コード例 #1
0
ファイル: n-sets.c プロジェクト: kealist/ren-c
*/	static REBINT Do_Set_Operation(struct Reb_Call *call_, REBCNT flags)
/*
**		Do set operations on a series.
**
***********************************************************************/
{
	REBVAL *val;
	REBVAL *val1;
	REBVAL *val2 = 0;
	REBSER *ser;
	REBSER *hser = 0;	// hash table for series
	REBSER *retser;		// return series
	REBSER *hret;		// hash table for return series
	REBCNT i;
	REBINT h = TRUE;
	REBCNT skip = 1;	// record size
	REBCNT cased = 0;	// case sensitive when TRUE

	SET_NONE(D_OUT);
	val1 = D_ARG(1);
	i = 2;

	// Check for second series argument:
	if (flags != SET_OP_UNIQUE) {
		val2 = D_ARG(i++);
		if (VAL_TYPE(val1) != VAL_TYPE(val2))
			raise Error_Unexpected_Type(VAL_TYPE(val1), VAL_TYPE(val2));
	}

	// Refinements /case and /skip N
	cased = D_REF(i++); // cased
	if (D_REF(i++)) skip = Int32s(D_ARG(i), 1);

	switch (VAL_TYPE(val1)) {

	case REB_BLOCK:
		i = VAL_LEN(val1);
		// Setup result block:
		if (GET_FLAG(flags, SOP_BOTH)) i += VAL_LEN(val2);
		retser = BUF_EMIT;			// use preallocated shared block
		Resize_Series(retser, i);
		hret = Make_Hash_Sequence(i);	// allocated

		// Optimization note: !!
		// This code could be optimized for small blocks by not hashing them
		// and extending Find_Key to do a FIND on the value itself w/o the hash.

		do {
			// Check what is in series1 but not in series2:
			if (GET_FLAG(flags, SOP_CHECK))
				hser = Hash_Block(val2, cased);

			// Iterate over first series:
			ser = VAL_SERIES(val1);
			i = VAL_INDEX(val1);
			for (; val = BLK_SKIP(ser, i), i < SERIES_TAIL(ser); i += skip) {
				if (GET_FLAG(flags, SOP_CHECK)) {
					h = Find_Key(VAL_SERIES(val2), hser, val, skip, cased, 1) >= 0;
					if (GET_FLAG(flags, SOP_INVERT)) h = !h;
				}
				if (h) Find_Key(retser, hret, val, skip, cased, 2);
			}

			// Iterate over second series?
			if ((i = GET_FLAG(flags, SOP_BOTH))) {
				val = val1;
				val1 = val2;
				val2 = val;
				CLR_FLAG(flags, SOP_BOTH);
			}

			if (GET_FLAG(flags, SOP_CHECK))
				Free_Series(hser);
		} while (i);

		if (hret)
			Free_Series(hret);

		Val_Init_Block(D_OUT, Copy_Array_Shallow(retser));
		RESET_TAIL(retser); // required - allow reuse

		break;

	case REB_BINARY:
		cased = TRUE;
		SET_TYPE(D_OUT, REB_BINARY);
	case REB_STRING:
		i = VAL_LEN(val1);
		// Setup result block:
		if (GET_FLAG(flags, SOP_BOTH)) i += VAL_LEN(val2);

		retser = BUF_MOLD;
		Reset_Buffer(retser, i);
		RESET_TAIL(retser);

		do {
			REBUNI uc;

			cased = cased ? AM_FIND_CASE : 0;

			// Iterate over first series:
			ser = VAL_SERIES(val1);
			i = VAL_INDEX(val1);
			for (; i < SERIES_TAIL(ser); i += skip) {
				uc = GET_ANY_CHAR(ser, i);
				if (GET_FLAG(flags, SOP_CHECK)) {
					h = Find_Str_Char(VAL_SERIES(val2), 0, VAL_INDEX(val2), VAL_TAIL(val2), skip, uc, cased) != NOT_FOUND;
					if (GET_FLAG(flags, SOP_INVERT)) h = !h;
				}
				if (h && (Find_Str_Char(retser, 0, 0, SERIES_TAIL(retser), skip, uc, cased) == NOT_FOUND)) {
					Append_String(retser, ser, i, skip);
				}
			}

			// Iterate over second series?
			if ((i = GET_FLAG(flags, SOP_BOTH))) {
				val = val1;
				val1 = val2;
				val2 = val;
				CLR_FLAG(flags, SOP_BOTH);
			}
		} while (i);

		ser = Copy_String(retser, 0, -1);
		if (IS_BINARY(D_OUT))
			Val_Init_Binary(D_OUT, ser);
		else
			Val_Init_String(D_OUT, ser);
		break;

	case REB_BITSET:
		switch (flags) {
		case SET_OP_UNIQUE:
			return R_ARG1;
		case SET_OP_UNION:
			i = A_OR;
			break;
		case SET_OP_INTERSECT:
			i = A_AND;
			break;
		case SET_OP_DIFFERENCE:
			i = A_XOR;
			break;
		case SET_OP_EXCLUDE:
			i = 0; // special case
			break;
		}
		ser = Xandor_Binary(i, val1, val2);
		Val_Init_Bitset(D_OUT, ser);
		break;

	case REB_TYPESET:
		switch (flags) {
		case SET_OP_UNIQUE:
			break;
		case SET_OP_UNION:
			VAL_TYPESET(val1) |= VAL_TYPESET(val2);
			break;
		case SET_OP_INTERSECT:
			VAL_TYPESET(val1) &= VAL_TYPESET(val2);
			break;
		case SET_OP_DIFFERENCE:
			VAL_TYPESET(val1) ^= VAL_TYPESET(val2);
			break;
		case SET_OP_EXCLUDE:
			VAL_TYPESET(val1) &= ~VAL_TYPESET(val2);
			break;
		}
		return R_ARG1;

	default:
		raise Error_Invalid_Arg(val1);
	}

	return R_OUT;
}
コード例 #2
0
ファイル: n-sets.c プロジェクト: fort-ascension/ren-c
//
//  Make_Set_Operation_Series: C
// 
// Do set operations on a series.  Case-sensitive if `cased` is TRUE.
// `skip` is the record size.
//
static REBSER *Make_Set_Operation_Series(const REBVAL *val1, const REBVAL *val2, REBCNT flags, REBCNT cased, REBCNT skip)
{
    REBSER *buffer;     // buffer for building the return series
    REBCNT i;
    REBINT h = TRUE;
    REBFLG first_pass = TRUE; // are we in the first pass over the series?
    REBSER *out_ser;

    // This routine should only be called with SERIES! values
    assert(ANY_SERIES(val1));

    if (val2) {
        assert(ANY_SERIES(val2));

        if (ANY_ARRAY(val1)) {
            if (!ANY_ARRAY(val2))
                fail (Error_Unexpected_Type(VAL_TYPE(val1), VAL_TYPE(val2)));

            // As long as they're both arrays, we're willing to do:
            //
            //     >> union quote (a b c) 'b/d/e
            //     (a b c d e)
            //
            // The type of the result will match the first value.
        }
        else if (!IS_BINARY(val1)) {

            // We will similarly do any two ANY-STRING! types:
            //
            //      >> union <abc> "bde"
            //      <abcde>

            if (IS_BINARY(val2))
                fail (Error_Unexpected_Type(VAL_TYPE(val1), VAL_TYPE(val2)));
        }
        else {
            // Binaries only operate with other binaries

            if (!IS_BINARY(val2))
                fail (Error_Unexpected_Type(VAL_TYPE(val1), VAL_TYPE(val2)));
        }
    }

    // Calculate i as length of result block.
    i = VAL_LEN(val1);
    if (flags & SOP_FLAG_BOTH) i += VAL_LEN(val2);

    if (ANY_ARRAY(val1)) {
        REBSER *hser = 0;   // hash table for series
        REBSER *hret;       // hash table for return series

        buffer = BUF_EMIT;          // use preallocated shared block
        Resize_Series(buffer, i);
        hret = Make_Hash_Sequence(i);   // allocated

        // Optimization note: !!
        // This code could be optimized for small blocks by not hashing them
        // and extending Find_Key to do a FIND on the value itself w/o the hash.

        do {
            REBSER *ser = VAL_SERIES(val1); // val1 and val2 swapped 2nd pass!

            // Check what is in series1 but not in series2:
            if (flags & SOP_FLAG_CHECK)
                hser = Hash_Block(val2, cased);

            // Iterate over first series:
            i = VAL_INDEX(val1);
            for (; i < SERIES_TAIL(ser); i += skip) {
                REBVAL *item = BLK_SKIP(ser, i);
                if (flags & SOP_FLAG_CHECK) {
                    h = Find_Key(VAL_SERIES(val2), hser, item, skip, cased, 1);
                    h = (h >= 0);
                    if (flags & SOP_FLAG_INVERT) h = !h;
                }
                if (h) Find_Key(buffer, hret, item, skip, cased, 2);
            }

            if (flags & SOP_FLAG_CHECK)
                Free_Series(hser);

            if (!first_pass) break;
            first_pass = FALSE;

            // Iterate over second series?
            if ((i = ((flags & SOP_FLAG_BOTH) != 0))) {
                const REBVAL *temp = val1;
                val1 = val2;
                val2 = temp;
            }
        } while (i);

        if (hret)
            Free_Series(hret);

        out_ser = Copy_Array_Shallow(buffer);
        RESET_TAIL(buffer); // required - allow reuse
    }
    else {
        if (IS_BINARY(val1)) {
            // All binaries use "case-sensitive" comparison (e.g. each byte
            // is treated distinctly)
            cased = TRUE;
        }

        buffer = BUF_MOLD;
        Reset_Buffer(buffer, i);
        RESET_TAIL(buffer);

        do {
            REBSER *ser = VAL_SERIES(val1); // val1 and val2 swapped 2nd pass!
            REBUNI uc;

            // Iterate over first series:
            i = VAL_INDEX(val1);
            for (; i < SERIES_TAIL(ser); i += skip) {
                uc = GET_ANY_CHAR(ser, i);
                if (flags & SOP_FLAG_CHECK) {
                    h = (NOT_FOUND != Find_Str_Char(
                        VAL_SERIES(val2),
                        0,
                        VAL_INDEX(val2),
                        VAL_TAIL(val2),
                        skip,
                        uc,
                        cased ? AM_FIND_CASE : 0
                    ));

                    if (flags & SOP_FLAG_INVERT) h = !h;
                }

                if (!h) continue;

                if (
                    NOT_FOUND == Find_Str_Char(
                        buffer,
                        0,
                        0,
                        SERIES_TAIL(buffer),
                        skip,
                        uc,
                        cased ? AM_FIND_CASE : 0
                    )
                ) {
                    Append_String(buffer, ser, i, skip);
                }
            }

            if (!first_pass) break;
            first_pass = FALSE;

            // Iterate over second series?
            if ((i = ((flags & SOP_FLAG_BOTH) != 0))) {
                const REBVAL *temp = val1;
                val1 = val2;
                val2 = temp;
            }
        } while (i);

        out_ser = Copy_String(buffer, 0, -1);
    }

    return out_ser;
}
コード例 #3
0
ファイル: n-sets.c プロジェクト: rgchris/ren-c
//
//  Make_Set_Operation_Series: C
// 
// Do set operations on a series.  Case-sensitive if `cased` is TRUE.
// `skip` is the record size.
//
static REBSER *Make_Set_Operation_Series(
    const REBVAL *val1,
    const REBVAL *val2,
    REBFLGS flags,
    REBOOL cased,
    REBCNT skip
) {
    REBCNT i;
    REBINT h = 1; // used for both logic true/false and hash check
    REBOOL first_pass = TRUE; // are we in the first pass over the series?
    REBSER *out_ser;

    assert(ANY_SERIES(val1));

    if (val2) {
        assert(ANY_SERIES(val2));

        if (ANY_ARRAY(val1)) {
            if (!ANY_ARRAY(val2))
                fail (Error_Unexpected_Type(VAL_TYPE(val1), VAL_TYPE(val2)));

            // As long as they're both arrays, we're willing to do:
            //
            //     >> union quote (a b c) 'b/d/e
            //     (a b c d e)
            //
            // The type of the result will match the first value.
        }
        else if (!IS_BINARY(val1)) {

            // We will similarly do any two ANY-STRING! types:
            //
            //      >> union <abc> "bde"
            //      <abcde>

            if (IS_BINARY(val2))
                fail (Error_Unexpected_Type(VAL_TYPE(val1), VAL_TYPE(val2)));
        }
        else {
            // Binaries only operate with other binaries

            if (!IS_BINARY(val2))
                fail (Error_Unexpected_Type(VAL_TYPE(val1), VAL_TYPE(val2)));
        }
    }

    // Calculate `i` as maximum length of result block.  The temporary buffer
    // will be allocated at this size, but copied out at the exact size of
    // the actual result.
    //
    i = VAL_LEN_AT(val1);
    if (flags & SOP_FLAG_BOTH) i += VAL_LEN_AT(val2);

    if (ANY_ARRAY(val1)) {
        REBSER *hser = 0;   // hash table for series
        REBSER *hret;       // hash table for return series

        // The buffer used for building the return series.  Currently it
        // reuses BUF_EMIT, because that buffer is not likely to be in
        // use (emit doesn't call set operations, nor vice versa).  However,
        // other routines may get the same idea and start recursing so it
        // may be better to use something more similar to the mold stack
        // approach of marking off successive ranges in the array.
        //
        REBSER *buffer = ARR_SERIES(BUF_EMIT);
        Resize_Series(buffer, i);
        hret = Make_Hash_Sequence(i);   // allocated

        // Optimization note: !!
        // This code could be optimized for small blocks by not hashing them
        // and extending Find_Key to FIND on the value itself w/o the hash.

        do {
            REBARR *array1 = VAL_ARRAY(val1); // val1 and val2 swapped 2nd pass!

            // Check what is in series1 but not in series2
            //
            if (flags & SOP_FLAG_CHECK)
                hser = Hash_Block(val2, skip, cased);

            // Iterate over first series
            //
            i = VAL_INDEX(val1);
            for (; i < ARR_LEN(array1); i += skip) {
                RELVAL *item = ARR_AT(array1, i);
                if (flags & SOP_FLAG_CHECK) {
                    h = Find_Key_Hashed(
                        VAL_ARRAY(val2),
                        hser,
                        item,
                        VAL_SPECIFIER(val1),
                        skip,
                        cased,
                        1
                    );
                    h = (h >= 0);
                    if (flags & SOP_FLAG_INVERT) h = !h;
                }
                if (h) {
                    Find_Key_Hashed(
                        AS_ARRAY(buffer),
                        hret,
                        item,
                        VAL_SPECIFIER(val1),
                        skip,
                        cased,
                        2
                    );
                }
            }

            if (i != ARR_LEN(array1)) {
                //
                // In the current philosophy, the semantics of what to do
                // with things like `intersect/skip [1 2 3] [7] 2` is too
                // shaky to deal with, so an error is reported if it does
                // not work out evenly to the skip size.
                //
                fail (Error(RE_BLOCK_SKIP_WRONG));
            }

            if (flags & SOP_FLAG_CHECK)
                Free_Series(hser);

            if (!first_pass) break;
            first_pass = FALSE;

            // Iterate over second series?
            //
            if ((i = ((flags & SOP_FLAG_BOTH) != 0))) {
                const REBVAL *temp = val1;
                val1 = val2;
                val2 = temp;
            }
        } while (i);

        if (hret)
            Free_Series(hret);

        out_ser = ARR_SERIES(Copy_Array_Shallow(AS_ARRAY(buffer), SPECIFIED));
        SET_SERIES_LEN(buffer, 0); // required - allow reuse
    }
    else {
        REB_MOLD mo;
        CLEARS(&mo);

        if (IS_BINARY(val1)) {
            //
            // All binaries use "case-sensitive" comparison (e.g. each byte
            // is treated distinctly)
            //
            cased = TRUE;
        }

        // ask mo.series to have at least `i` capacity beyond mo.start
        //
        mo.opts = MOPT_RESERVE;
        mo.reserve = i;
        Push_Mold(&mo);

        do {
            REBSER *ser = VAL_SERIES(val1); // val1 and val2 swapped 2nd pass!
            REBUNI uc;

            // Iterate over first series
            //
            i = VAL_INDEX(val1);
            for (; i < SER_LEN(ser); i += skip) {
                uc = GET_ANY_CHAR(ser, i);
                if (flags & SOP_FLAG_CHECK) {
                    h = (NOT_FOUND != Find_Str_Char(
                        uc,
                        VAL_SERIES(val2),
                        0,
                        VAL_INDEX(val2),
                        VAL_LEN_HEAD(val2),
                        skip,
                        cased ? AM_FIND_CASE : 0
                    ));

                    if (flags & SOP_FLAG_INVERT) h = !h;
                }

                if (!h) continue;

                if (
                    NOT_FOUND == Find_Str_Char(
                        uc, // c2 (the character to find)
                        mo.series, // ser
                        mo.start, // head
                        mo.start, // index
                        SER_LEN(mo.series), // tail
                        skip, // skip
                        cased ? AM_FIND_CASE : 0 // flags
        )
                ) {
                    Append_String(mo.series, ser, i, skip);
                }
            }

            if (!first_pass) break;
            first_pass = FALSE;

            // Iterate over second series?
            //
            if ((i = ((flags & SOP_FLAG_BOTH) != 0))) {
                const REBVAL *temp = val1;
                val1 = val2;
                val2 = temp;
            }
        } while (i);

        out_ser = Pop_Molded_String(&mo);
    }

    return out_ser;
}