コード例 #1
0
ファイル: transform.c プロジェクト: fransklaver/SPOOLES
/*
   -------------------------------------------------
   expand an ETree object by splitting a large front 
   into a chain of smaller fronts.

   created -- 96jun27, cca
   -------------------------------------------------
*/
ETree *
ETree_splitFronts (
   ETree   *etree,
   int     vwghts[],
   int     maxfrontsize,
   int     seed
) {
ETree   *etree2 ;
int     count, front, ii, I, Inew, J, Jnew, nbnd, newsize, nint, nfront,
        nfront2, nsplit, nvtx, prev, size, sizeJ, v, vwght ;
int     *bndwghts, *fch, *head, *indices, *link, *newbndwghts, *newmap, 
        *newnodwghts, *newpar, *nodwghts, *roots, *sib, *vtxToFront ;
Tree    *tree ;
/*
   ---------------
   check the input
   ---------------
*/
if ( etree == NULL
   || (nfront = etree->nfront) <= 0
   || (nvtx = etree->nvtx) <= 0
   || maxfrontsize <= 0 ) {
   fprintf(stderr, "\n fatal error in ETree_splitFronts(%p,%p,%d,%d)"
           "\n bad input\n", etree, vwghts, maxfrontsize, seed) ;
   spoolesFatal();
}
tree       = etree->tree ;
fch        = tree->fch ;
sib        = tree->sib ;
nodwghts   = IV_entries(etree->nodwghtsIV) ;
bndwghts   = IV_entries(etree->bndwghtsIV) ;
vtxToFront = IV_entries(etree->vtxToFrontIV) ;
/*
   --------------------------
   set up the working storage
   --------------------------
*/
newpar      = IVinit(nvtx,   -1) ;
roots       = IVinit(nfront, -1) ;
newmap      = IVinit(nvtx,   -1) ;
newnodwghts = IVinit(nvtx,   -1) ;
newbndwghts = IVinit(nvtx,   -1) ;
head        = IVinit(nfront, -1) ;
link        = IVinit(nvtx,   -1) ;
indices     = IVinit(nvtx,   -1) ;
for ( v = 0 ; v < nvtx ; v++ ) {
   front = vtxToFront[v] ;
   link[v] = head[front] ;
   head[front] = v ;
}
/*
   ------------------------------------------------
   execute a post-order traversal of the front tree
   ------------------------------------------------
*/
nfront2 = 0 ;
for ( J = Tree_postOTfirst(tree) ;
      J != -1 ;
      J = Tree_postOTnext(tree, J) ) {
   sizeJ = 0 ;
   for ( v = head[J], count = 0 ; v != -1 ; v = link[v] ) {
      indices[count++] = v ;
      vwght = (vwghts != NULL) ? vwghts[v] : 1 ;
      sizeJ += vwght ;
   }
   if ( sizeJ != nodwghts[J] ) {
      fprintf(stderr, "\n fatal error in ETree_splitFronts(%p,%p,%d,%d)"
             "\n J = %d, sizeJ = %d, nodwght = %d\n", 
             etree, vwghts, maxfrontsize, seed, J, sizeJ, nodwghts[J]) ;
      spoolesFatal();
   }
#if MYDEBUG > 0
   fprintf(stdout, "\n\n checking out front %d, size %d", J, sizeJ) ;
#endif
   if ( sizeJ <= maxfrontsize || fch[J] == -1 ) {
/*
      -------------------------------------------
      this front is small enough (or is a domain)
      -------------------------------------------
*/
      Jnew = nfront2++ ;
      for ( ii = 0 ; ii < count ; ii++ ) {
         v = indices[ii] ;
         newmap[v] = Jnew ;
#if MYDEBUG > 1
            fprintf(stdout, "\n   mapping vertex %d into new front %d",
                    v, Jnew) ;
#endif
      }
      for ( I = fch[J] ; I != -1 ; I = sib[I] ) {
         Inew = roots[I] ;
         newpar[Inew] = Jnew ;
      }
      newnodwghts[Jnew] = nodwghts[J] ;
      newbndwghts[Jnew] = bndwghts[J] ;
      roots[J] = Jnew ;
#if MYDEBUG > 0
      fprintf(stdout, "\n    front is small enough, Jnew = %d", Jnew) ;
#endif
   } else {
/*
      ------------------------------------------
      this front is too large, split into pieces 
      whose size differs by one vertex
      ------------------------------------------
*/
      nsplit  = (sizeJ + maxfrontsize - 1)/maxfrontsize ;
      newsize = sizeJ / nsplit ;
      if ( sizeJ % nsplit != 0 ) {
         newsize++ ;
      }
#if MYDEBUG > 0
      fprintf(stdout, 
         "\n    front is too large, %d target fronts, target size = %d",
         nsplit, newsize) ;
#endif
      prev    = -1 ;
      nint    = nodwghts[J] ;
      nbnd    = nint + bndwghts[J] ;
      if ( seed > 0 ) {
         IVshuffle(count, indices, seed) ;
      }
      ii = 0 ;
      while ( ii < count ) {
         Jnew = nfront2++ ;
         size = 0 ;
         while ( ii < count ) {
            v = indices[ii] ;
            vwght = (vwghts != NULL) ? vwghts[v] : 1 ;
#if MYDEBUG > 0
            fprintf(stdout, 
                "\n   ii = %d, v = %d, vwght = %d, size = %d",
                ii, v, vwght, size) ;
#endif
/*
   -----------------------------------------------
   97aug28, cca
   bug fix. front is created even if it is too big
   -----------------------------------------------
*/
            if ( newsize >= size + vwght || size == 0 ) {
               newmap[v] = Jnew ;
               size += vwght ;
#if MYDEBUG > 0
               fprintf(stdout, 
                "\n   mapping vertex %d into new front %d, size = %d",
                v, Jnew, size) ;
#endif
               ii++ ;
            } else {
               break ;
            }
         }
         if ( prev == -1 ) {
            for ( I = fch[J] ; I != -1 ; I = sib[I] ) {
               Inew = roots[I] ;
               newpar[Inew] = Jnew ;
            }
         } else {
            newpar[prev] = Jnew ;
         }
         prev = Jnew ;
         newnodwghts[Jnew] = size ;
         nbnd = nbnd - size ;
         newbndwghts[Jnew] = nbnd ;
#if MYDEBUG > 0
         fprintf(stdout, "\n    new front %d, size %d, bnd %d",
                 Jnew, newnodwghts[Jnew], newbndwghts[Jnew]) ;
#endif
      }
      roots[J] = Jnew ;
   }
}
/*
   ---------------------------
   create the new ETree object
   ---------------------------
*/
etree2 = ETree_new() ;
ETree_init1(etree2, nfront2, nvtx) ;
IVcopy(nfront2, etree2->tree->par, newpar) ;
Tree_setFchSibRoot(etree2->tree) ;
IVcopy(nvtx, IV_entries(etree2->vtxToFrontIV), newmap) ;
IVcopy(nfront2, IV_entries(etree2->nodwghtsIV), newnodwghts) ;
IVcopy(nfront2, IV_entries(etree2->bndwghtsIV), newbndwghts) ;
/*
   ------------------------
   free the working storage
   ------------------------
*/
IVfree(newpar) ;
IVfree(roots)  ;
IVfree(newmap) ;
IVfree(newnodwghts) ;
IVfree(newbndwghts) ;
IVfree(head) ;
IVfree(link) ;
IVfree(indices) ;

return(etree2) ; }
コード例 #2
0
ファイル: test_update.c プロジェクト: fransklaver/SPOOLES
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
   -------------------------------------
   test the Chv_update{H,S,N}() methods.
   T := T - U^T * D * U
   T := T - U^H * D * U
   T := T - L   * D * U

   created -- 98apr23, cca
   -------------------------------------
*/
{
Chv     *chvT ;
SubMtx     *mtxD, *mtxL, *mtxU ;
double   imag, ops, real, t1, t2 ;
Drand    *drand ;
DV       *tempDV ;
FILE     *msgFile ;
int      irow, msglvl, ncolT, nDT, ncolU, nentT, nentU, nrowD, 
         nrowL, nrowT, offset, seed, size, sparsityflag, symflag, type ;
int      *colindT, *colindU, *ivec, *rowindL, *rowindT ;

if ( argc != 13 ) {
   fprintf(stdout, 
           "\n\n usage : %s msglvl msgFile type symflag sparsityflag"
           "\n         ncolT ncolU nrowD nentU offset seed"
           "\n    msglvl  -- message level"
           "\n    msgFile -- message file"
           "\n    type    -- entries type"
           "\n       1 -- real"
           "\n       2 -- complex"
           "\n    symflag -- type of matrix U"
           "\n       0 -- symmetric"
           "\n       1 -- hermitian"
           "\n       2 -- nonsymmetric"
           "\n    sparsityflag -- dense or sparse"
           "\n       0 -- dense"
           "\n       1 -- sparse"
           "\n    ncolT   -- # of rows and columns in matrix T"
           "\n    nDT     -- # of internal rows and columns in matrix T"
           "\n    ncolU   -- # of rows and columns in matrix U"
           "\n    nrowD   -- # of rows and columns in matrix D"
           "\n    nentU   -- # of entries in matrix U"
           "\n    offset  -- distance between D_I and T"
           "\n    seed    -- random number seed"
           "\n", argv[0]) ;
   return(0) ;
}
if ( (msglvl = atoi(argv[1])) < 0 ) {
   fprintf(stderr, "\n message level must be positive\n") ;
   spoolesFatal();
}
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n unable to open file %s\n", argv[2]) ;
   return(-1) ;
}
type         = atoi(argv[3]) ;
symflag      = atoi(argv[4]) ;
sparsityflag = atoi(argv[5]) ;
ncolT        = atoi(argv[6]) ;
nDT          = atoi(argv[7]) ;
ncolU        = atoi(argv[8]) ;
nrowD        = atoi(argv[9]) ;
nentU        = atoi(argv[10]) ;
offset       = atoi(argv[11]) ;
seed         = atoi(argv[12]) ;
fprintf(msgFile, "\n %% %s:"
        "\n %% msglvl       = %d"
        "\n %% msgFile      = %s"
        "\n %% type         = %d"
        "\n %% symflag      = %d"
        "\n %% sparsityflag = %d"
        "\n %% ncolT        = %d"
        "\n %% nDT          = %d"
        "\n %% ncolU        = %d"
        "\n %% nrowD        = %d"
        "\n %% nentU        = %d"
        "\n %% offset       = %d"
        "\n %% seed         = %d",
        argv[0], msglvl, argv[2], type, symflag, sparsityflag, 
        ncolT, nDT, ncolU, nrowD, nentU, offset, seed) ;
/*
   -----------------------------
   check for errors in the input
   -----------------------------
*/
if (  (type != SPOOLES_REAL 
       && type != SPOOLES_COMPLEX) 
   || (symflag != SPOOLES_SYMMETRIC 
       && symflag != SPOOLES_HERMITIAN 
       && symflag != SPOOLES_NONSYMMETRIC) 
   || (sparsityflag < 0 || sparsityflag > 1)
   || ncolT <= 0 || ncolU > (ncolT + offset) || nrowD <= 0 ) {
   fprintf(stderr, "\n invalid input\n") ;
   spoolesFatal();
}
/*
   --------------------------------------
   initialize the random number generator
   --------------------------------------
*/
drand = Drand_new() ;
Drand_init(drand) ;
Drand_setSeed(drand, ++seed) ;
Drand_setNormal(drand, 0.0, 1.0) ;
/*
   -----------------------
   get a vector of indices
   -----------------------
*/
size = nrowD + offset + ncolT ;
ivec = IVinit(size, -1) ;
IVramp(size, ivec, 0, 1) ;
/*
   ----------------------------
   initialize the T Chv object
   ----------------------------
*/
fprintf(msgFile, "\n\n %% symflag = %d", symflag) ;
MARKTIME(t1) ;
chvT = Chv_new() ;
Chv_init(chvT, 0, nDT, ncolT - nDT, ncolT - nDT, type, symflag) ;
nentT = Chv_nent(chvT) ;
if ( CHV_IS_REAL(chvT) ) {
   Drand_fillDvector(drand, nentT, Chv_entries(chvT)) ;
} else if ( CHV_IS_COMPLEX(chvT) ) {
   Drand_fillDvector(drand, 2*nentT, Chv_entries(chvT)) ;
}
Chv_columnIndices(chvT, &ncolT, &colindT) ;
IVcopy(ncolT, colindT, ivec + nrowD + offset) ;
if ( CHV_IS_NONSYMMETRIC(chvT) ) {
   Chv_rowIndices(chvT, &nrowT, &rowindT) ;
   IVcopy(nrowT, rowindT, colindT) ;
}
IVfree(ivec) ;
if ( CHV_IS_HERMITIAN(chvT) ) {
   fprintf(msgFile, "\n\n %% hermitian\n") ;
/*
   ---------------------------------------------------------
   hermitian example, set imaginary part of diagonal to zero
   ---------------------------------------------------------
*/
   for ( irow = 0 ; irow < nDT ; irow++ ) {
      Chv_complexEntry(chvT, irow, irow, &real, &imag) ;
      Chv_setComplexEntry(chvT, irow, irow, real, 0.0) ;
   }
}
MARKTIME(t2) ;
fprintf(msgFile, "\n %% CPU : %.3f to initialize chvT Chv object",
        t2 - t1) ;
fprintf(msgFile, "\n T = zeros(%d,%d); ", size, size) ;
Chv_writeForMatlab(chvT, "T", msgFile) ;
/*
   ---------------------------
   initialize the D Mtx object
   ---------------------------
*/
MARKTIME(t1) ;
mtxD = SubMtx_new() ;
if ( CHV_IS_REAL(chvT) ) {
   if ( CHV_IS_SYMMETRIC(chvT) ) {
      SubMtx_initRandom(mtxD, SPOOLES_REAL, SUBMTX_BLOCK_DIAGONAL_SYM,
                      0, 0, nrowD, nrowD, nrowD*nrowD, ++seed) ;
   } else {
      SubMtx_initRandom(mtxD, SPOOLES_REAL, SUBMTX_DIAGONAL, 
                      0, 0, nrowD, nrowD, nrowD*nrowD, ++seed) ;
   }
} else if ( CHV_IS_COMPLEX(chvT) ) {
   if ( CHV_IS_HERMITIAN(chvT) ) {
      SubMtx_initRandom(mtxD,SPOOLES_COMPLEX,SUBMTX_BLOCK_DIAGONAL_HERM,
                      0, 0, nrowD, nrowD, nrowD*nrowD, ++seed) ;
   } else if ( CHV_IS_SYMMETRIC(chvT) ) {
      SubMtx_initRandom(mtxD,SPOOLES_COMPLEX, SUBMTX_BLOCK_DIAGONAL_SYM,
                      0, 0, nrowD, nrowD, nrowD*nrowD, ++seed) ;
   } else {
      SubMtx_initRandom(mtxD, SPOOLES_COMPLEX, SUBMTX_DIAGONAL, 
                      0, 0, nrowD, nrowD, nrowD*nrowD, ++seed) ;
   }
}
MARKTIME(t2) ;
fprintf(msgFile, "\n %% CPU : %.3f to initialize D SubMtx object",
        t2 - t1) ;
fprintf(msgFile, "\n D = zeros(%d,%d) ;", nrowD, nrowD) ;
SubMtx_writeForMatlab(mtxD, "D", msgFile) ;
/*
   ----------------------------
   initialize the U SubMtx object
   ----------------------------
*/
MARKTIME(t1) ;
mtxU = SubMtx_new() ;
if ( CHV_IS_REAL(chvT) ) {
   if ( sparsityflag == 0 ) {
      SubMtx_initRandom(mtxU, SPOOLES_REAL, SUBMTX_DENSE_COLUMNS, 
                      0, 0, nrowD, ncolU, nentU, ++seed) ;
   } else {
      SubMtx_initRandom(mtxU, SPOOLES_REAL, SUBMTX_SPARSE_COLUMNS, 
                      0, 0, nrowD, ncolU, nentU, ++seed) ;
   }
} else if ( CHV_IS_COMPLEX(chvT) ) {
   if ( sparsityflag == 0 ) {
      SubMtx_initRandom(mtxU, SPOOLES_COMPLEX, SUBMTX_DENSE_COLUMNS, 
                      0, 0, nrowD, ncolU, nentU, ++seed) ;
   } else {
      SubMtx_initRandom(mtxU, SPOOLES_COMPLEX, SUBMTX_SPARSE_COLUMNS, 
                      0, 0, nrowD, ncolU, nentU, ++seed) ;
   }
}
ivec = IVinit(offset + ncolT, -1) ;
IVramp(offset + ncolT, ivec, nrowD, 1) ;
IVshuffle(offset + ncolT, ivec, ++seed) ;
SubMtx_columnIndices(mtxU, &ncolU, &colindU) ;
IVcopy(ncolU, colindU, ivec) ;
IVqsortUp(ncolU, colindU) ;
IVfree(ivec) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n %% CPU : %.3f to initialize U SubMtx object",
        t2 - t1) ;
fprintf(msgFile, "\n U = zeros(%d,%d) ;", nrowD, size) ;
SubMtx_writeForMatlab(mtxU, "U", msgFile) ;
if ( CHV_IS_NONSYMMETRIC(chvT) ) {
/*
   ----------------------------
   initialize the L SubMtx object
   ----------------------------
*/
   MARKTIME(t1) ;
   mtxL = SubMtx_new() ;
   if ( CHV_IS_REAL(chvT) ) {
      if ( sparsityflag == 0 ) {
         SubMtx_initRandom(mtxL, SPOOLES_REAL, SUBMTX_DENSE_ROWS,
                         0, 0, ncolU, nrowD, nentU, ++seed) ;
      } else {
         SubMtx_initRandom(mtxL, SPOOLES_REAL, SUBMTX_SPARSE_ROWS,
                         0, 0, ncolU, nrowD, nentU, ++seed) ;
      }
   } else if ( CHV_IS_COMPLEX(chvT) ) {
      if ( sparsityflag == 0 ) {
         SubMtx_initRandom(mtxL, SPOOLES_COMPLEX, SUBMTX_DENSE_ROWS,
                         0, 0, ncolU, nrowD, nentU, ++seed) ;
      } else {
         SubMtx_initRandom(mtxL, SPOOLES_COMPLEX, SUBMTX_SPARSE_ROWS,
                         0, 0, ncolU, nrowD, nentU, ++seed) ;
      }
   }
   SubMtx_rowIndices(mtxL, &nrowL, &rowindL) ;
   IVcopy(nrowL, rowindL, colindU) ;
   MARKTIME(t2) ;
   fprintf(msgFile, "\n %% CPU : %.3f to initialize L SubMtx object",
           t2 - t1) ;
   fprintf(msgFile, "\n L = zeros(%d,%d) ;", size, nrowD) ;
   SubMtx_writeForMatlab(mtxL, "L", msgFile) ;
} else {
   mtxL = NULL ;
}
/*
   --------------------------------
   compute the matrix-matrix update
   --------------------------------
*/
tempDV = DV_new() ;
ops = 8*nrowD*nrowD*ncolU ;
if ( CHV_IS_SYMMETRIC(chvT) ) {
   Chv_updateS(chvT, mtxD, mtxU, tempDV) ;
} else if ( CHV_IS_HERMITIAN(chvT) ) {
   Chv_updateH(chvT, mtxD, mtxU, tempDV) ;
} else if ( CHV_IS_NONSYMMETRIC(chvT) ) {
   Chv_updateN(chvT, mtxL, mtxD, mtxU, tempDV) ;
}
MARKTIME(t2) ;
fprintf(msgFile, "\n %% CPU : %.3f to compute m-m, %.3f mflops",
        t2 - t1, ops*1.e-6/(t2 - t1)) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n %% Z Chv object") ;
   fprintf(msgFile, "\n Z = zeros(%d,%d); ", size, size) ;
   Chv_writeForMatlab(chvT, "Z", msgFile) ;
   fflush(msgFile) ;
}
/*
   -----------------
   check with matlab
   -----------------
*/
if ( msglvl > 1 ) {
   if ( CHV_IS_HERMITIAN(chvT) ) {
      fprintf(msgFile, "\n\n B  =  ctranspose(U) * D * U ;") ;
   } else if ( CHV_IS_SYMMETRIC(chvT) ) {
      fprintf(msgFile, "\n\n B  =  transpose(U) * D * U ;") ;
   } else {
      fprintf(msgFile, "\n\n B  =  L * D * U ;") ;
   }
   fprintf(msgFile, 
           "\n\n for irow = 1:%d"
           "\n      for jcol = 1:%d"
           "\n         if T(irow,jcol) ~= 0.0"
           "\n            T(irow,jcol) = T(irow,jcol) - B(irow,jcol) ;"
           "\n         end"
           "\n      end"
           "\n   end"
           "\n emtx   = abs(Z - T) ;",
           size, size) ;
   fprintf(msgFile, "\n\n maxabs = max(max(emtx)) ") ;
   fflush(msgFile) ;
}
/*
   ------------------------
   free the working storage
   ------------------------
*/
if ( mtxL != NULL ) {
   SubMtx_free(mtxL) ;
}
Chv_free(chvT) ;
SubMtx_free(mtxD) ;
SubMtx_free(mtxU) ;
DV_free(tempDV) ;
Drand_free(drand) ;

fprintf(msgFile, "\n") ;

return(1) ; }
コード例 #3
0
ファイル: test_assmbChv.c プロジェクト: JuliaFEM/SPOOLES
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
   ------------------------------------
   test the Chv_assembleChv() method.

   created -- 98apr18, cca
   ------------------------------------
*/
{
Chv     *chvI, *chvJ ;
double   imag, real, t1, t2 ;
double   *entriesI, *entriesJ ;
Drand    *drand ;
FILE     *msgFile ;
int      ierr, ii, irow, jcol,
         lastcol, msglvl, ncolI, ncolJ, nDI, nDJ, nentI, nentJ, 
         nrowI, nrowJ, nUI, nUJ, seed, symflag, type ;
int      *colindI, *colindJ, *rowindI, *rowindJ, *temp ;

if ( argc != 10 ) {
   fprintf(stdout, 
"\n\n usage : %s msglvl msgFile nDJ nUJ nDI nUI type symflag seed "
"\n    msglvl  -- message level"
"\n    msgFile -- message file"
"\n    nDJ     -- # of rows and columns in the (1,1) block"
"\n    nUJ     -- # of columns in the (1,2) block"
"\n    nDI     -- # of rows and columns in the (1,1) block"
"\n    nUI     -- # of columns in the (1,2) block"
"\n    type    -- entries type"
"\n       1 --> real"
"\n       2 --> complex"
"\n    symflag -- symmetry flag"
"\n       0 --> symmetric"
"\n       1 --> hermitian"
"\n       2 --> nonsymmetric"
"\n    seed    -- random number seed"
"\n", argv[0]) ;
   return(0) ;
}
if ( (msglvl = atoi(argv[1])) < 0 ) {
   fprintf(stderr, "\n message level must be positive\n") ;
   exit(-1) ;
}
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n unable to open file %s\n", argv[2]) ;
   return(-1) ;
}
nDJ     = atoi(argv[3]) ;
nUJ     = atoi(argv[4]) ;
nDI     = atoi(argv[5]) ;
nUI     = atoi(argv[6]) ;
type    = atoi(argv[7]) ;
symflag = atoi(argv[8]) ;
seed    = atoi(argv[9]) ;
if (  nDJ <= 0 || nUJ < 0 
   || nDI <= 0 || nUI < 0 
   || nDI >= nDJ || (nDI + nUI) >= (nDJ + nUJ)
   || nUI >= (nDJ + nUJ - nDI)
   || (  symflag != SPOOLES_SYMMETRIC
      && symflag != SPOOLES_HERMITIAN
      && symflag != SPOOLES_NONSYMMETRIC) ) {
   fprintf(stderr, "\n invalid input"
      "\n nDJ = %d, nUJ = %d, nDI = %d, nUI = %d, symflag = %d\n",
           nDJ, nUJ, nDI, nUI, symflag) ;
   exit(-1) ;
}
/*
   --------------------------------------
   initialize the random number generator
   --------------------------------------
*/
drand = Drand_new() ;
Drand_init(drand) ;
Drand_setSeed(drand, seed) ;
Drand_setUniform(drand, -1.0, 1.0) ;
/*
   ----------------------------
   initialize the ChvJ object
   ----------------------------
*/
MARKTIME(t1) ;
chvJ = Chv_new() ;
Chv_init(chvJ, 0, nDJ, nUJ, nUJ, type, symflag) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n %% CPU : %.3f to initialize chv object",
        t2 - t1) ;
fflush(msgFile) ;
Chv_columnIndices(chvJ, &ncolJ, &colindJ) ;
temp = IVinit(2*(nDJ+nUJ), -1) ;
IVramp(2*(nDJ+nUJ), temp, 0, 1) ;
IVshuffle(2*(nDJ+nUJ), temp, ++seed) ;
IVcopy(ncolJ, colindJ, temp) ;
IVfree(temp) ;
IVqsortUp(ncolJ, colindJ) ;
if ( CHV_IS_NONSYMMETRIC(chvJ) ) {
   Chv_rowIndices(chvJ, &nrowJ, &rowindJ) ;
   IVcopy(nrowJ, rowindJ, colindJ) ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n %% column indices") ;
   IVfprintf(msgFile, ncolJ, colindJ) ;
}
lastcol = colindJ[ncolJ-1] ;
nentJ = Chv_nent(chvJ) ;
entriesJ = Chv_entries(chvJ) ;
if ( CHV_IS_REAL(chvJ) ) {
   Drand_fillDvector(drand, nentJ, entriesJ) ;
} else if ( CHV_IS_COMPLEX(chvJ) ) {
   Drand_fillDvector(drand, 2*nentJ, entriesJ) ;
}
if ( CHV_IS_HERMITIAN(chvJ) ) {
/*
   ---------------------------------------------------------
   hermitian example, set imaginary part of diagonal to zero
   ---------------------------------------------------------
*/
   for ( irow = 0 ; irow < nDJ ; irow++ ) {
      Chv_complexEntry(chvJ, irow, irow, &real, &imag) ;
      Chv_setComplexEntry(chvJ, irow, irow, real, 0.0) ;
   }
}
/*
   ---------------------------
   initialize the ChvI object
   ---------------------------
*/
chvI = Chv_new() ;
Chv_init(chvI, 0, nDI, nUI, nUI, type, symflag) ;
Chv_columnIndices(chvI, &ncolI, &colindI) ;
temp = IVinit(ncolJ, -1) ;
IVramp(ncolJ, temp, 0, 1) ;
while ( 1 ) {
   IVshuffle(ncolJ, temp, ++seed) ;
   IVqsortUp(ncolI, temp) ;
   if ( temp[0] < nDJ ) {
      break ;
   }
}
for ( ii = 0 ; ii < ncolI ; ii++ ) {
   colindI[ii] = colindJ[temp[ii]] ;
}
IVfree(temp) ;
if ( CHV_IS_NONSYMMETRIC(chvI) ) {
   Chv_rowIndices(chvI, &nrowI, &rowindI) ;
   IVcopy(nrowI, rowindI, colindI) ;
}
nentI = Chv_nent(chvI) ;
entriesI = Chv_entries(chvI) ;
if ( CHV_IS_REAL(chvI) ) {
   Drand_fillDvector(drand, nentI, entriesI) ;
} else if ( CHV_IS_COMPLEX(chvI) ) {
   Drand_fillDvector(drand, 2*nentI, entriesI) ;
}
if ( CHV_IS_HERMITIAN(chvI) ) {
/*
   ---------------------------------------------------------
   hermitian example, set imaginary part of diagonal to zero
   ---------------------------------------------------------
*/
   for ( irow = 0 ; irow < nDI ; irow++ ) {
      Chv_complexEntry(chvI, irow, irow, &real, &imag) ;
      Chv_setComplexEntry(chvI, irow, irow, real, 0.0) ;
   }
}
/*
   --------------------------------------------------
   write out the two chevron objects to a matlab file
   --------------------------------------------------
*/
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n a = zeros(%d,%d) ;", lastcol+1, lastcol+1) ;
   Chv_writeForMatlab(chvJ, "a", msgFile) ;
   fprintf(msgFile, "\n b = zeros(%d,%d) ;", lastcol+1, lastcol+1) ;
   Chv_writeForMatlab(chvI, "b", msgFile) ;
}
/*
   ---------------------------------------------
   assemble the chvI object into the chvJ object
   ---------------------------------------------
*/
Chv_assembleChv(chvJ, chvI) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n %% after assembly") ;
   fprintf(msgFile, "\n c = zeros(%d,%d) ;", lastcol+1, lastcol+1) ;
   Chv_writeForMatlab(chvJ, "c", msgFile) ;
}
/*
   -----------------
   compute the error
   -----------------
*/
fprintf(msgFile, "\n max(max(abs(c - (b + a))))") ;
/*
   ------------------------
   free the working storage
   ------------------------
*/
Chv_free(chvJ) ;
Chv_free(chvI) ;
Drand_free(drand) ;

fprintf(msgFile, "\n") ;

return(1) ; }
コード例 #4
0
ファイル: test_addChevron.c プロジェクト: JuliaFEM/SPOOLES
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
   ---------------------------------------
   test the Chv_addChevron() method.

   created -- 98apr18, cca
   ---------------------------------------
*/
{
Chv     *chv ;
double   alpha[2] ;
double   imag, real, t1, t2 ;
double   *chvent, *entries ;
Drand    *drand ;
FILE     *msgFile ;
int      chvsize, count, ichv, ierr, ii, iloc, irow, jcol,
         lastcol, msglvl, ncol, nD, nent, nL, nrow, nU, 
         off, seed, symflag, type, upper ;
int      *chvind, *colind, *keys, *rowind, *temp ;

if ( argc != 10 ) {
   fprintf(stdout, 
           "\n\n usage : %s msglvl msgFile nD nU type symflag seed "
           "\n         alphareal alphaimag"
           "\n    msglvl  -- message level"
           "\n    msgFile -- message file"
           "\n    nD      -- # of rows and columns in the (1,1) block"
           "\n    nU      -- # of columns in the (1,2) block"
           "\n    type    -- entries type"
           "\n       1 --> real"
           "\n       2 --> complex"
           "\n    symflag -- symmetry flag"
           "\n       0 --> symmetric"
           "\n       1 --> hermitian"
           "\n       2 --> nonsymmetric"
           "\n    seed    -- random number seed"
           "\n    alpha   -- scaling parameter"
           "\n", argv[0]) ;
   return(0) ;
}
if ( (msglvl = atoi(argv[1])) < 0 ) {
   fprintf(stderr, "\n message level must be positive\n") ;
   exit(-1) ;
}
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n unable to open file %s\n", argv[2]) ;
   return(-1) ;
}
nD       = atoi(argv[3]) ;
nU       = atoi(argv[4]) ;
type     = atoi(argv[5]) ;
symflag  = atoi(argv[6]) ;
seed     = atoi(argv[7]) ;
alpha[0] = atof(argv[8]) ;
alpha[1] = atof(argv[9]) ;
if (  nD <= 0 || nU < 0 || symflag < 0 || symflag > 2 ) {
   fprintf(stderr, "\n invalid input"
           "\n nD = %d, nU = %d, symflag = %d\n", nD, nU, symflag) ;
   exit(-1) ;
}
fprintf(msgFile, "\n alpha = %12.4e + %12.4e*i ;", alpha[0], alpha[1]) ;
nL = nU ;
/*
   --------------------------------------
   initialize the random number generator
   --------------------------------------
*/
drand = Drand_new() ;
Drand_init(drand) ;
Drand_setSeed(drand, seed) ;
Drand_setUniform(drand, -1.0, 1.0) ;
/*
   ----------------------------
   initialize the Chv object
   ----------------------------
*/
MARKTIME(t1) ;
chv = Chv_new() ;
Chv_init(chv, 0, nD, nL, nU, type, symflag) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n %% CPU : %.3f to initialize chv object",
        t2 - t1) ;
fflush(msgFile) ;
Chv_columnIndices(chv, &ncol, &colind) ;
temp = IVinit(2*(nD+nU), -1) ;
IVramp(2*(nD+nU), temp, 0, 1) ;
IVshuffle(2*(nD+nU), temp, ++seed) ;
IVcopy(ncol, colind, temp) ;
IVqsortUp(ncol, colind) ;
if ( CHV_IS_NONSYMMETRIC(chv) ) {
   Chv_rowIndices(chv, &nrow, &rowind) ;
   IVcopy(nrow, rowind, colind) ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n %% column indices") ;
   IVfprintf(msgFile, ncol, colind) ;
}
lastcol = colind[ncol-1] ;
nent = Chv_nent(chv) ;
entries = Chv_entries(chv) ;
if ( CHV_IS_REAL(chv) ) {
   Drand_fillDvector(drand, nent, entries) ;
} else if ( CHV_IS_COMPLEX(chv) ) {
   Drand_fillDvector(drand, 2*nent, entries) ;
}
if ( CHV_IS_HERMITIAN(chv) ) {
/*
   ---------------------------------------------------------
   hermitian example, set imaginary part of diagonal to zero
   ---------------------------------------------------------
*/
   for ( irow = 0 ; irow < nD ; irow++ ) {
      Chv_complexEntry(chv, irow, irow, &real, &imag) ;
      Chv_setComplexEntry(chv, irow, irow, real, 0.0) ;
   }
}

if ( msglvl > 1 ) {
   fprintf(msgFile, "\n a = zeros(%d,%d) ;", lastcol+1, lastcol+1) ;
   Chv_writeForMatlab(chv, "a", msgFile) ;
}
/*
   --------------------------------------------------
   fill a chevron with random numbers and indices
   that are a subset of a front's, as in the assembly
   of original matrix entries.
   --------------------------------------------------
*/
Drand_setUniform(drand, 0, nD) ;
iloc = (int) Drand_value(drand) ;
ichv = colind[iloc] ;
if ( CHV_IS_SYMMETRIC(chv) || CHV_IS_HERMITIAN(chv) ) {
   upper = nD - iloc + nU ;
} else {
   upper = 2*(nD - iloc) - 1 + nL + nU ;
}
Drand_setUniform(drand, 1, upper) ;
chvsize = (int) Drand_value(drand) ;
fprintf(msgFile, "\n %% iloc = %d, ichv = %d, chvsize = %d", 
        iloc, ichv, chvsize) ;
chvind  = IVinit(chvsize, -1) ;
chvent  = DVinit(2*chvsize, 0.0) ;
Drand_setNormal(drand, 0.0, 1.0) ;
if ( CHV_IS_REAL(chv) ) {
   Drand_fillDvector(drand, chvsize, chvent) ;
} else if ( CHV_IS_COMPLEX(chv) ) {
   Drand_fillDvector(drand, 2*chvsize, chvent) ;
}
keys    = IVinit(upper+1, -1) ;
keys[0] = 0 ;
if ( CHV_IS_SYMMETRIC(chv) || CHV_IS_HERMITIAN(chv) ) {
   for ( ii = iloc + 1, count = 1 ; ii < nD + nU ; ii++ ) {
      keys[count++] = colind[ii] - ichv ;
   }
} else {
   for ( ii = iloc + 1, count = 1 ; ii < nD + nU ; ii++ ) {
      keys[count++] =   colind[ii] - ichv ;
      keys[count++] = - colind[ii] + ichv ;
   }
}
if ( msglvl > 3 ) {
   fprintf(msgFile, "\n %% iloc = %d, ichv = %d", iloc, ichv) ;
   fprintf(msgFile, "\n %% upper = %d", upper) ;
   fprintf(msgFile, "\n %% chvsize = %d", chvsize) ;
   fprintf(msgFile, "\n %% initial keys") ;
   IVfprintf(msgFile, count, keys) ;
}
   IVshuffle(count, keys, ++seed) ;
if ( msglvl > 3 ) {
   fprintf(msgFile, "\n %% shuffled keys") ;
   IVfp80(msgFile, count, keys, 80, &ierr) ;
}
IVcopy(chvsize, chvind, keys) ;
if ( CHV_IS_REAL(chv) ) {
   IVDVqsortUp(chvsize, chvind, chvent) ;
} else if ( CHV_IS_COMPLEX(chv) ) {
   IVZVqsortUp(chvsize, chvind, chvent) ;
}
if ( msglvl > 3 ) {
   fprintf(msgFile, "\n %% chvind") ;
   IVfprintf(msgFile, chvsize, chvind) ;
}
if ( CHV_IS_HERMITIAN(chv) ) {
   for ( ii = 0 ; ii < chvsize ; ii++ ) {
      if ( chvind[ii] == 0 ) {
         chvent[2*ii+1] = 0.0 ;
      }
   }
}
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n b = zeros(%d,%d) ;", lastcol+1, lastcol+1) ;
   if ( CHV_IS_REAL(chv) ) {
      if ( CHV_IS_SYMMETRIC(chv) ) {
         for ( ii = 0 ; ii < chvsize ; ii++ ) {
            off = chvind[ii] ;
            fprintf(msgFile, "\n b(%d,%d) = %20.12e ;",
                    colind[iloc]+1, colind[iloc]+off+1, chvent[ii]) ;
            fprintf(msgFile, "\n b(%d,%d) = %20.12e ;",
                    colind[iloc]+off+1, colind[iloc]+1, chvent[ii]) ;
         }
      } else {
         for ( ii = 0 ; ii < chvsize ; ii++ ) {
            off = chvind[ii] ;
            if ( off > 0 ) {
               fprintf(msgFile, "\n b(%d,%d) = %20.12e ;",
                       colind[iloc]+1, colind[iloc]+off+1, chvent[ii]) ;
            } else {
               fprintf(msgFile, "\n b(%d,%d) = %20.12e ;",
                       colind[iloc]-off+1, colind[iloc]+1, chvent[ii]) ;
            }
         }
      }
   } else if ( CHV_IS_COMPLEX(chv) ) {
      if ( CHV_IS_SYMMETRIC(chv) || CHV_IS_HERMITIAN(chv) ) {
         for ( ii = 0 ; ii < chvsize ; ii++ ) {
            off = chvind[ii] ;
            fprintf(msgFile, "\n b(%d,%d) = %20.12e + %20.12e*i;",
                    colind[iloc]+1, colind[iloc]+off+1,
                    chvent[2*ii], chvent[2*ii+1]) ;
            if ( CHV_IS_HERMITIAN(chv) ) {
               fprintf(msgFile, "\n b(%d,%d) = %20.12e + %20.12e*i;",
                       colind[iloc]+off+1, colind[iloc]+1, 
                       chvent[2*ii], -chvent[2*ii+1]) ;
            } else {
               fprintf(msgFile, "\n b(%d,%d) = %20.12e + %20.12e*i;",
                       colind[iloc]+off+1, colind[iloc]+1, 
                       chvent[2*ii], chvent[2*ii+1]) ;
            }
         }
      } else {
         for ( ii = 0 ; ii < chvsize ; ii++ ) {
            off = chvind[ii] ;
            if ( off > 0 ) {
               fprintf(msgFile, "\n b(%d,%d) = %20.12e + %20.12e*i;",
                       colind[iloc]+1, colind[iloc]+off+1,
                       chvent[2*ii], chvent[2*ii+1]) ;
            } else {
               fprintf(msgFile, "\n b(%d,%d) = %20.12e + %20.12e*i;",
                       colind[iloc]-off+1, colind[iloc]+1, 
                       chvent[2*ii], chvent[2*ii+1]) ;
            }
         }
      }
   }
}
/*
   ------------------------------------
   add the chevron into the Chv object
   ------------------------------------
*/
Chv_addChevron(chv, alpha, ichv, chvsize, chvind, chvent) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n %% after adding the chevron") ;
   fprintf(msgFile, "\n c = zeros(%d,%d) ;", lastcol+1, lastcol+1) ;
   Chv_writeForMatlab(chv, "c", msgFile) ;
}
/*
   -----------------
   compute the error
   -----------------
*/
fprintf(msgFile, "\n max(max(abs(c - (a + alpha*b))))") ;
/*
   ------------------------
   free the working storage
   ------------------------
*/
Chv_free(chv) ;
Drand_free(drand) ;
IVfree(temp) ;
IVfree(chvind) ;
DVfree(chvent) ;
IVfree(keys) ;

fprintf(msgFile, "\n") ;

return(1) ; }