bool TCompiler::shouldRunLoopAndIndexingValidation(int compileOptions) const { // If compiling an ESSL 1.00 shader for WebGL, or if its been requested through the API, // validate loop and indexing as well (to verify that the shader only uses minimal functionality // of ESSL 1.00 as in Appendix A of the spec). return (IsWebGLBasedSpec(shaderSpec) && shaderVersion == 100) || (compileOptions & SH_VALIDATE_LOOP_INDEXING); }
size_t GetGlobalMaxTokenSize(ShShaderSpec spec) { // WebGL defines a max token legnth of 256, while ES2 leaves max token // size undefined. ES3 defines a max size of 1024 characters. if (IsWebGLBasedSpec(spec)) { return 256; } else { return 1024; } }
TIntermNode *TCompiler::compileTreeImpl(const char* const shaderStrings[], size_t numStrings, int compileOptions) { clearResults(); ASSERT(numStrings > 0); ASSERT(GetGlobalPoolAllocator()); // Reset the extension behavior for each compilation unit. ResetExtensionBehavior(extensionBehavior); // If compiling for WebGL, validate loop and indexing as well. if (IsWebGLBasedSpec(shaderSpec)) compileOptions |= SH_VALIDATE_LOOP_INDEXING; // First string is path of source file if flag is set. The actual source follows. size_t firstSource = 0; if (compileOptions & SH_SOURCE_PATH) { mSourcePath = shaderStrings[0]; ++firstSource; } bool debugShaderPrecision = getResources().WEBGL_debug_shader_precision == 1; TIntermediate intermediate(infoSink); TParseContext parseContext(symbolTable, extensionBehavior, intermediate, shaderType, shaderSpec, compileOptions, true, infoSink, debugShaderPrecision); parseContext.fragmentPrecisionHigh = fragmentPrecisionHigh; SetGlobalParseContext(&parseContext); // We preserve symbols at the built-in level from compile-to-compile. // Start pushing the user-defined symbols at global level. TScopedSymbolTableLevel scopedSymbolLevel(&symbolTable); // Parse shader. bool success = (PaParseStrings(numStrings - firstSource, &shaderStrings[firstSource], NULL, &parseContext) == 0) && (parseContext.treeRoot != NULL); shaderVersion = parseContext.getShaderVersion(); if (success && MapSpecToShaderVersion(shaderSpec) < shaderVersion) { infoSink.info.prefix(EPrefixError); infoSink.info << "unsupported shader version"; success = false; } TIntermNode *root = NULL; if (success) { mPragma = parseContext.pragma(); if (mPragma.stdgl.invariantAll) { symbolTable.setGlobalInvariant(); } root = parseContext.treeRoot; success = intermediate.postProcess(root); // Disallow expressions deemed too complex. if (success && (compileOptions & SH_LIMIT_EXPRESSION_COMPLEXITY)) success = limitExpressionComplexity(root); // Create the function DAG and check there is no recursion if (success) success = initCallDag(root); if (success && (compileOptions & SH_LIMIT_CALL_STACK_DEPTH)) success = checkCallDepth(); // Checks which functions are used and if "main" exists if (success) { functionMetadata.clear(); functionMetadata.resize(mCallDag.size()); success = tagUsedFunctions(); } if (success && !(compileOptions & SH_DONT_PRUNE_UNUSED_FUNCTIONS)) success = pruneUnusedFunctions(root); // Prune empty declarations to work around driver bugs and to keep declaration output simple. if (success) PruneEmptyDeclarations(root); if (success && shaderVersion == 300 && shaderType == GL_FRAGMENT_SHADER) success = validateOutputs(root); if (success && (compileOptions & SH_VALIDATE_LOOP_INDEXING)) success = validateLimitations(root); if (success && (compileOptions & SH_TIMING_RESTRICTIONS)) success = enforceTimingRestrictions(root, (compileOptions & SH_DEPENDENCY_GRAPH) != 0); if (success && shaderSpec == SH_CSS_SHADERS_SPEC) rewriteCSSShader(root); // Unroll for-loop markup needs to happen after validateLimitations pass. if (success && (compileOptions & SH_UNROLL_FOR_LOOP_WITH_INTEGER_INDEX)) { ForLoopUnrollMarker marker(ForLoopUnrollMarker::kIntegerIndex); root->traverse(&marker); } if (success && (compileOptions & SH_UNROLL_FOR_LOOP_WITH_SAMPLER_ARRAY_INDEX)) { ForLoopUnrollMarker marker(ForLoopUnrollMarker::kSamplerArrayIndex); root->traverse(&marker); if (marker.samplerArrayIndexIsFloatLoopIndex()) { infoSink.info.prefix(EPrefixError); infoSink.info << "sampler array index is float loop index"; success = false; } } // Built-in function emulation needs to happen after validateLimitations pass. if (success) { initBuiltInFunctionEmulator(&builtInFunctionEmulator, compileOptions); builtInFunctionEmulator.MarkBuiltInFunctionsForEmulation(root); } // Clamping uniform array bounds needs to happen after validateLimitations pass. if (success && (compileOptions & SH_CLAMP_INDIRECT_ARRAY_BOUNDS)) arrayBoundsClamper.MarkIndirectArrayBoundsForClamping(root); if (success && shaderType == GL_VERTEX_SHADER && (compileOptions & SH_INIT_GL_POSITION)) initializeGLPosition(root); if (success && (compileOptions & SH_UNFOLD_SHORT_CIRCUIT)) { UnfoldShortCircuitAST unfoldShortCircuit; root->traverse(&unfoldShortCircuit); unfoldShortCircuit.updateTree(); } if (success && (compileOptions & SH_VARIABLES)) { collectVariables(root); if (compileOptions & SH_ENFORCE_PACKING_RESTRICTIONS) { success = enforcePackingRestrictions(); if (!success) { infoSink.info.prefix(EPrefixError); infoSink.info << "too many uniforms"; } } if (success && shaderType == GL_VERTEX_SHADER && (compileOptions & SH_INIT_VARYINGS_WITHOUT_STATIC_USE)) initializeVaryingsWithoutStaticUse(root); } if (success && (compileOptions & SH_SCALARIZE_VEC_AND_MAT_CONSTRUCTOR_ARGS)) { ScalarizeVecAndMatConstructorArgs scalarizer( shaderType, fragmentPrecisionHigh); root->traverse(&scalarizer); } if (success && (compileOptions & SH_REGENERATE_STRUCT_NAMES)) { RegenerateStructNames gen(symbolTable, shaderVersion); root->traverse(&gen); } } SetGlobalParseContext(NULL); if (success) return root; return NULL; }
bool TCompiler::compile(const char* const shaderStrings[], size_t numStrings, int compileOptions) { TScopedPoolAllocator scopedAlloc(&allocator); clearResults(); if (numStrings == 0) return true; // If compiling for WebGL, validate loop and indexing as well. if (IsWebGLBasedSpec(shaderSpec)) compileOptions |= SH_VALIDATE_LOOP_INDEXING; // First string is path of source file if flag is set. The actual source follows. const char* sourcePath = NULL; size_t firstSource = 0; if (compileOptions & SH_SOURCE_PATH) { sourcePath = shaderStrings[0]; ++firstSource; } TIntermediate intermediate(infoSink); TParseContext parseContext(symbolTable, extensionBehavior, intermediate, shaderType, shaderSpec, compileOptions, true, sourcePath, infoSink); parseContext.fragmentPrecisionHigh = fragmentPrecisionHigh; SetGlobalParseContext(&parseContext); // We preserve symbols at the built-in level from compile-to-compile. // Start pushing the user-defined symbols at global level. TScopedSymbolTableLevel scopedSymbolLevel(&symbolTable); // Parse shader. bool success = (PaParseStrings(numStrings - firstSource, &shaderStrings[firstSource], NULL, &parseContext) == 0) && (parseContext.treeRoot != NULL); shaderVersion = parseContext.getShaderVersion(); if (success) { mPragma = parseContext.pragma(); if (mPragma.stdgl.invariantAll) { symbolTable.setGlobalInvariant(); } TIntermNode* root = parseContext.treeRoot; success = intermediate.postProcess(root); // Disallow expressions deemed too complex. if (success && (compileOptions & SH_LIMIT_EXPRESSION_COMPLEXITY)) success = limitExpressionComplexity(root); if (success) success = detectCallDepth(root, infoSink, (compileOptions & SH_LIMIT_CALL_STACK_DEPTH) != 0); if (success && shaderVersion == 300 && shaderType == GL_FRAGMENT_SHADER) success = validateOutputs(root); if (success && (compileOptions & SH_VALIDATE_LOOP_INDEXING)) success = validateLimitations(root); if (success && (compileOptions & SH_TIMING_RESTRICTIONS)) success = enforceTimingRestrictions(root, (compileOptions & SH_DEPENDENCY_GRAPH) != 0); if (success && shaderSpec == SH_CSS_SHADERS_SPEC) rewriteCSSShader(root); // Unroll for-loop markup needs to happen after validateLimitations pass. if (success && (compileOptions & SH_UNROLL_FOR_LOOP_WITH_INTEGER_INDEX)) { ForLoopUnrollMarker marker(ForLoopUnrollMarker::kIntegerIndex); root->traverse(&marker); } if (success && (compileOptions & SH_UNROLL_FOR_LOOP_WITH_SAMPLER_ARRAY_INDEX)) { ForLoopUnrollMarker marker(ForLoopUnrollMarker::kSamplerArrayIndex); root->traverse(&marker); if (marker.samplerArrayIndexIsFloatLoopIndex()) { infoSink.info.prefix(EPrefixError); infoSink.info << "sampler array index is float loop index"; success = false; } } // Built-in function emulation needs to happen after validateLimitations pass. if (success && (compileOptions & SH_EMULATE_BUILT_IN_FUNCTIONS)) builtInFunctionEmulator.MarkBuiltInFunctionsForEmulation(root); // Clamping uniform array bounds needs to happen after validateLimitations pass. if (success && (compileOptions & SH_CLAMP_INDIRECT_ARRAY_BOUNDS)) arrayBoundsClamper.MarkIndirectArrayBoundsForClamping(root); if (success && shaderType == GL_VERTEX_SHADER && (compileOptions & SH_INIT_GL_POSITION)) initializeGLPosition(root); if (success && (compileOptions & SH_UNFOLD_SHORT_CIRCUIT)) { UnfoldShortCircuitAST unfoldShortCircuit; root->traverse(&unfoldShortCircuit); unfoldShortCircuit.updateTree(); } if (success && (compileOptions & SH_VARIABLES)) { collectVariables(root); if (compileOptions & SH_ENFORCE_PACKING_RESTRICTIONS) { success = enforcePackingRestrictions(); if (!success) { infoSink.info.prefix(EPrefixError); infoSink.info << "too many uniforms"; } } if (success && shaderType == GL_VERTEX_SHADER && (compileOptions & SH_INIT_VARYINGS_WITHOUT_STATIC_USE)) initializeVaryingsWithoutStaticUse(root); } if (success && (compileOptions & SH_SCALARIZE_VEC_AND_MAT_CONSTRUCTOR_ARGS)) { ScalarizeVecAndMatConstructorArgs scalarizer( shaderType, fragmentPrecisionHigh); root->traverse(&scalarizer); } if (success && (compileOptions & SH_REGENERATE_STRUCT_NAMES)) { RegenerateStructNames gen(symbolTable, shaderVersion); root->traverse(&gen); } if (success && (compileOptions & SH_INTERMEDIATE_TREE)) intermediate.outputTree(root); if (success && (compileOptions & SH_OBJECT_CODE)) translate(root); } // Cleanup memory. intermediate.remove(parseContext.treeRoot); SetGlobalParseContext(NULL); return success; }