コード例 #1
0
ファイル: SourceBuffer.cpp プロジェクト: msliu/gecko-dev
void
SourceBuffer::Remove(double aStart, double aEnd, ErrorResult& aRv)
{
    MOZ_ASSERT(NS_IsMainThread());
    MSE_API("SourceBuffer(%p)::Remove(aStart=%f, aEnd=%f)", this, aStart, aEnd);
    if (!IsAttached()) {
        aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR);
        return;
    }
    if (IsNaN(mMediaSource->Duration()) ||
            aStart < 0 || aStart > mMediaSource->Duration() ||
            aEnd <= aStart || IsNaN(aEnd)) {
        aRv.Throw(NS_ERROR_DOM_INVALID_ACCESS_ERR);
        return;
    }
    if (mUpdating || mMediaSource->ReadyState() != MediaSourceReadyState::Open) {
        aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR);
        return;
    }
    StartUpdating();
    /// TODO: Run coded frame removal algorithm.

    // Run the final step of the coded frame removal algorithm asynchronously
    // to ensure the SourceBuffer's updating flag transition behaves as
    // required by the spec.
    nsCOMPtr<nsIRunnable> event = NS_NewRunnableMethod(this, &SourceBuffer::StopUpdating);
    NS_DispatchToMainThread(event);
}
コード例 #2
0
ファイル: SourceBuffer.cpp プロジェクト: cstipkovic/gecko-dev
void
SourceBuffer::Remove(double aStart, double aEnd, ErrorResult& aRv)
{
  MOZ_ASSERT(NS_IsMainThread());
  MSE_API("Remove(aStart=%f, aEnd=%f)", aStart, aEnd);
  if (!IsAttached()) {
    aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR);
    return;
  }
  if (mUpdating) {
    aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR);
    return;
  }
  if (IsNaN(mMediaSource->Duration()) ||
      aStart < 0 || aStart > mMediaSource->Duration() ||
      aEnd <= aStart || IsNaN(aEnd)) {
    aRv.Throw(NS_ERROR_DOM_TYPE_ERR);
    return;
  }
  if (mMediaSource->ReadyState() == MediaSourceReadyState::Ended) {
    mMediaSource->SetReadyState(MediaSourceReadyState::Open);
  }

  RangeRemoval(aStart, aEnd);
}
コード例 #3
0
void
SourceBuffer::Remove(double aStart, double aEnd, ErrorResult& aRv)
{
  MOZ_ASSERT(NS_IsMainThread());
  MSE_API("Remove(aStart=%f, aEnd=%f)", aStart, aEnd);
  if (!IsAttached()) {
    aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR);
    return;
  }
  if (mUpdating) {
    aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR);
    return;
  }
  if (IsNaN(mMediaSource->Duration()) ||
      aStart < 0 || aStart > mMediaSource->Duration() ||
      aEnd <= aStart || IsNaN(aEnd)) {
    aRv.Throw(NS_ERROR_DOM_INVALID_ACCESS_ERR);
    return;
  }
  if (mMediaSource->ReadyState() == MediaSourceReadyState::Ended) {
    mMediaSource->SetReadyState(MediaSourceReadyState::Open);
  }

  StartUpdating();
  nsCOMPtr<nsIRunnable> task = new RangeRemovalRunnable(this, aStart, aEnd);
  NS_DispatchToMainThread(task);
}
コード例 #4
0
media::TimeIntervals
MediaSourceDecoder::GetSeekable()
{
  MOZ_ASSERT(NS_IsMainThread());
  if (!mMediaSource) {
    NS_WARNING("MediaSource element isn't attached");
    return media::TimeIntervals::Invalid();
  }

  media::TimeIntervals seekable;
  double duration = mMediaSource->Duration();
  if (IsNaN(duration)) {
    // Return empty range.
  } else if (duration > 0 && mozilla::IsInfinite(duration)) {
    media::TimeIntervals buffered = GetBuffered();
    if (buffered.Length()) {
      seekable +=
        media::TimeInterval(media::TimeUnit::FromSeconds(0), buffered.GetEnd());
    }
  } else {
    seekable += media::TimeInterval(media::TimeUnit::FromSeconds(0),
                                    media::TimeUnit::FromSeconds(duration));
  }
  MSE_DEBUG("ranges=%s", DumpTimeRanges(seekable).get());
  return seekable;
}
コード例 #5
0
bool
MediaSourceDecoder::CanPlayThrough()
{
  MOZ_ASSERT(NS_IsMainThread());

  if (NextFrameBufferedStatus() == MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE) {
    return false;
  }

  if (IsNaN(mMediaSource->Duration())) {
    // Don't have any data yet.
    return false;
  }
  TimeUnit duration = TimeUnit::FromSeconds(mMediaSource->Duration());
  TimeUnit currentPosition = TimeUnit::FromMicroseconds(CurrentPosition());
  if (duration.IsInfinite()) {
    // We can't make an informed decision and just assume that it's a live stream
    return true;
  } else if (duration <= currentPosition) {
    return true;
  }
  // If we have data up to the mediasource's duration or 30s ahead, we can
  // assume that we can play without interruption.
  TimeUnit timeAhead =
    std::min(duration, currentPosition + TimeUnit::FromSeconds(30));
  TimeInterval interval(currentPosition,
                        timeAhead,
                        MediaSourceDemuxer::EOS_FUZZ);
  return GetBuffered().Contains(ClampIntervalToEnd(interval));
}
コード例 #6
0
ファイル: Reverb.cpp プロジェクト: bgrins/gecko-dev
static float calculateNormalizationScale(ThreadSharedFloatArrayBufferList* response, size_t aLength, float sampleRate)
{
    // Normalize by RMS power
    size_t numberOfChannels = response->GetChannels();

    float power = 0;

    for (size_t i = 0; i < numberOfChannels; ++i) {
        float channelPower = AudioBufferSumOfSquares(static_cast<const float*>(response->GetData(i)), aLength);
        power += channelPower;
    }

    power = sqrt(power / (numberOfChannels * aLength));

    // Protect against accidental overload
    if (!IsFinite(power) || IsNaN(power) || power < MinPower)
        power = MinPower;

    float scale = 1 / power;

    scale *= GainCalibration; // calibrate to make perceived volume same as unprocessed

    // Scale depends on sample-rate.
    if (sampleRate)
        scale *= GainCalibrationSampleRate / sampleRate;

    // True-stereo compensation
    if (response->GetChannels() == 4)
        scale *= 0.5f;

    return scale;
}
コード例 #7
0
// For NaNs, etc.
static bool IsCacheCorrect(float cached, float actual) {
  if (IsNaN(cached)) {
    // GL is allowed to do anything it wants for NaNs, so if we're shadowing
    // a NaN, then whatever `actual` is might be correct.
    return true;
  }

  return cached == actual;
}
コード例 #8
0
ファイル: Matrix.cpp プロジェクト: souxiaosou/aether3d
 void CheckNaN( const Matrix44& matrix )
 {
     for (int i = 0; i < 16; ++i)
     {
         if (IsNaN( matrix.m[ i ] ))
         {
             //std::cerr << "Matrix contains NaN" << std::endl;
         }
     }
 }
コード例 #9
0
ファイル: SourceBuffer.cpp プロジェクト: bebef1987/gecko-dev
void
SourceBuffer::Remove(double aStart, double aEnd, ErrorResult& aRv)
{
  MOZ_ASSERT(NS_IsMainThread());
  MSE_API("SourceBuffer(%p)::Remove(aStart=%f, aEnd=%f)", this, aStart, aEnd);
  if (IsNaN(mMediaSource->Duration()) ||
      aStart < 0 || aStart > mMediaSource->Duration() ||
      aEnd <= aStart || IsNaN(aEnd)) {
    aRv.Throw(NS_ERROR_DOM_INVALID_ACCESS_ERR);
    return;
  }
  if (!IsAttached() || mUpdating ||
      mMediaSource->ReadyState() != MediaSourceReadyState::Open) {
    aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR);
    return;
  }
  StartUpdating();
  /// TODO: Run coded frame removal algorithm asynchronously (would call StopUpdating()).
  StopUpdating();
}
コード例 #10
0
ファイル: main.c プロジェクト: mmaloney007/Old_CS_Code
/* Test given float values */
void TestDouble(double a, double b)
{
    DOUB_LONG param1, param2, result, check;

    param1.d = a;
    param2.d = b;
    check.d = param1.d + param2.d;
    result.l = DoubleAdd (param1.l, param2.l);
#if ALWAYS_PRINT
 printf("\n");
 Display(param1, param2, result);
#endif
    if (result.l != check.l && !(IsNaN(result.l) && IsNaN(check.l)) &&
                               !(IsZero(result.l) && IsZero(check.l)))
    {
        printf("\nFailed! Answer should be %e (%08lx).\n", check.d, check.l);
        Display(param1, param2, result);
        printf("\n");
    }
}
コード例 #11
0
ファイル: Ray.cpp プロジェクト: panmar/pg3
    bool Ray::Intersects(const Plane& plane, F32* distance) const {
        Vector3f planeNormal = plane.GetNormal();
        Vector3f rayEnd = origin + direction * this->distance;

        XMFLOAT4 f4PlaneCoefs(planeNormal.x, planeNormal.y, planeNormal.z, plane.GetDistance());
        XMFLOAT3 f3RayBegin(origin.v);
        XMFLOAT3 f3RayEnd(rayEnd.v);

        XMVECTOR vPlaneCoefs = XMLoadFloat4(&f4PlaneCoefs);
        XMVECTOR vRayBegin = XMLoadFloat3(&f3RayBegin); 
        XMVECTOR vRayEnd = XMLoadFloat3(&f3RayEnd);

        XMVECTOR vIntersection = XMPlaneIntersectLine(vPlaneCoefs, vRayBegin, vRayEnd);
        XMFLOAT3 f3Intersection;
        XMStoreFloat3(&f3Intersection, vIntersection);

		if (IsNaN(f3Intersection.x) || IsNaN(f3Intersection.y) || IsNaN(f3Intersection.z)) {
            return false;
        } else {
            *distance = Vector3f::Distance(origin, Vector3f(f3Intersection.x, f3Intersection.y, f3Intersection.z));
            return true;
        }
    }
コード例 #12
0
ファイル: CORE_library.c プロジェクト: FelixPascal/BCILAB
/* ------------------------------------------------------------------------
 * Function: find_minmax
 * ------------------------------------------------------------------------ */
void find_minmax(double *input, int M, 
                 double *minval, int *minind, double *maxval, int *maxind)
{
  int i;

  for (i = 0; i < M; i++) {
    if (!IsNaN(input[i])) {   // init min/max to first non-NAN element
      *minval =  input[i];    *minind = i;   
      *maxval =  input[i];    *maxind = i;
      break;
    }
  }
  if (i == M) {  // special case: if all NaNs
    *minval = GetNaN();  *minind = 0;   *maxval = GetNaN();  *maxind = 0;
  }

  for (; i < M; i++) {   // go through keeping track of min/max
    if      ((input[i] < *minval) && (!IsNaN(input[i]))) 
        {*minval = input[i];  *minind = i;}
    else if ((input[i] > *maxval) && (!IsNaN(input[i]))) 
        {*maxval = input[i];  *maxind = i;}
  }
}
コード例 #13
0
void
SourceBuffer::SetAppendWindowEnd(double aAppendWindowEnd, ErrorResult& aRv)
{
    MOZ_ASSERT(NS_IsMainThread());
    MSE_API("SetAppendWindowEnd(aAppendWindowEnd=%f)", aAppendWindowEnd);
    if (!IsAttached() || mUpdating) {
        aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR);
        return;
    }
    if (IsNaN(aAppendWindowEnd) || aAppendWindowEnd <= mAppendWindowStart) {
        aRv.Throw(NS_ERROR_DOM_INVALID_ACCESS_ERR);
        return;
    }
    mAppendWindowEnd = aAppendWindowEnd;
}
コード例 #14
0
ファイル: ASCIIShade.cpp プロジェクト: krishauser/KrisLibrary
char ASCIIShade(double x)
{
  if(IsNaN(x)) return 'E';
  if(IsInf(x)==1) return 'I';
  else if(IsInf(x)==-1) return 'i';
  int index = (int)Trunc(x*8) + 7;
  if(index < 0) index=0;
  if(index >= kNumAsciiShades) index=kNumAsciiShades-1;
  if(index == 7) {
    if(x > 0) return kAsciiShades[8];
    else if(x < 0) return kAsciiShades[6];
    else return kAsciiShades[7];
  }
  return kAsciiShades[index];
}
コード例 #15
0
int64_t
SubBufferDecoder::ConvertToByteOffset(double aTime)
{
  // Uses a conversion based on (aTime/duration) * length.  For the
  // purposes of eviction this should be adequate since we have the
  // byte threshold as well to ensure data actually gets evicted and
  // we ensure we don't evict before the current playable point.
  double duration = mParentDecoder->GetMediaSourceDuration();
  if (duration <= 0.0 || IsNaN(duration)) {
    return -1;
  }
  int64_t length = GetResource()->GetLength();
  MOZ_ASSERT(length > 0);
  int64_t offset = (aTime / duration) * length;
  return offset;
}
コード例 #16
0
void
MediaSourceDecoder::SetInitialDuration(int64_t aDuration)
{
  // Only use the decoded duration if one wasn't already
  // set.
  ReentrantMonitorAutoEnter mon(GetReentrantMonitor());
  if (!mMediaSource || !IsNaN(mMediaSourceDuration)) {
    return;
  }
  double duration = aDuration;
  // A duration of -1 is +Infinity.
  if (aDuration >= 0) {
    duration /= USECS_PER_S;
  }
  SetMediaSourceDuration(duration, MSRangeRemovalAction::SKIP);
}
コード例 #17
0
ファイル: MediaSource.cpp プロジェクト: AtulKumar2/gecko-dev
void
MediaSource::SetDuration(double aDuration, ErrorResult& aRv)
{
  MOZ_ASSERT(NS_IsMainThread());
  MSE_API("SetDuration(aDuration=%f, ErrorResult)", aDuration);
  if (aDuration < 0 || IsNaN(aDuration)) {
    aRv.Throw(NS_ERROR_DOM_INVALID_ACCESS_ERR);
    return;
  }
  if (mReadyState != MediaSourceReadyState::Open ||
      mSourceBuffers->AnyUpdating()) {
    aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR);
    return;
  }
  SetDuration(aDuration, MSRangeRemovalAction::RUN);
}
コード例 #18
0
void
MediaSource::SetDuration(double aDuration, ErrorResult& aRv)
{
  MOZ_ASSERT(NS_IsMainThread());
  MSE_API("MediaSource(%p)::SetDuration(aDuration=%f)", this, aDuration);
  if (aDuration < 0 || IsNaN(aDuration)) {
    aRv.Throw(NS_ERROR_DOM_INVALID_ACCESS_ERR);
    return;
  }
  if (mReadyState != MediaSourceReadyState::Open ||
      mSourceBuffers->AnyUpdating()) {
    aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR);
    return;
  }
  DurationChange(aDuration, aRv);
}
コード例 #19
0
void
MediaSourceDecoder::SetInitialDuration(int64_t aDuration)
{
  MOZ_ASSERT(NS_IsMainThread());
  // Only use the decoded duration if one wasn't already
  // set.
  if (!mMediaSource || !IsNaN(ExplicitDuration())) {
    return;
  }
  double duration = aDuration;
  // A duration of -1 is +Infinity.
  if (aDuration >= 0) {
    duration /= USECS_PER_S;
  }
  SetMediaSourceDuration(duration, MSRangeRemovalAction::SKIP);
}
コード例 #20
0
ファイル: strutil.cpp プロジェクト: marmalade/protocolbuffers
char* DoubleToBuffer(double value, char* buffer) {
  // DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all
  // platforms these days.  Just in case some system exists where DBL_DIG
  // is significantly larger -- and risks overflowing our buffer -- we have
  // this assert.
  GOOGLE_COMPILE_ASSERT(DBL_DIG < 20, DBL_DIG_is_too_big);

  if (value == numeric_limits<double>::infinity()) {
    strcpy(buffer, "inf");
    return buffer;
  } else if (value == -numeric_limits<double>::infinity()) {
    strcpy(buffer, "-inf");
    return buffer;
  } else if (IsNaN(value)) {
    strcpy(buffer, "nan");
    return buffer;
  }

  int snprintf_result =
    snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG, value);

  // The snprintf should never overflow because the buffer is significantly
  // larger than the precision we asked for.
  GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);

  // We need to make parsed_value volatile in order to force the compiler to
  // write it out to the stack.  Otherwise, it may keep the value in a
  // register, and if it does that, it may keep it as a long double instead
  // of a double.  This long double may have extra bits that make it compare
  // unequal to "value" even though it would be exactly equal if it were
  // truncated to a double.
  volatile double parsed_value = strtod(buffer, NULL);
  if (parsed_value != value) {
    int snprintf_result =
      snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG+2, value);

    // Should never overflow; see above.
    GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
  }

  DelocalizeRadix(buffer);
  return buffer;
}
コード例 #21
0
media::TimeIntervals
MediaSourceDecoder::GetSeekable()
{
  MOZ_ASSERT(NS_IsMainThread());
  if (!mMediaSource) {
    NS_WARNING("MediaSource element isn't attached");
    return media::TimeIntervals::Invalid();
  }

  media::TimeIntervals seekable;
  double duration = mMediaSource->Duration();
  if (IsNaN(duration)) {
    // Return empty range.
  } else if (duration > 0 && mozilla::IsInfinite(duration)) {
    media::TimeIntervals buffered = GetBuffered();

    // 1. If live seekable range is not empty:
    if (mMediaSource->HasLiveSeekableRange()) {
      // 1. Let union ranges be the union of live seekable range and the
      // HTMLMediaElement.buffered attribute.
      media::TimeIntervals unionRanges =
        buffered + mMediaSource->LiveSeekableRange();
      // 2. Return a single range with a start time equal to the earliest start
      // time in union ranges and an end time equal to the highest end time in
      // union ranges and abort these steps.
      seekable +=
        media::TimeInterval(unionRanges.GetStart(), unionRanges.GetEnd());
      return seekable;
    }

    if (buffered.Length()) {
      seekable +=
        media::TimeInterval(media::TimeUnit::FromSeconds(0), buffered.GetEnd());
    }
  } else {
    seekable += media::TimeInterval(media::TimeUnit::FromSeconds(0),
                                    media::TimeUnit::FromSeconds(duration));
  }
  MSE_DEBUG("ranges=%s", DumpTimeRanges(seekable).get());
  return seekable;
}
コード例 #22
0
nsresult
MediaSourceDecoder::GetSeekable(dom::TimeRanges* aSeekable)
{
  MOZ_ASSERT(NS_IsMainThread());
  if (!mMediaSource) {
    return NS_ERROR_FAILURE;
  }

  double duration = mMediaSource->Duration();
  if (IsNaN(duration)) {
    // Return empty range.
  } else if (duration > 0 && mozilla::IsInfinite(duration)) {
    nsRefPtr<dom::TimeRanges> bufferedRanges = new dom::TimeRanges();
    mMediaSource->GetBuffered(bufferedRanges);
    aSeekable->Add(bufferedRanges->GetStartTime(), bufferedRanges->GetEndTime());
  } else {
    aSeekable->Add(0, duration);
  }
  MSE_DEBUG("MediaSourceDecoder(%p)::GetSeekable ranges=%s", this, DumpTimeRanges(aSeekable).get());
  return NS_OK;
}
コード例 #23
0
ファイル: infnan.cpp プロジェクト: panjia1983/mintos
int IsInf(double x)
{
#ifdef _MSC_VER  //doesn't have isinf
    int cls = _fpclass(x);
    if(cls == _FPCLASS_PINF) return 1;
    else if(cls == _FPCLASS_NINF) return -1;
    else return 0;
#elif HAVE_DECL_ISINF
    if(isinf(x)) {
        if(x > 0) return 1;
        else return -1;
    }
    else return 0;
#elif HAVE_IEEE_COMPARISONS
    double y=x-x;
    if(IsNaN(y))
        return (x>0?1:-1);
    else return 0;
#else
#error "IsInf: Neither Microsoft's _fpclass, isinf, or IEEE comparisons defined"
    return 0;
#endif
}
コード例 #24
0
ファイル: strutil.cpp プロジェクト: marmalade/protocolbuffers
char* FloatToBuffer(float value, char* buffer) {
  // FLT_DIG is 6 for IEEE-754 floats, which are used on almost all
  // platforms these days.  Just in case some system exists where FLT_DIG
  // is significantly larger -- and risks overflowing our buffer -- we have
  // this assert.
  GOOGLE_COMPILE_ASSERT(FLT_DIG < 10, FLT_DIG_is_too_big);

  if (value == numeric_limits<double>::infinity()) {
    strcpy(buffer, "inf");
    return buffer;
  } else if (value == -numeric_limits<double>::infinity()) {
    strcpy(buffer, "-inf");
    return buffer;
  } else if (IsNaN(value)) {
    strcpy(buffer, "nan");
    return buffer;
  }

  int snprintf_result =
    snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG, value);

  // The snprintf should never overflow because the buffer is significantly
  // larger than the precision we asked for.
  GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);

  float parsed_value;
  if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) {
    int snprintf_result =
      snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG+2, value);

    // Should never overflow; see above.
    GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
  }

  DelocalizeRadix(buffer);
  return buffer;
}
コード例 #25
0
TEST_F(TextFormatTest, ParseExotic) {
  unittest::TestAllTypes message;
  ASSERT_TRUE(TextFormat::ParseFromString(
    "repeated_int32: -1\n"
    "repeated_int32: -2147483648\n"
    "repeated_int64: -1\n"
    "repeated_int64: -9223372036854775808\n"
    "repeated_uint32: 4294967295\n"
    "repeated_uint32: 2147483648\n"
    "repeated_uint64: 18446744073709551615\n"
    "repeated_uint64: 9223372036854775808\n"
    "repeated_double: 123.0\n"
    "repeated_double: 123.5\n"
    "repeated_double: 0.125\n"
    "repeated_double: 1.23E17\n"
    "repeated_double: 1.235E+22\n"
    "repeated_double: 1.235e-18\n"
    "repeated_double: 123.456789\n"
    "repeated_double: inf\n"
    "repeated_double: Infinity\n"
    "repeated_double: -inf\n"
    "repeated_double: -Infinity\n"
    "repeated_double: nan\n"
    "repeated_double: NaN\n"
    "repeated_string: \"\\000\\001\\a\\b\\f\\n\\r\\t\\v\\\\\\'\\\"\"\n",
    &message));

  ASSERT_EQ(2, message.repeated_int32_size());
  EXPECT_EQ(-1, message.repeated_int32(0));
  // Note:  In C, a negative integer literal is actually the unary negation
  //   operator being applied to a positive integer literal, and 2147483648 is
  //   outside the range of int32.  However, it is not outside the range of
  //   uint32.  Confusingly, this means that everything works if we make the
  //   literal unsigned, even though we are negating it.
  EXPECT_EQ(-2147483648u, message.repeated_int32(1));

  ASSERT_EQ(2, message.repeated_int64_size());
  EXPECT_EQ(-1, message.repeated_int64(0));
  // Note:  In C, a negative integer literal is actually the unary negation
  //   operator being applied to a positive integer literal, and
  //   9223372036854775808 is outside the range of int64.  However, it is not
  //   outside the range of uint64.  Confusingly, this means that everything
  //   works if we make the literal unsigned, even though we are negating it.
  EXPECT_EQ(-GOOGLE_ULONGLONG(9223372036854775808), message.repeated_int64(1));

  ASSERT_EQ(2, message.repeated_uint32_size());
  EXPECT_EQ(4294967295u, message.repeated_uint32(0));
  EXPECT_EQ(2147483648u, message.repeated_uint32(1));

  ASSERT_EQ(2, message.repeated_uint64_size());
  EXPECT_EQ(GOOGLE_ULONGLONG(18446744073709551615), message.repeated_uint64(0));
  EXPECT_EQ(GOOGLE_ULONGLONG(9223372036854775808), message.repeated_uint64(1));

  ASSERT_EQ(13, message.repeated_double_size());
  EXPECT_EQ(123.0     , message.repeated_double(0));
  EXPECT_EQ(123.5     , message.repeated_double(1));
  EXPECT_EQ(0.125     , message.repeated_double(2));
  EXPECT_EQ(1.23E17   , message.repeated_double(3));
  EXPECT_EQ(1.235E22  , message.repeated_double(4));
  EXPECT_EQ(1.235E-18 , message.repeated_double(5));
  EXPECT_EQ(123.456789, message.repeated_double(6));
  EXPECT_EQ(message.repeated_double(7), numeric_limits<double>::infinity());
  EXPECT_EQ(message.repeated_double(8), numeric_limits<double>::infinity());
  EXPECT_EQ(message.repeated_double(9), -numeric_limits<double>::infinity());
  EXPECT_EQ(message.repeated_double(10), -numeric_limits<double>::infinity());
  EXPECT_TRUE(IsNaN(message.repeated_double(11)));
  EXPECT_TRUE(IsNaN(message.repeated_double(12)));

  // Note:  Since these string literals have \0's in them, we must explicitly
  //   pass their sizes to string's constructor.
  ASSERT_EQ(1, message.repeated_string_size());
  EXPECT_EQ(string("\000\001\a\b\f\n\r\t\v\\\'\"", 12),
            message.repeated_string(0));
}
コード例 #26
0
ファイル: TiledContentHost.cpp プロジェクト: haasn/gecko-dev
bool
TiledLayerBufferComposite::UseTiles(const SurfaceDescriptorTiles& aTiles,
                                    Compositor* aCompositor,
                                    ISurfaceAllocator* aAllocator)
{
  if (mResolution != aTiles.resolution()) {
    Clear();
  }
  MOZ_ASSERT(aAllocator);
  MOZ_ASSERT(aCompositor);
  if (!aAllocator || !aCompositor) {
    return false;
  }

  if (aTiles.resolution() == 0 || IsNaN(aTiles.resolution())) {
    // There are divisions by mResolution so this protects the compositor process
    // against malicious content processes and fuzzing.
    return false;
  }

  TilesPlacement oldTiles = mTiles;
  TilesPlacement newTiles(aTiles.firstTileX(), aTiles.firstTileY(),
                          aTiles.retainedWidth(), aTiles.retainedHeight());

  const InfallibleTArray<TileDescriptor>& tileDescriptors = aTiles.tiles();

  nsTArray<TileHost> oldRetainedTiles;
  mRetainedTiles.SwapElements(oldRetainedTiles);
  mRetainedTiles.SetLength(tileDescriptors.Length());

  // Step 1, we need to unlock tiles that don't have an internal buffer after the
  // next frame where they are replaced.
  // Since we are about to replace the tiles' textures, we need to keep their locks
  // somewhere (in mPreviousSharedLock) until we composite the layer.
  for (size_t i = 0; i < oldRetainedTiles.Length(); ++i) {
    TileHost& tile = oldRetainedTiles[i];
    // It can happen that we still have a previous lock at this point,
    // if we changed a tile's front buffer (causing mSharedLock to
    // go into mPreviousSharedLock, and then did not composite that tile until
    // the next transaction, either because the tile is offscreen or because the
    // two transactions happened with no composition in between (over-production).
    tile.ReadUnlockPrevious();

    if (tile.mTextureHost && !tile.mTextureHost->HasInternalBuffer()) {
      MOZ_ASSERT(tile.mSharedLock);
      const TileIntPoint tilePosition = oldTiles.TilePosition(i);
      if (newTiles.HasTile(tilePosition)) {
        // This tile still exist in the new buffer
        tile.mPreviousSharedLock = tile.mSharedLock;
        tile.mSharedLock = nullptr;
      } else {
        // This tile does not exist anymore in the new buffer because the size
        // changed.
        tile.ReadUnlock();
      }
    }

    // By now we should not have anything in mSharedLock.
    MOZ_ASSERT(!tile.mSharedLock);
  }

  // Step 2, move the tiles in mRetainedTiles at places that correspond to where
  // they should be with the new retained with and height rather than the
  // old one.
  for (size_t i = 0; i < tileDescriptors.Length(); i++) {
    const TileIntPoint tilePosition = newTiles.TilePosition(i);
    // First, get the already existing tiles to the right place in the array,
    // and use placeholders where there was no tiles.
    if (!oldTiles.HasTile(tilePosition)) {
      mRetainedTiles[i] = GetPlaceholderTile();
    } else {
      mRetainedTiles[i] = oldRetainedTiles[oldTiles.TileIndex(tilePosition)];
      // If we hit this assertion it means we probably mixed something up in the
      // logic that tries to reuse tiles on the compositor side. It is most likely
      // benign, but we are missing some fast paths so let's try to make it not happen.
      MOZ_ASSERT(tilePosition.x == mRetainedTiles[i].x &&
                 tilePosition.y == mRetainedTiles[i].y);
    }
  }

  // It is important to remove the duplicated reference to tiles before calling
  // TextureHost::PrepareTextureSource, etc. because depending on the textures
  // ref counts we may or may not get some of the fast paths.
  oldRetainedTiles.Clear();

  // Step 3, handle the texture updates and release the copy-on-write locks.
  for (size_t i = 0; i < mRetainedTiles.Length(); i++) {
    const TileDescriptor& tileDesc = tileDescriptors[i];

    TileHost& tile = mRetainedTiles[i];

    switch (tileDesc.type()) {
      case TileDescriptor::TTexturedTileDescriptor: {
        const TexturedTileDescriptor& texturedDesc = tileDesc.get_TexturedTileDescriptor();

        const TileLock& ipcLock = texturedDesc.sharedLock();
        if (!GetCopyOnWriteLock(ipcLock, tile, aAllocator)) {
          return false;
        }

        RefPtr<TextureHost> textureHost = TextureHost::AsTextureHost(
          texturedDesc.textureParent()
        );

        RefPtr<TextureHost> textureOnWhite = nullptr;
        if (texturedDesc.textureOnWhite().type() == MaybeTexture::TPTextureParent) {
          textureOnWhite = TextureHost::AsTextureHost(
            texturedDesc.textureOnWhite().get_PTextureParent()
          );
        }

        UseTileTexture(tile.mTextureHost,
                       tile.mTextureSource,
                       texturedDesc.updateRect(),
                       textureHost,
                       aCompositor);

        if (textureOnWhite) {
          UseTileTexture(tile.mTextureHostOnWhite,
                         tile.mTextureSourceOnWhite,
                         texturedDesc.updateRect(),
                         textureOnWhite,
                         aCompositor);
        } else {
          // We could still have component alpha textures from a previous frame.
          tile.mTextureSourceOnWhite = nullptr;
          tile.mTextureHostOnWhite = nullptr;
        }

        if (textureHost->HasInternalBuffer()) {
          // Now that we did the texture upload (in UseTileTexture), we can release
          // the lock.
          tile.ReadUnlock();
        }

        break;
      }
      default:
        NS_WARNING("Unrecognised tile descriptor type");
      case TileDescriptor::TPlaceholderTileDescriptor: {

        if (tile.mTextureHost) {
          tile.mTextureHost->UnbindTextureSource();
          tile.mTextureSource = nullptr;
        }
        if (tile.mTextureHostOnWhite) {
          tile.mTextureHostOnWhite->UnbindTextureSource();
          tile.mTextureSourceOnWhite = nullptr;
        }
        // we may have a previous lock, and are about to loose our reference to it.
        // It is okay to unlock it because we just destroyed the texture source.
        tile.ReadUnlockPrevious();
        tile = GetPlaceholderTile();

        break;
      }
    }
    TileIntPoint tilePosition = newTiles.TilePosition(i);
    tile.x = tilePosition.x;
    tile.y = tilePosition.y;
  }

  mTiles = newTiles;
  mValidRegion = aTiles.validRegion();
  mResolution = aTiles.resolution();
  mFrameResolution = CSSToParentLayerScale2D(aTiles.frameXResolution(),
                                             aTiles.frameYResolution());

  return true;
}
コード例 #27
0
TiledLayerBufferComposite::TiledLayerBufferComposite(ISurfaceAllocator* aAllocator,
                                                     const SurfaceDescriptorTiles& aDescriptor,
                                                     const nsIntRegion& aOldPaintedRegion,
                                                     Compositor* aCompositor)
{
  mIsValid = true;
  mHasDoubleBufferedTiles = false;
  mValidRegion = aDescriptor.validRegion();
  mPaintedRegion = aDescriptor.paintedRegion();
  mRetainedWidth = aDescriptor.retainedWidth();
  mRetainedHeight = aDescriptor.retainedHeight();
  mResolution = aDescriptor.resolution();
  mFrameResolution = CSSToParentLayerScale(aDescriptor.frameResolution());
  if (mResolution == 0 || IsNaN(mResolution)) {
    // There are divisions by mResolution so this protects the compositor process
    // against malicious content processes and fuzzing.
    mIsValid = false;
    return;
  }

  // Combine any valid content that wasn't already uploaded
  nsIntRegion oldPaintedRegion(aOldPaintedRegion);
  oldPaintedRegion.And(oldPaintedRegion, mValidRegion);
  mPaintedRegion.Or(mPaintedRegion, oldPaintedRegion);

  bool isSameProcess = aAllocator->IsSameProcess();

  const InfallibleTArray<TileDescriptor>& tiles = aDescriptor.tiles();
  for(size_t i = 0; i < tiles.Length(); i++) {
    CompositableTextureHostRef texture;
    CompositableTextureHostRef textureOnWhite;
    const TileDescriptor& tileDesc = tiles[i];
    switch (tileDesc.type()) {
      case TileDescriptor::TTexturedTileDescriptor : {
        texture = TextureHost::AsTextureHost(tileDesc.get_TexturedTileDescriptor().textureParent());
        MaybeTexture onWhite = tileDesc.get_TexturedTileDescriptor().textureOnWhite();
        if (onWhite.type() == MaybeTexture::TPTextureParent) {
          textureOnWhite = TextureHost::AsTextureHost(onWhite.get_PTextureParent());
        }
        const TileLock& ipcLock = tileDesc.get_TexturedTileDescriptor().sharedLock();
        nsRefPtr<gfxSharedReadLock> sharedLock;
        if (ipcLock.type() == TileLock::TShmemSection) {
          sharedLock = gfxShmSharedReadLock::Open(aAllocator, ipcLock.get_ShmemSection());
        } else {
          if (!isSameProcess) {
            // Trying to use a memory based lock instead of a shmem based one in
            // the cross-process case is a bad security violation.
            NS_ERROR("A client process may be trying to peek at the host's address space!");
            // This tells the TiledContentHost that deserialization failed so that
            // it can propagate the error.
            mIsValid = false;

            mRetainedTiles.Clear();
            return;
          }
          sharedLock = reinterpret_cast<gfxMemorySharedReadLock*>(ipcLock.get_uintptr_t());
          if (sharedLock) {
            // The corresponding AddRef is in TiledClient::GetTileDescriptor
            sharedLock.get()->Release();
          }
        }

        CompositableTextureSourceRef textureSource;
        CompositableTextureSourceRef textureSourceOnWhite;
        if (texture) {
          texture->SetCompositor(aCompositor);
          texture->PrepareTextureSource(textureSource);
        }
        if (textureOnWhite) {
          textureOnWhite->SetCompositor(aCompositor);
          textureOnWhite->PrepareTextureSource(textureSourceOnWhite);
        }
        mRetainedTiles.AppendElement(TileHost(sharedLock,
                                              texture.get(),
                                              textureOnWhite.get(),
                                              textureSource.get(),
                                              textureSourceOnWhite.get()));
        break;
      }
      default:
        NS_WARNING("Unrecognised tile descriptor type");
        // Fall through
      case TileDescriptor::TPlaceholderTileDescriptor :
        mRetainedTiles.AppendElement(GetPlaceholderTile());
        break;
    }
    if (texture && !texture->HasInternalBuffer()) {
      mHasDoubleBufferedTiles = true;
    }
  }
}
コード例 #28
0
bool
TiledLayerBufferComposite::UseTiles(const SurfaceDescriptorTiles& aTiles,
                                    Compositor* aCompositor,
                                    ISurfaceAllocator* aAllocator)
{
  if (mResolution != aTiles.resolution() ||
      aTiles.tileSize() != mTileSize) {
    Clear();
  }
  MOZ_ASSERT(aAllocator);
  MOZ_ASSERT(aCompositor);
  if (!aAllocator || !aCompositor) {
    return false;
  }

  if (aTiles.resolution() == 0 || IsNaN(aTiles.resolution())) {
    // There are divisions by mResolution so this protects the compositor process
    // against malicious content processes and fuzzing.
    return false;
  }

  TilesPlacement newTiles(aTiles.firstTileX(), aTiles.firstTileY(),
                          aTiles.retainedWidth(), aTiles.retainedHeight());

  const InfallibleTArray<TileDescriptor>& tileDescriptors = aTiles.tiles();

  // Step 1, unlock all the old tiles that haven't been unlocked yet. Any tiles that
  // exist in both the old and new sets will have been locked again by content, so this
  // doesn't result in the surface being writeable again.
  MarkTilesForUnlock();

  TextureSourceRecycler oldRetainedTiles(Move(mRetainedTiles));
  mRetainedTiles.SetLength(tileDescriptors.Length());

  // Step 2, deserialize the incoming set of tiles into mRetainedTiles, and attempt
  // to recycle the TextureSource for any repeated tiles.
  //
  // Since we don't have any retained 'tile' object, we have to search for instances
  // of the same TextureHost in the old tile set. The cost of binding a TextureHost
  // to a TextureSource for gralloc (binding EGLImage to GL texture) can be really
  // high, so we avoid this whenever possible.
  for (size_t i = 0; i < tileDescriptors.Length(); i++) {
    const TileDescriptor& tileDesc = tileDescriptors[i];

    TileHost& tile = mRetainedTiles[i];

    if (tileDesc.type() != TileDescriptor::TTexturedTileDescriptor) {
      NS_WARN_IF_FALSE(tileDesc.type() == TileDescriptor::TPlaceholderTileDescriptor,
                       "Unrecognised tile descriptor type");
      continue;
    }

    const TexturedTileDescriptor& texturedDesc = tileDesc.get_TexturedTileDescriptor();

    const TileLock& ipcLock = texturedDesc.sharedLock();
    if (!GetCopyOnWriteLock(ipcLock, tile, aAllocator)) {
      return false;
    }

    tile.mTextureHost = TextureHost::AsTextureHost(texturedDesc.textureParent());
    tile.mTextureHost->SetCompositor(aCompositor);

    if (texturedDesc.textureOnWhite().type() == MaybeTexture::TPTextureParent) {
      tile.mTextureHostOnWhite =
        TextureHost::AsTextureHost(texturedDesc.textureOnWhite().get_PTextureParent());
    }

    tile.mTilePosition = newTiles.TilePosition(i);

    // If this same tile texture existed in the old tile set then this will move the texture
    // source into our new tile.
    oldRetainedTiles.RecycleTextureSourceForTile(tile);
  }

  // Step 3, attempt to recycle unused texture sources from the old tile set into new tiles.
  //
  // For gralloc, binding a new TextureHost to the existing TextureSource is the fastest way
  // to ensure that any implicit locking on the old gralloc image is released.
  for (TileHost& tile : mRetainedTiles) {
    if (!tile.mTextureHost || tile.mTextureSource) {
      continue;
    }
    oldRetainedTiles.RecycleTextureSource(tile);
  }

  // Step 4, handle the texture uploads, texture source binding and release the
  // copy-on-write locks for textures with an internal buffer.
  for (size_t i = 0; i < mRetainedTiles.Length(); i++) {
    TileHost& tile = mRetainedTiles[i];
    if (!tile.mTextureHost) {
      continue;
    }

    const TileDescriptor& tileDesc = tileDescriptors[i];
    const TexturedTileDescriptor& texturedDesc = tileDesc.get_TexturedTileDescriptor();

    UseTileTexture(tile.mTextureHost,
                   tile.mTextureSource,
                   texturedDesc.updateRect(),
                   aCompositor);

    if (tile.mTextureHostOnWhite) {
      UseTileTexture(tile.mTextureHostOnWhite,
                     tile.mTextureSourceOnWhite,
                     texturedDesc.updateRect(),
                     aCompositor);
    }

    if (tile.mTextureHost->HasInternalBuffer()) {
      // Now that we did the texture upload (in UseTileTexture), we can release
      // the lock.
      tile.ReadUnlock();
    }
  }

  mTiles = newTiles;
  mTileSize = aTiles.tileSize();
  mTileOrigin = aTiles.tileOrigin();
  mValidRegion = aTiles.validRegion();
  mResolution = aTiles.resolution();
  mFrameResolution = CSSToParentLayerScale2D(aTiles.frameXResolution(),
                                             aTiles.frameYResolution());

  return true;
}
コード例 #29
0
void DynamicsCompressorKernel::process(float* sourceChannels[],
                                       float* destinationChannels[],
                                       unsigned numberOfChannels,
                                       unsigned framesToProcess,

                                       float dbThreshold,
                                       float dbKnee,
                                       float ratio,
                                       float attackTime,
                                       float releaseTime,
                                       float preDelayTime,
                                       float dbPostGain,
                                       float effectBlend, /* equal power crossfade */

                                       float releaseZone1,
                                       float releaseZone2,
                                       float releaseZone3,
                                       float releaseZone4
                                       )
{
    MOZ_ASSERT(m_preDelayBuffers.Length() == numberOfChannels);

    float sampleRate = this->sampleRate();

    float dryMix = 1 - effectBlend;
    float wetMix = effectBlend;

    float k = updateStaticCurveParameters(dbThreshold, dbKnee, ratio);

    // Makeup gain.
    float fullRangeGain = saturate(1, k);
    float fullRangeMakeupGain = 1 / fullRangeGain;

    // Empirical/perceptual tuning.
    fullRangeMakeupGain = powf(fullRangeMakeupGain, 0.6f);

    float masterLinearGain = WebAudioUtils::ConvertDecibelsToLinear(dbPostGain) * fullRangeMakeupGain;

    // Attack parameters.
    attackTime = max(0.001f, attackTime);
    float attackFrames = attackTime * sampleRate;

    // Release parameters.
    float releaseFrames = sampleRate * releaseTime;

    // Detector release time.
    float satReleaseTime = 0.0025f;
    float satReleaseFrames = satReleaseTime * sampleRate;

    // Create a smooth function which passes through four points.

    // Polynomial of the form
    // y = a + b*x + c*x^2 + d*x^3 + e*x^4;

    float y1 = releaseFrames * releaseZone1;
    float y2 = releaseFrames * releaseZone2;
    float y3 = releaseFrames * releaseZone3;
    float y4 = releaseFrames * releaseZone4;

    // All of these coefficients were derived for 4th order polynomial curve fitting where the y values
    // match the evenly spaced x values as follows: (y1 : x == 0, y2 : x == 1, y3 : x == 2, y4 : x == 3)
    float kA = 0.9999999999999998f*y1 + 1.8432219684323923e-16f*y2 - 1.9373394351676423e-16f*y3 + 8.824516011816245e-18f*y4;
    float kB = -1.5788320352845888f*y1 + 2.3305837032074286f*y2 - 0.9141194204840429f*y3 + 0.1623677525612032f*y4;
    float kC = 0.5334142869106424f*y1 - 1.272736789213631f*y2 + 0.9258856042207512f*y3 - 0.18656310191776226f*y4;
    float kD = 0.08783463138207234f*y1 - 0.1694162967925622f*y2 + 0.08588057951595272f*y3 - 0.00429891410546283f*y4;
    float kE = -0.042416883008123074f*y1 + 0.1115693827987602f*y2 - 0.09764676325265872f*y3 + 0.028494263462021576f*y4;

    // x ranges from 0 -> 3       0    1    2   3
    //                           -15  -10  -5   0db

    // y calculates adaptive release frames depending on the amount of compression.

    setPreDelayTime(preDelayTime);

    const int nDivisionFrames = 32;

    const int nDivisions = framesToProcess / nDivisionFrames;

    unsigned frameIndex = 0;
    for (int i = 0; i < nDivisions; ++i) {
        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        // Calculate desired gain
        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

        // Fix gremlins.
        if (IsNaN(m_detectorAverage))
            m_detectorAverage = 1;
        if (IsInfinite(m_detectorAverage))
            m_detectorAverage = 1;

        float desiredGain = m_detectorAverage;

        // Pre-warp so we get desiredGain after sin() warp below.
        float scaledDesiredGain = asinf(desiredGain) / (0.5f * M_PI);

        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        // Deal with envelopes
        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

        // envelopeRate is the rate we slew from current compressor level to the desired level.
        // The exact rate depends on if we're attacking or releasing and by how much.
        float envelopeRate;

        bool isReleasing = scaledDesiredGain > m_compressorGain;

        // compressionDiffDb is the difference between current compression level and the desired level.
        float compressionDiffDb = WebAudioUtils::ConvertLinearToDecibels(m_compressorGain / scaledDesiredGain, -1000.0f);

        if (isReleasing) {
            // Release mode - compressionDiffDb should be negative dB
            m_maxAttackCompressionDiffDb = -1;

            // Fix gremlins.
            if (IsNaN(compressionDiffDb))
                compressionDiffDb = -1;
            if (IsInfinite(compressionDiffDb))
                compressionDiffDb = -1;

            // Adaptive release - higher compression (lower compressionDiffDb)  releases faster.

            // Contain within range: -12 -> 0 then scale to go from 0 -> 3
            float x = compressionDiffDb;
            x = max(-12.0f, x);
            x = min(0.0f, x);
            x = 0.25f * (x + 12);

            // Compute adaptive release curve using 4th order polynomial.
            // Normal values for the polynomial coefficients would create a monotonically increasing function.
            float x2 = x * x;
            float x3 = x2 * x;
            float x4 = x2 * x2;
            float releaseFrames = kA + kB * x + kC * x2 + kD * x3 + kE * x4;

#define kSpacingDb 5
            float dbPerFrame = kSpacingDb / releaseFrames;

            envelopeRate = WebAudioUtils::ConvertDecibelsToLinear(dbPerFrame);
        } else {
            // Attack mode - compressionDiffDb should be positive dB

            // Fix gremlins.
            if (IsNaN(compressionDiffDb))
                compressionDiffDb = 1;
            if (IsInfinite(compressionDiffDb))
                compressionDiffDb = 1;

            // As long as we're still in attack mode, use a rate based off
            // the largest compressionDiffDb we've encountered so far.
            if (m_maxAttackCompressionDiffDb == -1 || m_maxAttackCompressionDiffDb < compressionDiffDb)
                m_maxAttackCompressionDiffDb = compressionDiffDb;

            float effAttenDiffDb = max(0.5f, m_maxAttackCompressionDiffDb);

            float x = 0.25f / effAttenDiffDb;
            envelopeRate = 1 - powf(x, 1 / attackFrames);
        }

        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        // Inner loop - calculate shaped power average - apply compression.
        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

        {
            int preDelayReadIndex = m_preDelayReadIndex;
            int preDelayWriteIndex = m_preDelayWriteIndex;
            float detectorAverage = m_detectorAverage;
            float compressorGain = m_compressorGain;

            int loopFrames = nDivisionFrames;
            while (loopFrames--) {
                float compressorInput = 0;

                // Predelay signal, computing compression amount from un-delayed version.
                for (unsigned i = 0; i < numberOfChannels; ++i) {
                    float* delayBuffer = m_preDelayBuffers[i].get();
                    float undelayedSource = sourceChannels[i][frameIndex];
                    delayBuffer[preDelayWriteIndex] = undelayedSource;

                    float absUndelayedSource = undelayedSource > 0 ? undelayedSource : -undelayedSource;
                    if (compressorInput < absUndelayedSource)
                        compressorInput = absUndelayedSource;
                }

                // Calculate shaped power on undelayed input.

                float scaledInput = compressorInput;
                float absInput = scaledInput > 0 ? scaledInput : -scaledInput;

                // Put through shaping curve.
                // This is linear up to the threshold, then enters a "knee" portion followed by the "ratio" portion.
                // The transition from the threshold to the knee is smooth (1st derivative matched).
                // The transition from the knee to the ratio portion is smooth (1st derivative matched).
                float shapedInput = saturate(absInput, k);

                float attenuation = absInput <= 0.0001f ? 1 : shapedInput / absInput;

                float attenuationDb = -WebAudioUtils::ConvertLinearToDecibels(attenuation, -1000.0f);
                attenuationDb = max(2.0f, attenuationDb);

                float dbPerFrame = attenuationDb / satReleaseFrames;

                float satReleaseRate = WebAudioUtils::ConvertDecibelsToLinear(dbPerFrame) - 1;

                bool isRelease = (attenuation > detectorAverage);
                float rate = isRelease ? satReleaseRate : 1;

                detectorAverage += (attenuation - detectorAverage) * rate;
                detectorAverage = min(1.0f, detectorAverage);

                // Fix gremlins.
                if (IsNaN(detectorAverage))
                    detectorAverage = 1;
                if (IsInfinite(detectorAverage))
                    detectorAverage = 1;

                // Exponential approach to desired gain.
                if (envelopeRate < 1) {
                    // Attack - reduce gain to desired.
                    compressorGain += (scaledDesiredGain - compressorGain) * envelopeRate;
                } else {
                    // Release - exponentially increase gain to 1.0
                    compressorGain *= envelopeRate;
                    compressorGain = min(1.0f, compressorGain);
                }

                // Warp pre-compression gain to smooth out sharp exponential transition points.
                float postWarpCompressorGain = sinf(0.5f * M_PI * compressorGain);

                // Calculate total gain using master gain and effect blend.
                float totalGain = dryMix + wetMix * masterLinearGain * postWarpCompressorGain;

                // Calculate metering.
                float dbRealGain = 20 * log10(postWarpCompressorGain);
                if (dbRealGain < m_meteringGain)
                    m_meteringGain = dbRealGain;
                else
                    m_meteringGain += (dbRealGain - m_meteringGain) * m_meteringReleaseK;

                // Apply final gain.
                for (unsigned i = 0; i < numberOfChannels; ++i) {
                    float* delayBuffer = m_preDelayBuffers[i].get();
                    destinationChannels[i][frameIndex] = delayBuffer[preDelayReadIndex] * totalGain;
                }

                frameIndex++;
                preDelayReadIndex = (preDelayReadIndex + 1) & MaxPreDelayFramesMask;
                preDelayWriteIndex = (preDelayWriteIndex + 1) & MaxPreDelayFramesMask;
            }

            // Locals back to member variables.
            m_preDelayReadIndex = preDelayReadIndex;
            m_preDelayWriteIndex = preDelayWriteIndex;
            m_detectorAverage = DenormalDisabler::flushDenormalFloatToZero(detectorAverage);
            m_compressorGain = DenormalDisabler::flushDenormalFloatToZero(compressorGain);
        }
    }
}
コード例 #30
0
ファイル: FloatArithmetic.hpp プロジェクト: lgratian/compiler
	static bool IsNaN(FloatConstant* value) {
		return IsNaN(value->Value(), value->GetType()->GetSubtype());
	}