* const opStart4 = opStart3 + segmentSize;
        BYTE* op1 = ostart;
        BYTE* op2 = opStart2;
        BYTE* op3 = opStart3;
        BYTE* op4 = opStart4;
        U32 endSignal;
        DTableDesc const dtd = HUF_getDTableDesc(DTable);
        U32 const dtLog = dtd.tableLog;

        if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
        { size_t const errorCode = BIT_initDStream(&bitD1, istart1, length1);
          if (HUF_isError(errorCode)) return errorCode; }
        { size_t const errorCode = BIT_initDStream(&bitD2, istart2, length2);
          if (HUF_isError(errorCode)) return errorCode; }
        { size_t const errorCode = BIT_initDStream(&bitD3, istart3, length3);
          if (HUF_isError(errorCode)) return errorCode; }
        { size_t const errorCode = BIT_initDStream(&bitD4, istart4, length4);
          if (HUF_isError(errorCode)) return errorCode; }

        /* 16-32 symbols per loop (4-8 symbols per stream) */
        endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
        for ( ; (endSignal==BIT_DStream_unfinished) & (op4<(oend-(sizeof(bitD4.bitContainer)-1))) ; ) {
            HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
            HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
            HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
            HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
            HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
            HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
            HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
            HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
            HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
            HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
            HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
            HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
            HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
            HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
            HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
            HUF_DECODE_SYMBOLX4_0(op4, &bitD4);

            endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
        }

        /* check corruption */
        if (op1 > opStart2) return ERROR(corruption_detected);
        if (op2 > opStart3) return ERROR(corruption_detected);
        if (op3 > opStart4) return ERROR(corruption_detected);
        /* note : op4 already verified within main loop */

        /* finish bitStreams one by one */
        HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
        HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
        HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
        HUF_decodeStreamX4(op4, &bitD4, oend,     dt, dtLog);

        /* check */
        { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
          if (!endCheck) return ERROR(corruption_detected); }

        /* decoded size */
        return dstSize;
    }
}
コード例 #11
0
size_t HUF_readDTableX4 (HUF_DTable* DTable, const void* src, size_t srcSize)
{
    BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
    sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
    U32 rankStats[HUF_TABLELOG_ABSOLUTEMAX + 1] = { 0 };
    U32 rankStart0[HUF_TABLELOG_ABSOLUTEMAX + 2] = { 0 };
    U32* const rankStart = rankStart0+1;
    rankVal_t rankVal;
    U32 tableLog, maxW, sizeOfSort, nbSymbols;
    DTableDesc dtd = HUF_getDTableDesc(DTable);
    U32 const maxTableLog = dtd.maxTableLog;
    size_t iSize;
    void* dtPtr = DTable+1;   /* force compiler to avoid strict-aliasing */
    HUF_DEltX4* const dt = (HUF_DEltX4*)dtPtr;

    HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(HUF_DTable));   /* if compilation fails here, assertion is false */
    if (maxTableLog > HUF_TABLELOG_ABSOLUTEMAX) return ERROR(tableLog_tooLarge);
    /* memset(weightList, 0, sizeof(weightList)); */  /* is not necessary, even though some analyzer complain ... */

    iSize = HUF_readStats(weightList, HUF_SYMBOLVALUE_MAX + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
    if (HUF_isError(iSize)) return iSize;

    /* check result */
    if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge);   /* DTable can't fit code depth */

    /* find maxWeight */
    for (maxW = tableLog; rankStats[maxW]==0; maxW--) {}  /* necessarily finds a solution before 0 */

    /* Get start index of each weight */
    {   U32 w, nextRankStart = 0;
        for (w=1; w<maxW+1; w++) {
            U32 current = nextRankStart;
            nextRankStart += rankStats[w];
            rankStart[w] = current;
        }
        rankStart[0] = nextRankStart;   /* put all 0w symbols at the end of sorted list*/
        sizeOfSort = nextRankStart;
    }

    /* sort symbols by weight */
    {   U32 s;
        for (s=0; s<nbSymbols; s++) {
            U32 const w = weightList[s];
            U32 const r = rankStart[w]++;
            sortedSymbol[r].symbol = (BYTE)s;
            sortedSymbol[r].weight = (BYTE)w;
        }
        rankStart[0] = 0;   /* forget 0w symbols; this is beginning of weight(1) */
    }

    /* Build rankVal */
    {   U32* const rankVal0 = rankVal[0];
        {   int const rescale = (maxTableLog-tableLog) - 1;   /* tableLog <= maxTableLog */
            U32 nextRankVal = 0;
            U32 w;
            for (w=1; w<maxW+1; w++) {
                U32 current = nextRankVal;
                nextRankVal += rankStats[w] << (w+rescale);
                rankVal0[w] = current;
        }   }
        {   U32 const minBits = tableLog+1 - maxW;
            U32 consumed;
            for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
                U32* const rankValPtr = rankVal[consumed];
                U32 w;
                for (w = 1; w < maxW+1; w++) {
                    rankValPtr[w] = rankVal0[w] >> consumed;
    }   }   }   }

    HUF_fillDTableX4(dt, maxTableLog,
                   sortedSymbol, sizeOfSort,
                   rankStart0, rankVal, maxW,
                   tableLog+1);

    dtd.tableLog = (BYTE)maxTableLog;
    dtd.tableType = 1;
    memcpy(DTable, &dtd, sizeof(dtd));
    return iSize;
}
コード例 #12
0
static void FUZ_tests (U32 seed, U32 totalTest, U32 startTestNb)
{
    BYTE* bufferP0    = (BYTE*) malloc (BUFFERSIZE+64);
    BYTE* bufferP1    = (BYTE*) malloc (BUFFERSIZE+64);
    BYTE* bufferP15   = (BYTE*) malloc (BUFFERSIZE+64);
    BYTE* bufferP90   = (BYTE*) malloc (BUFFERSIZE+64);
    BYTE* bufferP100  = (BYTE*) malloc (BUFFERSIZE+64);
    BYTE* bufferDst   = (BYTE*) malloc (BUFFERSIZE+64);
    BYTE* bufferVerif = (BYTE*) malloc (BUFFERSIZE+64);
    size_t const bufferDstSize = BUFFERSIZE+64;
    unsigned testNb;
    size_t const maxTestSizeMask = 0x1FFFF;   /* 128 KB - 1 */
    U32 rootSeed = seed;
    U32 time = FUZ_GetMilliStart();

    generateNoise (bufferP0, BUFFERSIZE, &rootSeed);
    generate (bufferP1  , BUFFERSIZE, 0.01, &rootSeed);
    generate (bufferP15 , BUFFERSIZE, 0.15, &rootSeed);
    generate (bufferP90 , BUFFERSIZE, 0.90, &rootSeed);
    memset(bufferP100, (BYTE)FUZ_rand(&rootSeed), BUFFERSIZE);
    memset(bufferDst, 0, BUFFERSIZE);

    { U32 u; for (u=0; u<startTestNb; u++) FUZ_rand (&rootSeed); }

    for (testNb=startTestNb; testNb<totalTest; testNb++) {
        U32 roundSeed = rootSeed ^ 0xEDA5B371;
        FUZ_rand(&rootSeed);
        int tag=0;
        BYTE* bufferTest = NULL;

        DISPLAYLEVEL (4, "\r test %5u  ", testNb);
        if (FUZ_GetMilliSpan (time) > FUZ_UPDATERATE) {
            DISPLAY ("\r test %5u  ", testNb);
            time = FUZ_GetMilliStart();
        }

        /* Compression / Decompression tests */
        DISPLAYLEVEL (4,"%3i ", tag++);
        {   /* determine test sample */
            size_t const sizeOrig = (FUZ_rand(&roundSeed) & maxTestSizeMask) + 1;
            size_t const offset = (FUZ_rand(&roundSeed) % (BUFFERSIZE - 64 - maxTestSizeMask));
            size_t sizeCompressed;
            U32 hashOrig;

            if (FUZ_rand(&roundSeed) & 7) bufferTest = bufferP15 + offset;
            else {
                switch(FUZ_rand(&roundSeed) & 3)
                {
                    case 0: bufferTest = bufferP0 + offset; break;
                    case 1: bufferTest = bufferP1 + offset; break;
                    case 2: bufferTest = bufferP90 + offset; break;
                    default : bufferTest = bufferP100 + offset; break;
                }
            }
            hashOrig = XXH32 (bufferTest, sizeOrig, 0);

            /* compression test */
            sizeCompressed = HUF_compress (bufferDst, bufferDstSize, bufferTest, sizeOrig);
            CHECK(HUF_isError(sizeCompressed), "HUF_compress failed");
            if (sizeCompressed > 1) {   /* don't check uncompressed & rle corner cases */
                /* failed compression test */
                {   BYTE const saved = bufferVerif[sizeCompressed-1] = 253;
                    size_t const errorCode = HUF_compress (bufferVerif, sizeCompressed-1, bufferTest, sizeOrig);
                    CHECK(errorCode!=0, "HUF_compress should have failed (too small destination buffer)")
                    CHECK(bufferVerif[sizeCompressed-1] != saved, "HUF_compress w/ too small dst : bufferVerif overflow");
                }

                /* decompression test */
                {   BYTE const saved = bufferVerif[sizeOrig] = 253;
                    size_t const result = HUF_decompress (bufferVerif, sizeOrig, bufferDst, sizeCompressed);
                    CHECK(bufferVerif[sizeOrig] != saved, "HUF_decompress : bufferVerif overflow");
                    CHECK(HUF_isError(result), "HUF_decompress failed : %s", HUF_getErrorName(result));
                    {   U32 const hashEnd = XXH32 (bufferVerif, sizeOrig, 0);
                        if (hashEnd!=hashOrig) findDifferentByte(bufferVerif, sizeOrig, bufferTest, sizeOrig);
                        CHECK(hashEnd != hashOrig, "HUF_decompress : Decompressed data corrupted");
                }   }

                /* quad decoder test (more fragile) */
                /*
                if (sizeOrig > 64)
                {   BYTE const saved = bufferVerif[sizeOrig] = 253;
                    size_t const result = HUF_decompress4X6 (bufferVerif, sizeOrig, bufferDst, sizeCompressed);
                    CHECK(bufferVerif[sizeOrig] != saved, "HUF_decompress4X6 : bufferVerif overflow");
                    CHECK(HUF_isError(result), "HUF_decompress4X6 failed : %s", HUF_getErrorName(result));
                    {   U32 const hashEnd = XXH32 (bufferVerif, sizeOrig, 0);
                        if (hashEnd!=hashOrig) findDifferentByte(bufferVerif, sizeOrig, bufferTest, sizeOrig);
                        CHECK(hashEnd != hashOrig, "HUF_decompress4X6 : Decompressed data corrupted");
                }   }
                */

                /* truncated src decompression test */
                if (sizeCompressed>4) {
                    /* note : in some rare cases, the truncated bitStream may still generate by chance a valid output of correct size */
                    size_t const missing = (FUZ_rand(&roundSeed) % (sizeCompressed-3)) + 2;   /* no problem, as sizeCompressed > 4 */
                    size_t const tooSmallSize = sizeCompressed - missing;
                    void* cBufferTooSmall = malloc(tooSmallSize);   /* valgrind will catch read overflows */
                    CHECK(cBufferTooSmall == NULL, "not enough memory !");
                    memcpy(cBufferTooSmall, bufferDst, tooSmallSize);
                    { size_t const errorCode = HUF_decompress(bufferVerif, sizeOrig, cBufferTooSmall, tooSmallSize);
                      CHECK(!HUF_isError(errorCode) && (errorCode!=sizeOrig), "HUF_decompress should have failed ! (truncated src buffer)"); }
                    free(cBufferTooSmall);
            }   }
        }   /* Compression / Decompression tests */

        /* Attempt decompression on bogus data */
        {   size_t const maxDstSize = FUZ_rand (&roundSeed) & maxTestSizeMask;
            size_t const sizeCompressed = FUZ_rand (&roundSeed) & maxTestSizeMask;
            BYTE const saved = (bufferDst[maxDstSize] = 253);
            size_t result;
            DISPLAYLEVEL (4,"\b\b\b\b%3i ", tag++);;
            result = HUF_decompress (bufferDst, maxDstSize, bufferTest, sizeCompressed);
            CHECK(!HUF_isError(result) && (result > maxDstSize), "Decompression overran output buffer");
            CHECK(bufferDst[maxDstSize] != saved, "HUF_decompress noise : bufferDst overflow");
        }
    }   /* for (testNb=startTestNb; testNb<totalTest; testNb++) */

    /* exit */
    free (bufferP0);
    free (bufferP1);
    free (bufferP15);
    free (bufferP90);
    free (bufferP100);
    free (bufferDst);
    free (bufferVerif);
}
コード例 #13
0
size_t HUF_decompress4X6_usingDTable(
          void* dst,  size_t dstSize,
    const void* cSrc, size_t cSrcSize,
    const U32* DTable)
{
    /* Check */
    if (cSrcSize < 10) return ERROR(corruption_detected);   /* strict minimum : jump table + 1 byte per stream */
    if (dstSize  < 64) return ERROR(dstSize_tooSmall);      /* only work for dstSize >= 64 */

    {   const BYTE* const istart = (const BYTE*) cSrc;
        BYTE* const ostart = (BYTE*) dst;
        BYTE* const oend = ostart + dstSize;

        const U32 dtLog = DTable[0];
        const void* const ddPtr = DTable+1;
        const HUF_DDescX6* dd = (const HUF_DDescX6*)ddPtr;
        const void* const dsPtr = DTable + 1 + ((size_t)1<<(dtLog-1));
        const HUF_DSeqX6* ds = (const HUF_DSeqX6*)dsPtr;

        /* Init */
        BIT_DStream_t bitD1;
        BIT_DStream_t bitD2;
        BIT_DStream_t bitD3;
        BIT_DStream_t bitD4;
        const size_t length1 = MEM_readLE16(istart);
        const size_t length2 = MEM_readLE16(istart+2);
        const size_t length3 = MEM_readLE16(istart+4);
        size_t length4;
        const BYTE* const istart1 = istart + 6;  /* jumpTable */
        const BYTE* const istart2 = istart1 + length1;
        const BYTE* const istart3 = istart2 + length2;
        const BYTE* const istart4 = istart3 + length3;
        const size_t segmentSize = (dstSize+3) / 4;
        BYTE* const opStart2 = ostart + segmentSize;
        BYTE* const opStart3 = opStart2 + segmentSize;
        BYTE* const opStart4 = opStart3 + segmentSize;
        BYTE* op1 = ostart;
        BYTE* op2 = opStart2;
        BYTE* op3 = opStart3;
        BYTE* op4 = opStart4;
        U32 endSignal;

        length4 = cSrcSize - (length1 + length2 + length3 + 6);
        if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
        { size_t const errorCode = BIT_initDStream(&bitD1, istart1, length1);
          if (HUF_isError(errorCode)) return errorCode; }
        { size_t const errorCode = BIT_initDStream(&bitD2, istart2, length2);
          if (HUF_isError(errorCode)) return errorCode; }
        { size_t const errorCode = BIT_initDStream(&bitD3, istart3, length3);
          if (HUF_isError(errorCode)) return errorCode; }
        { size_t const errorCode = BIT_initDStream(&bitD4, istart4, length4);
          if (HUF_isError(errorCode)) return errorCode; }

        /* 4-64 symbols per loop (1-16 symbols per stream) */
        endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
        if (endSignal==BIT_DStream_unfinished) {
            HUF_DECODE_ROUNDX6;
            if (sizeof(bitD1.bitContainer)==4) {   /* need to decode at least 4 bytes per stream */
                    endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
                    HUF_DECODE_ROUNDX6;
            }
            {   U32 const saved2 = MEM_read32(opStart2);   /* saved from overwrite */
                U32 const saved3 = MEM_read32(opStart3);
                U32 const saved4 = MEM_read32(opStart4);
                endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
                for ( ; (op3 <= opStart4) && (endSignal==BIT_DStream_unfinished) && (op4<=(oend-16)) ; ) {
                    HUF_DECODE_ROUNDX6;
                    endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
                }
                MEM_write32(opStart2, saved2);
                MEM_write32(opStart3, saved3);
                MEM_write32(opStart4, saved4);
        }   }

        /* check corruption */
        if (op1 > opStart2) return ERROR(corruption_detected);
        if (op2 > opStart3) return ERROR(corruption_detected);
        if (op3 > opStart4) return ERROR(corruption_detected);
        /* note : op4 already verified within main loop */

        /* finish bitStreams one by one */
        HUF_decodeStreamX6(op1, &bitD1, opStart2, DTable, dtLog);
        HUF_decodeStreamX6(op2, &bitD2, opStart3, DTable, dtLog);
        HUF_decodeStreamX6(op3, &bitD3, opStart4, DTable, dtLog);
        HUF_decodeStreamX6(op4, &bitD4, oend,     DTable, dtLog);

        /* check */
        endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
        if (!endSignal) return ERROR(corruption_detected);

        /* decoded size */
        return dstSize;
    }
}
コード例 #14
0
/* note : same preparation as X4 */
size_t HUF_readDTableX6 (U32* DTable, const void* src, size_t srcSize)
{
    BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
    sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
    U32 rankStats[HUF_TABLELOG_ABSOLUTEMAX + 1] = { 0 };
    U32 rankStart0[HUF_TABLELOG_ABSOLUTEMAX + 2] = { 0 };
    U32* const rankStart = rankStart0+1;
    U32 tableLog, maxW, sizeOfSort, nbSymbols;
    rankVal_t rankVal;
    const U32 memLog = DTable[0];
    size_t iSize;

    if (memLog > HUF_TABLELOG_ABSOLUTEMAX) return ERROR(tableLog_tooLarge);
    //memset(weightList, 0, sizeof(weightList));   /* is not necessary, even though some analyzer complain ... */

    iSize = HUF_readStats(weightList, HUF_SYMBOLVALUE_MAX + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
    if (HUF_isError(iSize)) return iSize;

    /* check result */
    if (tableLog > memLog) return ERROR(tableLog_tooLarge);   /* DTable is too small */

    /* find maxWeight */
    for (maxW = tableLog; maxW && rankStats[maxW]==0; maxW--) {}  /* necessarily finds a solution before 0 */

    /* Get start index of each weight */
    {   U32 w, nextRankStart = 0;
        for (w=1; w<maxW+1; w++) {
            U32 current = nextRankStart;
            nextRankStart += rankStats[w];
            rankStart[w] = current;
        }
        rankStart[0] = nextRankStart;   /* put all 0w symbols at the end of sorted list*/
        sizeOfSort = nextRankStart;
    }

    /* sort symbols by weight */
    {   U32 s;
        for (s=0; s<nbSymbols; s++) {
            U32 w = weightList[s];
            U32 r = rankStart[w]++;
            sortedSymbol[r].symbol = (BYTE)s;
            sortedSymbol[r].weight = (BYTE)w;
        }
        rankStart[0] = 0;   /* forget 0w symbols; this is beginning of weight(1) */
    }

    /* Build rankVal */
    {   const U32 minBits = tableLog+1 - maxW;
        U32 nextRankVal = 0;
        U32 w, consumed;
        const int rescale = (memLog-tableLog) - 1;   /* tableLog <= memLog */
        U32* rankVal0 = rankVal[0];
        for (w=1; w<maxW+1; w++) {
            U32 current = nextRankVal;
            nextRankVal += rankStats[w] << (w+rescale);
            rankVal0[w] = current;
        }
        for (consumed = minBits; consumed <= memLog - minBits; consumed++) {
            U32* rankValPtr = rankVal[consumed];
            for (w = 1; w < maxW+1; w++) {
                rankValPtr[w] = rankVal0[w] >> consumed;
    }   }   }

    /* fill tables */
    {   void* ddPtr = DTable+1;
        HUF_DDescX6* DDescription = (HUF_DDescX6*)ddPtr;
        void* dsPtr = DTable + 1 + ((size_t)1<<(memLog-1));
        HUF_DSeqX6* DSequence = (HUF_DSeqX6*)dsPtr;
        HUF_DSeqX6 DSeq;
        HUF_DDescX6 DDesc;
        DSeq.sequence = 0;
        DDesc.nbBits = 0;
        DDesc.nbBytes = 0;
        HUF_fillDTableX6LevelN(DDescription, DSequence, memLog,
                       (const U32 (*)[HUF_TABLELOG_ABSOLUTEMAX + 1])rankVal, 0, 1, maxW,
                       sortedSymbol, sizeOfSort, rankStart0,
                       tableLog+1, DSeq, DDesc);
    }

    return iSize;
}