コード例 #1
0
//
// Main - It performs initialization, then runs a command processing loop to
//        read commands from the console.
//
int
main(void)
{
    int nStatus;
    FRESULT fresult;

    //
    // Set the clocking to run from the PLL at 50MHz
    //
    SysCtlClockSet(SYSCTL_OSCSRC_OSC2 | SYSCTL_PLL_ENABLE | SYSCTL_IMULT(10) |
                   SYSCTL_SYSDIV(2));
    SysCtlAuxClockSet(SYSCTL_OSCSRC_OSC2 | SYSCTL_PLL_ENABLE |
                      SYSCTL_IMULT(12) | SYSCTL_SYSDIV(2));        //60 MHz

#ifdef _FLASH
//
// Copy time critical code and Flash setup code to RAM
// This includes the following functions:  InitFlash_Bank0();
// The  RamfuncsLoadStart, RamfuncsLoadSize, and RamfuncsRunStart
// symbols are created by the linker. Refer to the device .cmd file.
//
    memcpy(&RamfuncsRunStart, &RamfuncsLoadStart, (size_t)&RamfuncsLoadSize);

//
// Call Flash Initialization to setup flash waitstates
// This function must reside in RAM
//
    InitFlash_Bank0();
#endif

    //
    // Initialize interrupt controller and vector table
    //
    InitPieCtrl();
    InitPieVectTable();

    //
    // Set the system tick to fire 100 times per second.
    //
    SysTickInit();
    SysTickPeriodSet(SysCtlClockGet(SYSTEM_CLOCK_SPEED) / 100);
    SysTickIntRegister(SysTickHandler);
    SysTickIntEnable();
    SysTickEnable();

    //
    // Enable Interrupts
    //
    IntMasterEnable();

    //
    // Configure UART0 for debug output.
    //
    ConfigureUART();

    //
    // Print hello message to user.
    //
    UARTprintf("\n\nSD Card Example Program\n");
    UARTprintf("Type \'help\' for help.\n");

    //
    // Mount the file system, using logical disk 0.
    //
    fresult = f_mount(0, &g_sFatFs);
    if(fresult != FR_OK)
    {
        UARTprintf("f_mount error: %s\n", StringFromFresult(fresult));
        return(1);
    }

    //
    // Enter an (almost) infinite loop for reading and processing commands from
    // the user.
    //
    while(1)
    {
        //
        // Print a prompt to the console.  Show the CWD.
        //
        UARTprintf("\n%s> ", g_cCwdBuf);

        //
        // Get a line of text from the user.
        //
        UARTgets(g_cCmdBuf, sizeof(g_cCmdBuf));

        //
        // Pass the line from the user to the command processor.
        // It will be parsed and valid commands executed.
        //
        nStatus = CmdLineProcess(g_cCmdBuf);

        //
        // Handle the case of bad command.
        //
        if(nStatus == CMDLINE_BAD_CMD)
        {
            UARTprintf("Bad command!\n");
        }
        //
        // Handle the case of too many arguments.
        //
        else if(nStatus == CMDLINE_TOO_MANY_ARGS)
        {
            UARTprintf("Too many arguments for command processor!\n");
        }

        //
        // Otherwise the command was executed.  Print the error
        // code if one was returned.
        //
        else if(nStatus != 0)
        {
            UARTprintf("Command returned error code %s\n",
                       StringFromFresult((FRESULT)nStatus));
        }
    }
}
コード例 #2
0
void InitSysCtrl(void)
{
    // Disable the watchdog
    DisableDog();

#ifdef _FLASH
// Copy time critical code and Flash setup code to RAM
// This includes the following functions:  InitFlash();
// The  RamfuncsLoadStart, RamfuncsLoadSize, and RamfuncsRunStart
// symbols are created by the linker. Refer to the device .cmd file.
    memcpy(&RamfuncsRunStart, &RamfuncsLoadStart, (size_t)&RamfuncsLoadSize);

// Call Flash Initialization to setup flash waitstates
// This function must reside in RAM
    InitFlash_Bank0();
#endif

    // *IMPORTANT*
    // The Device_cal function, which copies the ADC & oscillator calibration values
    // from TI reserved OTP into the appropriate trim registers, occurs automatically
    // in the Boot ROM. If the boot ROM code is bypassed during the debug process, the
    // following function MUST be called for the ADC and oscillators to function according
    // to specification. The clocks to the ADC MUST be enabled before calling this
    // function.
    // See the device data manual and/or the ADC Reference
    // Manual for more information.

    EALLOW;

    //enable pull-ups on unbonded IOs as soon as possible to reduce power consumption.
    GPIO_EnableUnbondedIOPullups();

	CpuSysRegs.PCLKCR13.bit.ADC_A = 1;
	CpuSysRegs.PCLKCR13.bit.ADC_B = 1;
	CpuSysRegs.PCLKCR13.bit.ADC_C = 1;
	CpuSysRegs.PCLKCR13.bit.ADC_D = 1;

    //check if device is trimmed
    if(*((Uint16 *)0x5D1B6) == 0x0000){
        //device is not trimmed, apply static calibration values
        AnalogSubsysRegs.ANAREFTRIMA.all = 31709;
        AnalogSubsysRegs.ANAREFTRIMB.all = 31709;
        AnalogSubsysRegs.ANAREFTRIMC.all = 31709;
        AnalogSubsysRegs.ANAREFTRIMD.all = 31709;
    }

	CpuSysRegs.PCLKCR13.bit.ADC_A = 0;
	CpuSysRegs.PCLKCR13.bit.ADC_B = 0;
	CpuSysRegs.PCLKCR13.bit.ADC_C = 0;
	CpuSysRegs.PCLKCR13.bit.ADC_D = 0;
    EDIS;

    // Initialize the PLL control: PLLCR and CLKINDIV
    // F28_PLLCR and F28_CLKINDIV are defined in F2837xS_Examples.h
    // Note: The internal oscillator CANNOT be used as the PLL source if the
    // PLLSYSCLK is configured to frequencies above 194 MHz.
    InitSysPll(XTAL_OSC,IMULT_20,FMULT_0,PLLCLK_BY_2); 		//PLLSYSCLK = 10Mhz(OSCCLK) * 40 (IMULT) * 1 (FMULT) /  2 (PLLCLK_BY_2)

    //Turn on all peripherals
	InitPeripheralClocks();

}