コード例 #1
0
ファイル: indexam.c プロジェクト: idmf/postgres
/* ----------------
 *		index_getnext - get the next heap tuple from a scan
 *
 * The result is the next heap tuple satisfying the scan keys and the
 * snapshot, or NULL if no more matching tuples exist.	On success,
 * the buffer containing the heap tuple is pinned (the pin will be dropped
 * at the next index_getnext or index_endscan).
 *
 * Note: caller must check scan->xs_recheck, and perform rechecking of the
 * scan keys if required.  We do not do that here because we don't have
 * enough information to do it efficiently in the general case.
 * ----------------
 */
HeapTuple
index_getnext(IndexScanDesc scan, ScanDirection direction)
{
	HeapTuple	heapTuple = &scan->xs_ctup;
	ItemPointer tid = &heapTuple->t_self;
	FmgrInfo   *procedure;

	SCAN_CHECKS;
	GET_SCAN_PROCEDURE(amgettuple);

	Assert(TransactionIdIsValid(RecentGlobalXmin));

	/*
	 * We always reset xs_hot_dead; if we are here then either we are just
	 * starting the scan, or we previously returned a visible tuple, and in
	 * either case it's inappropriate to kill the prior index entry.
	 */
	scan->xs_hot_dead = false;

	for (;;)
	{
		OffsetNumber offnum;
		bool		at_chain_start;
		Page		dp;

		if (scan->xs_next_hot != InvalidOffsetNumber)
		{
			/*
			 * We are resuming scan of a HOT chain after having returned an
			 * earlier member.	Must still hold pin on current heap page.
			 */
			Assert(BufferIsValid(scan->xs_cbuf));
			Assert(ItemPointerGetBlockNumber(tid) ==
				   BufferGetBlockNumber(scan->xs_cbuf));
			Assert(TransactionIdIsValid(scan->xs_prev_xmax));
			offnum = scan->xs_next_hot;
			at_chain_start = false;
			scan->xs_next_hot = InvalidOffsetNumber;
		}
		else
		{
			bool		found;
			Buffer		prev_buf;

			/*
			 * If we scanned a whole HOT chain and found only dead tuples,
			 * tell index AM to kill its entry for that TID. We do not do this
			 * when in recovery because it may violate MVCC to do so. see
			 * comments in RelationGetIndexScan().
			 */
			if (!scan->xactStartedInRecovery)
				scan->kill_prior_tuple = scan->xs_hot_dead;

			/*
			 * The AM's gettuple proc finds the next index entry matching the
			 * scan keys, and puts the TID in xs_ctup.t_self (ie, *tid). It
			 * should also set scan->xs_recheck, though we pay no attention to
			 * that here.
			 */
			found = DatumGetBool(FunctionCall2(procedure,
											   PointerGetDatum(scan),
											   Int32GetDatum(direction)));

			/* Reset kill flag immediately for safety */
			scan->kill_prior_tuple = false;

			/* If we're out of index entries, break out of outer loop */
			if (!found)
				break;

			pgstat_count_index_tuples(scan->indexRelation, 1);

			/* Switch to correct buffer if we don't have it already */
			prev_buf = scan->xs_cbuf;
			scan->xs_cbuf = ReleaseAndReadBuffer(scan->xs_cbuf,
												 scan->heapRelation,
											 ItemPointerGetBlockNumber(tid));

			/*
			 * Prune page, but only if we weren't already on this page
			 */
			if (prev_buf != scan->xs_cbuf)
				heap_page_prune_opt(scan->heapRelation, scan->xs_cbuf,
									RecentGlobalXmin);

			/* Prepare to scan HOT chain starting at index-referenced offnum */
			offnum = ItemPointerGetOffsetNumber(tid);
			at_chain_start = true;

			/* We don't know what the first tuple's xmin should be */
			scan->xs_prev_xmax = InvalidTransactionId;

			/* Initialize flag to detect if all entries are dead */
			scan->xs_hot_dead = true;
		}

		/* Obtain share-lock on the buffer so we can examine visibility */
		LockBuffer(scan->xs_cbuf, BUFFER_LOCK_SHARE);

		dp = (Page) BufferGetPage(scan->xs_cbuf);

		/* Scan through possible multiple members of HOT-chain */
		for (;;)
		{
			ItemId		lp;
			ItemPointer ctid;
			bool		valid;

			/* check for bogus TID */
			if (offnum < FirstOffsetNumber ||
				offnum > PageGetMaxOffsetNumber(dp))
				break;

			lp = PageGetItemId(dp, offnum);

			/* check for unused, dead, or redirected items */
			if (!ItemIdIsNormal(lp))
			{
				/* We should only see a redirect at start of chain */
				if (ItemIdIsRedirected(lp) && at_chain_start)
				{
					/* Follow the redirect */
					offnum = ItemIdGetRedirect(lp);
					at_chain_start = false;
					continue;
				}
				/* else must be end of chain */
				break;
			}

			/*
			 * We must initialize all of *heapTuple (ie, scan->xs_ctup) since
			 * it is returned to the executor on success.
			 */
			heapTuple->t_data = (HeapTupleHeader) PageGetItem(dp, lp);
			heapTuple->t_len = ItemIdGetLength(lp);
			ItemPointerSetOffsetNumber(tid, offnum);
			heapTuple->t_tableOid = RelationGetRelid(scan->heapRelation);
			ctid = &heapTuple->t_data->t_ctid;

			/*
			 * Shouldn't see a HEAP_ONLY tuple at chain start.  (This test
			 * should be unnecessary, since the chain root can't be removed
			 * while we have pin on the index entry, but let's make it
			 * anyway.)
			 */
			if (at_chain_start && HeapTupleIsHeapOnly(heapTuple))
				break;

			/*
			 * The xmin should match the previous xmax value, else chain is
			 * broken.	(Note: this test is not optional because it protects
			 * us against the case where the prior chain member's xmax aborted
			 * since we looked at it.)
			 */
			if (TransactionIdIsValid(scan->xs_prev_xmax) &&
				!TransactionIdEquals(scan->xs_prev_xmax,
								  HeapTupleHeaderGetXmin(heapTuple->t_data)))
				break;

			/* If it's visible per the snapshot, we must return it */
			valid = HeapTupleSatisfiesVisibility(heapTuple, scan->xs_snapshot,
												 scan->xs_cbuf);

			CheckForSerializableConflictOut(valid, scan->heapRelation,
											heapTuple, scan->xs_cbuf);

			if (valid)
			{
				/*
				 * If the snapshot is MVCC, we know that it could accept at
				 * most one member of the HOT chain, so we can skip examining
				 * any more members.  Otherwise, check for continuation of the
				 * HOT-chain, and set state for next time.
				 */
				if (IsMVCCSnapshot(scan->xs_snapshot))
					scan->xs_next_hot = InvalidOffsetNumber;
				else if (HeapTupleIsHotUpdated(heapTuple))
				{
					Assert(ItemPointerGetBlockNumber(ctid) ==
						   ItemPointerGetBlockNumber(tid));
					scan->xs_next_hot = ItemPointerGetOffsetNumber(ctid);
					scan->xs_prev_xmax = HeapTupleHeaderGetXmax(heapTuple->t_data);
				}
				else
					scan->xs_next_hot = InvalidOffsetNumber;

				PredicateLockTuple(scan->heapRelation, heapTuple);

				LockBuffer(scan->xs_cbuf, BUFFER_LOCK_UNLOCK);

				pgstat_count_heap_fetch(scan->indexRelation);

				return heapTuple;
			}

			/*
			 * If we can't see it, maybe no one else can either.  Check to see
			 * if the tuple is dead to all transactions.  If we find that all
			 * the tuples in the HOT chain are dead, we'll signal the index AM
			 * to not return that TID on future indexscans.
			 */
			if (scan->xs_hot_dead &&
				HeapTupleSatisfiesVacuum(heapTuple->t_data, RecentGlobalXmin,
										 scan->xs_cbuf) != HEAPTUPLE_DEAD)
				scan->xs_hot_dead = false;

			/*
			 * Check to see if HOT chain continues past this tuple; if so
			 * fetch the next offnum (we don't bother storing it into
			 * xs_next_hot, but must store xs_prev_xmax), and loop around.
			 */
			if (HeapTupleIsHotUpdated(heapTuple))
			{
				Assert(ItemPointerGetBlockNumber(ctid) ==
					   ItemPointerGetBlockNumber(tid));
				offnum = ItemPointerGetOffsetNumber(ctid);
				at_chain_start = false;
				scan->xs_prev_xmax = HeapTupleHeaderGetXmax(heapTuple->t_data);
			}
			else
				break;			/* end of chain */
		}						/* loop over a single HOT chain */

		LockBuffer(scan->xs_cbuf, BUFFER_LOCK_UNLOCK);

		/* Loop around to ask index AM for another TID */
		scan->xs_next_hot = InvalidOffsetNumber;
	}

	/* Release any held pin on a heap page */
	if (BufferIsValid(scan->xs_cbuf))
	{
		ReleaseBuffer(scan->xs_cbuf);
		scan->xs_cbuf = InvalidBuffer;
	}

	return NULL;				/* failure exit */
}
コード例 #2
0
ファイル: heapdesc.c プロジェクト: AmiGanguli/postgres
void
heap2_desc(StringInfo buf, XLogReaderState *record)
{
	char	   *rec = XLogRecGetData(record);
	uint8		info = XLogRecGetInfo(record) & ~XLR_INFO_MASK;

	info &= XLOG_HEAP_OPMASK;
	if (info == XLOG_HEAP2_CLEAN)
	{
		xl_heap_clean *xlrec = (xl_heap_clean *) rec;

		appendStringInfo(buf, "remxid %u", xlrec->latestRemovedXid);
	}
	else if (info == XLOG_HEAP2_FREEZE_PAGE)
	{
		xl_heap_freeze_page *xlrec = (xl_heap_freeze_page *) rec;

		appendStringInfo(buf, "cutoff xid %u ntuples %u",
						 xlrec->cutoff_xid, xlrec->ntuples);
	}
	else if (info == XLOG_HEAP2_CLEANUP_INFO)
	{
		xl_heap_cleanup_info *xlrec = (xl_heap_cleanup_info *) rec;

		appendStringInfo(buf, "remxid %u", xlrec->latestRemovedXid);
	}
	else if (info == XLOG_HEAP2_VISIBLE)
	{
		xl_heap_visible *xlrec = (xl_heap_visible *) rec;

		appendStringInfo(buf, "cutoff xid %u flags %d",
						 xlrec->cutoff_xid, xlrec->flags);
	}
	else if (info == XLOG_HEAP2_MULTI_INSERT)
	{
		xl_heap_multi_insert *xlrec = (xl_heap_multi_insert *) rec;

		appendStringInfo(buf, "%d tuples", xlrec->ntuples);
	}
	else if (info == XLOG_HEAP2_LOCK_UPDATED)
	{
		xl_heap_lock_updated *xlrec = (xl_heap_lock_updated *) rec;

		appendStringInfo(buf, "off %u: xmax %u: flags %u ",
						 xlrec->offnum, xlrec->xmax, xlrec->flags);
		out_infobits(buf, xlrec->infobits_set);
	}
	else if (info == XLOG_HEAP2_NEW_CID)
	{
		xl_heap_new_cid *xlrec = (xl_heap_new_cid *) rec;

		appendStringInfo(buf, "rel %u/%u/%u; tid %u/%u",
						 xlrec->target_node.spcNode,
						 xlrec->target_node.dbNode,
						 xlrec->target_node.relNode,
						 ItemPointerGetBlockNumber(&(xlrec->target_tid)),
						 ItemPointerGetOffsetNumber(&(xlrec->target_tid)));
		appendStringInfo(buf, "; cmin: %u, cmax: %u, combo: %u",
						 xlrec->cmin, xlrec->cmax, xlrec->combocid);
	}
}
コード例 #3
0
/* ----------------------------------------------------------------
 *		IndexOnlyNext
 *
 *		Retrieve a tuple from the IndexOnlyScan node's index.
 * ----------------------------------------------------------------
 */
static TupleTableSlot *
IndexOnlyNext(IndexOnlyScanState *node)
{
	EState	   *estate;
	ExprContext *econtext;
	ScanDirection direction;
	IndexScanDesc scandesc;
	TupleTableSlot *slot;
	ItemPointer tid;

	/*
	 * extract necessary information from index scan node
	 */
	estate = node->ss.ps.state;
	direction = estate->es_direction;
	/* flip direction if this is an overall backward scan */
	if (ScanDirectionIsBackward(((IndexOnlyScan *) node->ss.ps.plan)->indexorderdir))
	{
		if (ScanDirectionIsForward(direction))
			direction = BackwardScanDirection;
		else if (ScanDirectionIsBackward(direction))
			direction = ForwardScanDirection;
	}
	scandesc = node->ioss_ScanDesc;
	econtext = node->ss.ps.ps_ExprContext;
	slot = node->ss.ss_ScanTupleSlot;

	/*
	 * OK, now that we have what we need, fetch the next tuple.
	 */
	while ((tid = index_getnext_tid(scandesc, direction)) != NULL)
	{
		HeapTuple	tuple = NULL;

		/*
		 * We can skip the heap fetch if the TID references a heap page on
		 * which all tuples are known visible to everybody.  In any case,
		 * we'll use the index tuple not the heap tuple as the data source.
		 *
		 * Note on Memory Ordering Effects: visibilitymap_test does not lock
		 * the visibility map buffer, and therefore the result we read here
		 * could be slightly stale.  However, it can't be stale enough to
		 * matter.
		 *
		 * We need to detect clearing a VM bit due to an insert right away,
		 * because the tuple is present in the index page but not visible. The
		 * reading of the TID by this scan (using a shared lock on the index
		 * buffer) is serialized with the insert of the TID into the index
		 * (using an exclusive lock on the index buffer). Because the VM bit
		 * is cleared before updating the index, and locking/unlocking of the
		 * index page acts as a full memory barrier, we are sure to see the
		 * cleared bit if we see a recently-inserted TID.
		 *
		 * Deletes do not update the index page (only VACUUM will clear out
		 * the TID), so the clearing of the VM bit by a delete is not
		 * serialized with this test below, and we may see a value that is
		 * significantly stale. However, we don't care about the delete right
		 * away, because the tuple is still visible until the deleting
		 * transaction commits or the statement ends (if it's our
		 * transaction). In either case, the lock on the VM buffer will have
		 * been released (acting as a write barrier) after clearing the bit.
		 * And for us to have a snapshot that includes the deleting
		 * transaction (making the tuple invisible), we must have acquired
		 * ProcArrayLock after that time, acting as a read barrier.
		 *
		 * It's worth going through this complexity to avoid needing to lock
		 * the VM buffer, which could cause significant contention.
		 */
		if (!visibilitymap_test(scandesc->heapRelation,
								ItemPointerGetBlockNumber(tid),
								&node->ioss_VMBuffer))
		{
			/*
			 * Rats, we have to visit the heap to check visibility.
			 */
			node->ioss_HeapFetches++;
			tuple = index_fetch_heap(scandesc);
			if (tuple == NULL)
				continue;		/* no visible tuple, try next index entry */

			/*
			 * Only MVCC snapshots are supported here, so there should be no
			 * need to keep following the HOT chain once a visible entry has
			 * been found.  If we did want to allow that, we'd need to keep
			 * more state to remember not to call index_getnext_tid next time.
			 */
			if (scandesc->xs_continue_hot)
				elog(ERROR, "non-MVCC snapshots are not supported in index-only scans");

			/*
			 * Note: at this point we are holding a pin on the heap page, as
			 * recorded in scandesc->xs_cbuf.  We could release that pin now,
			 * but it's not clear whether it's a win to do so.  The next index
			 * entry might require a visit to the same heap page.
			 */
		}

		/*
		 * Fill the scan tuple slot with data from the index.
		 */
		StoreIndexTuple(slot, scandesc->xs_itup, scandesc->xs_itupdesc);

		/*
		 * If the index was lossy, we have to recheck the index quals.
		 * (Currently, this can never happen, but we should support the case
		 * for possible future use, eg with GiST indexes.)
		 */
		if (scandesc->xs_recheck)
		{
			econtext->ecxt_scantuple = slot;
			ResetExprContext(econtext);
			if (!ExecQual(node->indexqual, econtext, false))
			{
				/* Fails recheck, so drop it and loop back for another */
				InstrCountFiltered2(node, 1);
				continue;
			}
		}

		/*
		 * We don't currently support rechecking ORDER BY distances.  (In
		 * principle, if the index can support retrieval of the originally
		 * indexed value, it should be able to produce an exact distance
		 * calculation too.  So it's not clear that adding code here for
		 * recheck/re-sort would be worth the trouble.  But we should at least
		 * throw an error if someone tries it.)
		 */
		if (scandesc->numberOfOrderBys > 0 && scandesc->xs_recheckorderby)
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("lossy distance functions are not supported in index-only scans")));

		/*
		 * Predicate locks for index-only scans must be acquired at the page
		 * level when the heap is not accessed, since tuple-level predicate
		 * locks need the tuple's xmin value.  If we had to visit the tuple
		 * anyway, then we already have the tuple-level lock and can skip the
		 * page lock.
		 */
		if (tuple == NULL)
			PredicateLockPage(scandesc->heapRelation,
							  ItemPointerGetBlockNumber(tid),
							  estate->es_snapshot);

		return slot;
	}

	/*
	 * if we get here it means the index scan failed so we are at the end of
	 * the scan..
	 */
	return ExecClearTuple(slot);
}
コード例 #4
0
ファイル: gistvacuum.c プロジェクト: bwright/postgres
/*
 * Bulk deletion of all index entries pointing to a set of heap tuples and
 * check invalid tuples left after upgrade.
 * The set of target tuples is specified via a callback routine that tells
 * whether any given heap tuple (identified by ItemPointer) is being deleted.
 *
 * Result: a palloc'd struct containing statistical info for VACUUM displays.
 */
Datum
gistbulkdelete(PG_FUNCTION_ARGS)
{
	IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
	IndexBulkDeleteResult *stats = (IndexBulkDeleteResult *) PG_GETARG_POINTER(1);
	IndexBulkDeleteCallback callback = (IndexBulkDeleteCallback) PG_GETARG_POINTER(2);
	void	   *callback_state = (void *) PG_GETARG_POINTER(3);
	Relation	rel = info->index;
	GistBDItem *stack,
			   *ptr;

	/* first time through? */
	if (stats == NULL)
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
	/* we'll re-count the tuples each time */
	stats->estimated_count = false;
	stats->num_index_tuples = 0;

	stack = (GistBDItem *) palloc0(sizeof(GistBDItem));
	stack->blkno = GIST_ROOT_BLKNO;

	while (stack)
	{
		Buffer		buffer;
		Page		page;
		OffsetNumber i,
					maxoff;
		IndexTuple	idxtuple;
		ItemId		iid;

		buffer = ReadBufferExtended(rel, MAIN_FORKNUM, stack->blkno,
									RBM_NORMAL, info->strategy);
		LockBuffer(buffer, GIST_SHARE);
		gistcheckpage(rel, buffer);
		page = (Page) BufferGetPage(buffer);

		if (GistPageIsLeaf(page))
		{
			OffsetNumber todelete[MaxOffsetNumber];
			int			ntodelete = 0;

			LockBuffer(buffer, GIST_UNLOCK);
			LockBuffer(buffer, GIST_EXCLUSIVE);

			page = (Page) BufferGetPage(buffer);
			if (stack->blkno == GIST_ROOT_BLKNO && !GistPageIsLeaf(page))
			{
				/* only the root can become non-leaf during relock */
				UnlockReleaseBuffer(buffer);
				/* one more check */
				continue;
			}

			/*
			 * check for split proceeded after look at parent, we should check
			 * it after relock
			 */
			pushStackIfSplited(page, stack);

			/*
			 * Remove deletable tuples from page
			 */

			maxoff = PageGetMaxOffsetNumber(page);

			for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
			{
				iid = PageGetItemId(page, i);
				idxtuple = (IndexTuple) PageGetItem(page, iid);

				if (callback(&(idxtuple->t_tid), callback_state))
				{
					todelete[ntodelete] = i - ntodelete;
					ntodelete++;
					stats->tuples_removed += 1;
				}
				else
					stats->num_index_tuples += 1;
			}

			if (ntodelete)
			{
				START_CRIT_SECTION();

				MarkBufferDirty(buffer);

				for (i = 0; i < ntodelete; i++)
					PageIndexTupleDelete(page, todelete[i]);
				GistMarkTuplesDeleted(page);

				if (RelationNeedsWAL(rel))
				{
					XLogRecPtr	recptr;

					recptr = gistXLogUpdate(rel->rd_node, buffer,
											todelete, ntodelete,
											NULL, 0, InvalidBuffer);
					PageSetLSN(page, recptr);
					PageSetTLI(page, ThisTimeLineID);
				}
				else
					PageSetLSN(page, GetXLogRecPtrForTemp());

				END_CRIT_SECTION();
			}

		}
		else
		{
			/* check for split proceeded after look at parent */
			pushStackIfSplited(page, stack);

			maxoff = PageGetMaxOffsetNumber(page);

			for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
			{
				iid = PageGetItemId(page, i);
				idxtuple = (IndexTuple) PageGetItem(page, iid);

				ptr = (GistBDItem *) palloc(sizeof(GistBDItem));
				ptr->blkno = ItemPointerGetBlockNumber(&(idxtuple->t_tid));
				ptr->parentlsn = PageGetLSN(page);
				ptr->next = stack->next;
				stack->next = ptr;

				if (GistTupleIsInvalid(idxtuple))
					ereport(LOG,
							(errmsg("index \"%s\" contains an inner tuple marked as invalid",
									RelationGetRelationName(rel)),
							 errdetail("This is caused by an incomplete page split at crash recovery before upgrading to PostgreSQL 9.1."),
							 errhint("Please REINDEX it.")));
			}
		}

		UnlockReleaseBuffer(buffer);

		ptr = stack->next;
		pfree(stack);
		stack = ptr;

		vacuum_delay_point();
	}

	PG_RETURN_POINTER(stats);
}
コード例 #5
0
ファイル: brin.c プロジェクト: eubide/postgres
/*
 * A tuple in the heap is being inserted.  To keep a brin index up to date,
 * we need to obtain the relevant index tuple and compare its stored values
 * with those of the new tuple.  If the tuple values are not consistent with
 * the summary tuple, we need to update the index tuple.
 *
 * If autosummarization is enabled, check if we need to summarize the previous
 * page range.
 *
 * If the range is not currently summarized (i.e. the revmap returns NULL for
 * it), there's nothing to do for this tuple.
 */
bool
brininsert(Relation idxRel, Datum *values, bool *nulls,
		   ItemPointer heaptid, Relation heapRel,
		   IndexUniqueCheck checkUnique,
		   IndexInfo *indexInfo)
{
	BlockNumber pagesPerRange;
	BlockNumber origHeapBlk;
	BlockNumber heapBlk;
	BrinDesc   *bdesc = (BrinDesc *) indexInfo->ii_AmCache;
	BrinRevmap *revmap;
	Buffer		buf = InvalidBuffer;
	MemoryContext tupcxt = NULL;
	MemoryContext oldcxt = CurrentMemoryContext;
	bool		autosummarize = BrinGetAutoSummarize(idxRel);

	revmap = brinRevmapInitialize(idxRel, &pagesPerRange, NULL);

	/*
	 * origHeapBlk is the block number where the insertion occurred.  heapBlk
	 * is the first block in the corresponding page range.
	 */
	origHeapBlk = ItemPointerGetBlockNumber(heaptid);
	heapBlk = (origHeapBlk / pagesPerRange) * pagesPerRange;

	for (;;)
	{
		bool		need_insert = false;
		OffsetNumber off;
		BrinTuple  *brtup;
		BrinMemTuple *dtup;
		int			keyno;

		CHECK_FOR_INTERRUPTS();

		/*
		 * If auto-summarization is enabled and we just inserted the first
		 * tuple into the first block of a new non-first page range, request a
		 * summarization run of the previous range.
		 */
		if (autosummarize &&
			heapBlk > 0 &&
			heapBlk == origHeapBlk &&
			ItemPointerGetOffsetNumber(heaptid) == FirstOffsetNumber)
		{
			BlockNumber lastPageRange = heapBlk - 1;
			BrinTuple  *lastPageTuple;

			lastPageTuple =
				brinGetTupleForHeapBlock(revmap, lastPageRange, &buf, &off,
										 NULL, BUFFER_LOCK_SHARE, NULL);
			if (!lastPageTuple)
			{
				bool		recorded;

				recorded = AutoVacuumRequestWork(AVW_BRINSummarizeRange,
												 RelationGetRelid(idxRel),
												 lastPageRange);
				if (!recorded)
					ereport(LOG,
							(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
							 errmsg("request for BRIN range summarization for index \"%s\" page %u was not recorded",
									RelationGetRelationName(idxRel),
									lastPageRange)));
			}
			else
				LockBuffer(buf, BUFFER_LOCK_UNLOCK);
		}

		brtup = brinGetTupleForHeapBlock(revmap, heapBlk, &buf, &off,
										 NULL, BUFFER_LOCK_SHARE, NULL);

		/* if range is unsummarized, there's nothing to do */
		if (!brtup)
			break;

		/* First time through in this statement? */
		if (bdesc == NULL)
		{
			MemoryContextSwitchTo(indexInfo->ii_Context);
			bdesc = brin_build_desc(idxRel);
			indexInfo->ii_AmCache = (void *) bdesc;
			MemoryContextSwitchTo(oldcxt);
		}
		/* First time through in this brininsert call? */
		if (tupcxt == NULL)
		{
			tupcxt = AllocSetContextCreate(CurrentMemoryContext,
										   "brininsert cxt",
										   ALLOCSET_DEFAULT_SIZES);
			MemoryContextSwitchTo(tupcxt);
		}

		dtup = brin_deform_tuple(bdesc, brtup, NULL);

		/*
		 * Compare the key values of the new tuple to the stored index values;
		 * our deformed tuple will get updated if the new tuple doesn't fit
		 * the original range (note this means we can't break out of the loop
		 * early). Make a note of whether this happens, so that we know to
		 * insert the modified tuple later.
		 */
		for (keyno = 0; keyno < bdesc->bd_tupdesc->natts; keyno++)
		{
			Datum		result;
			BrinValues *bval;
			FmgrInfo   *addValue;

			bval = &dtup->bt_columns[keyno];
			addValue = index_getprocinfo(idxRel, keyno + 1,
										 BRIN_PROCNUM_ADDVALUE);
			result = FunctionCall4Coll(addValue,
									   idxRel->rd_indcollation[keyno],
									   PointerGetDatum(bdesc),
									   PointerGetDatum(bval),
									   values[keyno],
									   nulls[keyno]);
			/* if that returned true, we need to insert the updated tuple */
			need_insert |= DatumGetBool(result);
		}

		if (!need_insert)
		{
			/*
			 * The tuple is consistent with the new values, so there's nothing
			 * to do.
			 */
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
		}
		else
		{
			Page		page = BufferGetPage(buf);
			ItemId		lp = PageGetItemId(page, off);
			Size		origsz;
			BrinTuple  *origtup;
			Size		newsz;
			BrinTuple  *newtup;
			bool		samepage;

			/*
			 * Make a copy of the old tuple, so that we can compare it after
			 * re-acquiring the lock.
			 */
			origsz = ItemIdGetLength(lp);
			origtup = brin_copy_tuple(brtup, origsz, NULL, NULL);

			/*
			 * Before releasing the lock, check if we can attempt a same-page
			 * update.  Another process could insert a tuple concurrently in
			 * the same page though, so downstream we must be prepared to cope
			 * if this turns out to not be possible after all.
			 */
			newtup = brin_form_tuple(bdesc, heapBlk, dtup, &newsz);
			samepage = brin_can_do_samepage_update(buf, origsz, newsz);
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);

			/*
			 * Try to update the tuple.  If this doesn't work for whatever
			 * reason, we need to restart from the top; the revmap might be
			 * pointing at a different tuple for this block now, so we need to
			 * recompute to ensure both our new heap tuple and the other
			 * inserter's are covered by the combined tuple.  It might be that
			 * we don't need to update at all.
			 */
			if (!brin_doupdate(idxRel, pagesPerRange, revmap, heapBlk,
							   buf, off, origtup, origsz, newtup, newsz,
							   samepage))
			{
				/* no luck; start over */
				MemoryContextResetAndDeleteChildren(tupcxt);
				continue;
			}
		}

		/* success! */
		break;
	}

	brinRevmapTerminate(revmap);
	if (BufferIsValid(buf))
		ReleaseBuffer(buf);
	MemoryContextSwitchTo(oldcxt);
	if (tupcxt != NULL)
		MemoryContextDelete(tupcxt);

	return false;
}
コード例 #6
0
ファイル: heapdesc.c プロジェクト: TarasGit/pgsql
void
heap_desc(StringInfo buf, XLogRecord *record)
{
	char	   *rec = XLogRecGetData(record);
	uint8		info = record->xl_info & ~XLR_INFO_MASK;

	info &= XLOG_HEAP_OPMASK;
	if (info == XLOG_HEAP_INSERT)
	{
		xl_heap_insert *xlrec = (xl_heap_insert *) rec;

		out_target(buf, &(xlrec->target));
	}
	else if (info == XLOG_HEAP_DELETE)
	{
		xl_heap_delete *xlrec = (xl_heap_delete *) rec;

		out_target(buf, &(xlrec->target));
		appendStringInfoChar(buf, ' ');
		out_infobits(buf, xlrec->infobits_set);
	}
	else if (info == XLOG_HEAP_UPDATE)
	{
		xl_heap_update *xlrec = (xl_heap_update *) rec;

		out_target(buf, &(xlrec->target));
		appendStringInfo(buf, " xmax %u ", xlrec->old_xmax);
		out_infobits(buf, xlrec->old_infobits_set);
		appendStringInfo(buf, "; new tid %u/%u xmax %u",
						 ItemPointerGetBlockNumber(&(xlrec->newtid)),
						 ItemPointerGetOffsetNumber(&(xlrec->newtid)),
						 xlrec->new_xmax);
	}
	else if (info == XLOG_HEAP_HOT_UPDATE)
	{
		xl_heap_update *xlrec = (xl_heap_update *) rec;

		out_target(buf, &(xlrec->target));
		appendStringInfo(buf, " xmax %u ", xlrec->old_xmax);
		out_infobits(buf, xlrec->old_infobits_set);
		appendStringInfo(buf, "; new tid %u/%u xmax %u",
						 ItemPointerGetBlockNumber(&(xlrec->newtid)),
						 ItemPointerGetOffsetNumber(&(xlrec->newtid)),
						 xlrec->new_xmax);
	}
	else if (info == XLOG_HEAP_LOCK)
	{
		xl_heap_lock *xlrec = (xl_heap_lock *) rec;

		appendStringInfo(buf, "xid %u: ", xlrec->locking_xid);
		out_target(buf, &(xlrec->target));
		appendStringInfoChar(buf, ' ');
		out_infobits(buf, xlrec->infobits_set);
	}
	else if (info == XLOG_HEAP_INPLACE)
	{
		xl_heap_inplace *xlrec = (xl_heap_inplace *) rec;

		out_target(buf, &(xlrec->target));
	}
}
コード例 #7
0
ファイル: gist.c プロジェクト: kaigai/sepgsql
/*
 * Updates the stack so that child->parent is the correct parent of the
 * child. child->parent must be exclusively locked on entry, and will
 * remain so at exit, but it might not be the same page anymore.
 */
static void
gistFindCorrectParent(Relation r, GISTInsertStack *child)
{
	GISTInsertStack *parent = child->parent;

	gistcheckpage(r, parent->buffer);
	parent->page = (Page) BufferGetPage(parent->buffer);

	/* here we don't need to distinguish between split and page update */
	if (child->downlinkoffnum == InvalidOffsetNumber ||
		parent->lsn != PageGetLSN(parent->page))
	{
		/* parent is changed, look child in right links until found */
		OffsetNumber i,
					maxoff;
		ItemId		iid;
		IndexTuple	idxtuple;
		GISTInsertStack *ptr;

		while (true)
		{
			maxoff = PageGetMaxOffsetNumber(parent->page);
			for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
			{
				iid = PageGetItemId(parent->page, i);
				idxtuple = (IndexTuple) PageGetItem(parent->page, iid);
				if (ItemPointerGetBlockNumber(&(idxtuple->t_tid)) == child->blkno)
				{
					/* yes!!, found */
					child->downlinkoffnum = i;
					return;
				}
			}

			parent->blkno = GistPageGetOpaque(parent->page)->rightlink;
			UnlockReleaseBuffer(parent->buffer);
			if (parent->blkno == InvalidBlockNumber)
			{
				/*
				 * End of chain and still didn't find parent. It's a very-very
				 * rare situation when root splited.
				 */
				break;
			}
			parent->buffer = ReadBuffer(r, parent->blkno);
			LockBuffer(parent->buffer, GIST_EXCLUSIVE);
			gistcheckpage(r, parent->buffer);
			parent->page = (Page) BufferGetPage(parent->buffer);
		}

		/*
		 * awful!!, we need search tree to find parent ... , but before we
		 * should release all old parent
		 */

		ptr = child->parent->parent;	/* child->parent already released
										 * above */
		while (ptr)
		{
			ReleaseBuffer(ptr->buffer);
			ptr = ptr->parent;
		}

		/* ok, find new path */
		ptr = parent = gistFindPath(r, child->blkno, &child->downlinkoffnum);

		/* read all buffers as expected by caller */
		/* note we don't lock them or gistcheckpage them here! */
		while (ptr)
		{
			ptr->buffer = ReadBuffer(r, ptr->blkno);
			ptr->page = (Page) BufferGetPage(ptr->buffer);
			ptr = ptr->parent;
		}

		/* install new chain of parents to stack */
		child->parent = parent;

		/* make recursive call to normal processing */
		LockBuffer(child->parent->buffer, GIST_EXCLUSIVE);
		gistFindCorrectParent(r, child);
	}

	return;
}
コード例 #8
0
ファイル: nbtpage.c プロジェクト: adunstan/pg-cvs-mirror
/*
 * _bt_pagedel() -- Delete a page from the b-tree, if legal to do so.
 *
 * This action unlinks the page from the b-tree structure, removing all
 * pointers leading to it --- but not touching its own left and right links.
 * The page cannot be physically reclaimed right away, since other processes
 * may currently be trying to follow links leading to the page; they have to
 * be allowed to use its right-link to recover.  See nbtree/README.
 *
 * On entry, the target buffer must be pinned and locked (either read or write
 * lock is OK).  This lock and pin will be dropped before exiting.
 *
 * The "stack" argument can be a search stack leading (approximately) to the
 * target page, or NULL --- outside callers typically pass NULL since they
 * have not done such a search, but internal recursion cases pass the stack
 * to avoid duplicated search effort.
 *
 * Returns the number of pages successfully deleted (zero if page cannot
 * be deleted now; could be more than one if parent pages were deleted too).
 *
 * NOTE: this leaks memory.  Rather than trying to clean up everything
 * carefully, it's better to run it in a temp context that can be reset
 * frequently.
 */
int
_bt_pagedel(Relation rel, Buffer buf, BTStack stack)
{
	int			result;
	BlockNumber target,
				leftsib,
				rightsib,
				parent;
	OffsetNumber poffset,
				maxoff;
	uint32		targetlevel,
				ilevel;
	ItemId		itemid;
	IndexTuple	targetkey,
				itup;
	ScanKey		itup_scankey;
	Buffer		lbuf,
				rbuf,
				pbuf;
	bool		parent_half_dead;
	bool		parent_one_child;
	bool		rightsib_empty;
	Buffer		metabuf = InvalidBuffer;
	Page		metapg = NULL;
	BTMetaPageData *metad = NULL;
	Page		page;
	BTPageOpaque opaque;

	/*
	 * We can never delete rightmost pages nor root pages.	While at it, check
	 * that page is not already deleted and is empty.
	 */
	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	if (P_RIGHTMOST(opaque) || P_ISROOT(opaque) || P_ISDELETED(opaque) ||
		P_FIRSTDATAKEY(opaque) <= PageGetMaxOffsetNumber(page))
	{
		/* Should never fail to delete a half-dead page */
		Assert(!P_ISHALFDEAD(opaque));

		_bt_relbuf(rel, buf);
		return 0;
	}

	/*
	 * Save info about page, including a copy of its high key (it must have
	 * one, being non-rightmost).
	 */
	target = BufferGetBlockNumber(buf);
	targetlevel = opaque->btpo.level;
	leftsib = opaque->btpo_prev;
	itemid = PageGetItemId(page, P_HIKEY);
	targetkey = CopyIndexTuple((IndexTuple) PageGetItem(page, itemid));

	/*
	 * To avoid deadlocks, we'd better drop the target page lock before going
	 * further.
	 */
	_bt_relbuf(rel, buf);

	/*
	 * We need an approximate pointer to the page's parent page.  We use the
	 * standard search mechanism to search for the page's high key; this will
	 * give us a link to either the current parent or someplace to its left
	 * (if there are multiple equal high keys).  In recursion cases, the
	 * caller already generated a search stack and we can just re-use that
	 * work.
	 */
	if (stack == NULL)
	{
		if (!InRecovery)
		{
			/* we need an insertion scan key to do our search, so build one */
			itup_scankey = _bt_mkscankey(rel, targetkey);
			/* find the leftmost leaf page containing this key */
			stack = _bt_search(rel, rel->rd_rel->relnatts, itup_scankey, false,
							   &lbuf, BT_READ);
			/* don't need a pin on that either */
			_bt_relbuf(rel, lbuf);

			/*
			 * If we are trying to delete an interior page, _bt_search did
			 * more than we needed.  Locate the stack item pointing to our
			 * parent level.
			 */
			ilevel = 0;
			for (;;)
			{
				if (stack == NULL)
					elog(ERROR, "not enough stack items");
				if (ilevel == targetlevel)
					break;
				stack = stack->bts_parent;
				ilevel++;
			}
		}
		else
		{
			/*
			 * During WAL recovery, we can't use _bt_search (for one reason,
			 * it might invoke user-defined comparison functions that expect
			 * facilities not available in recovery mode).	Instead, just set
			 * up a dummy stack pointing to the left end of the parent tree
			 * level, from which _bt_getstackbuf will walk right to the parent
			 * page.  Painful, but we don't care too much about performance in
			 * this scenario.
			 */
			pbuf = _bt_get_endpoint(rel, targetlevel + 1, false);
			stack = (BTStack) palloc(sizeof(BTStackData));
			stack->bts_blkno = BufferGetBlockNumber(pbuf);
			stack->bts_offset = InvalidOffsetNumber;
			/* bts_btentry will be initialized below */
			stack->bts_parent = NULL;
			_bt_relbuf(rel, pbuf);
		}
	}

	/*
	 * We cannot delete a page that is the rightmost child of its immediate
	 * parent, unless it is the only child --- in which case the parent has to
	 * be deleted too, and the same condition applies recursively to it. We
	 * have to check this condition all the way up before trying to delete. We
	 * don't need to re-test when deleting a non-leaf page, though.
	 */
	if (targetlevel == 0 &&
		!_bt_parent_deletion_safe(rel, target, stack))
		return 0;

	/*
	 * We have to lock the pages we need to modify in the standard order:
	 * moving right, then up.  Else we will deadlock against other writers.
	 *
	 * So, we need to find and write-lock the current left sibling of the
	 * target page.  The sibling that was current a moment ago could have
	 * split, so we may have to move right.  This search could fail if either
	 * the sibling or the target page was deleted by someone else meanwhile;
	 * if so, give up.	(Right now, that should never happen, since page
	 * deletion is only done in VACUUM and there shouldn't be multiple VACUUMs
	 * concurrently on the same table.)
	 */
	if (leftsib != P_NONE)
	{
		lbuf = _bt_getbuf(rel, leftsib, BT_WRITE);
		page = BufferGetPage(lbuf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		while (P_ISDELETED(opaque) || opaque->btpo_next != target)
		{
			/* step right one page */
			leftsib = opaque->btpo_next;
			_bt_relbuf(rel, lbuf);
			if (leftsib == P_NONE)
			{
				elog(LOG, "no left sibling (concurrent deletion?) in \"%s\"",
					 RelationGetRelationName(rel));
				return 0;
			}
			lbuf = _bt_getbuf(rel, leftsib, BT_WRITE);
			page = BufferGetPage(lbuf);
			opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		}
	}
	else
		lbuf = InvalidBuffer;

	/*
	 * Next write-lock the target page itself.	It should be okay to take just
	 * a write lock not a superexclusive lock, since no scans would stop on an
	 * empty page.
	 */
	buf = _bt_getbuf(rel, target, BT_WRITE);
	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);

	/*
	 * Check page is still empty etc, else abandon deletion.  The empty check
	 * is necessary since someone else might have inserted into it while we
	 * didn't have it locked; the others are just for paranoia's sake.
	 */
	if (P_RIGHTMOST(opaque) || P_ISROOT(opaque) || P_ISDELETED(opaque) ||
		P_FIRSTDATAKEY(opaque) <= PageGetMaxOffsetNumber(page))
	{
		_bt_relbuf(rel, buf);
		if (BufferIsValid(lbuf))
			_bt_relbuf(rel, lbuf);
		return 0;
	}
	if (opaque->btpo_prev != leftsib)
		elog(ERROR, "left link changed unexpectedly in block %u of index \"%s\"",
			 target, RelationGetRelationName(rel));

	/*
	 * And next write-lock the (current) right sibling.
	 */
	rightsib = opaque->btpo_next;
	rbuf = _bt_getbuf(rel, rightsib, BT_WRITE);
	page = BufferGetPage(rbuf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	if (opaque->btpo_prev != target)
		elog(ERROR, "right sibling's left-link doesn't match: "
			 "block %u links to %u instead of expected %u in index \"%s\"",
			 rightsib, opaque->btpo_prev, target,
			 RelationGetRelationName(rel));

	/*
	 * Next find and write-lock the current parent of the target page. This is
	 * essentially the same as the corresponding step of splitting.
	 */
	ItemPointerSet(&(stack->bts_btentry.t_tid), target, P_HIKEY);
	pbuf = _bt_getstackbuf(rel, stack, BT_WRITE);
	if (pbuf == InvalidBuffer)
		elog(ERROR, "failed to re-find parent key in index \"%s\" for deletion target page %u",
			 RelationGetRelationName(rel), target);
	parent = stack->bts_blkno;
	poffset = stack->bts_offset;

	/*
	 * If the target is the rightmost child of its parent, then we can't
	 * delete, unless it's also the only child --- in which case the parent
	 * changes to half-dead status.  The "can't delete" case should have been
	 * detected by _bt_parent_deletion_safe, so complain if we see it now.
	 */
	page = BufferGetPage(pbuf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	maxoff = PageGetMaxOffsetNumber(page);
	parent_half_dead = false;
	parent_one_child = false;
	if (poffset >= maxoff)
	{
		if (poffset == P_FIRSTDATAKEY(opaque))
			parent_half_dead = true;
		else
			elog(ERROR, "failed to delete rightmost child %u of block %u in index \"%s\"",
				 target, parent, RelationGetRelationName(rel));
	}
	else
	{
		/* Will there be exactly one child left in this parent? */
		if (OffsetNumberNext(P_FIRSTDATAKEY(opaque)) == maxoff)
			parent_one_child = true;
	}

	/*
	 * If we are deleting the next-to-last page on the target's level, then
	 * the rightsib is a candidate to become the new fast root. (In theory, it
	 * might be possible to push the fast root even further down, but the odds
	 * of doing so are slim, and the locking considerations daunting.)
	 *
	 * We don't support handling this in the case where the parent is becoming
	 * half-dead, even though it theoretically could occur.
	 *
	 * We can safely acquire a lock on the metapage here --- see comments for
	 * _bt_newroot().
	 */
	if (leftsib == P_NONE && !parent_half_dead)
	{
		page = BufferGetPage(rbuf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		Assert(opaque->btpo.level == targetlevel);
		if (P_RIGHTMOST(opaque))
		{
			/* rightsib will be the only one left on the level */
			metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_WRITE);
			metapg = BufferGetPage(metabuf);
			metad = BTPageGetMeta(metapg);

			/*
			 * The expected case here is btm_fastlevel == targetlevel+1; if
			 * the fastlevel is <= targetlevel, something is wrong, and we
			 * choose to overwrite it to fix it.
			 */
			if (metad->btm_fastlevel > targetlevel + 1)
			{
				/* no update wanted */
				_bt_relbuf(rel, metabuf);
				metabuf = InvalidBuffer;
			}
		}
	}

	/*
	 * Check that the parent-page index items we're about to delete/overwrite
	 * contain what we expect.  This can fail if the index has become
	 * corrupt for some reason.  We want to throw any error before entering
	 * the critical section --- otherwise it'd be a PANIC.
	 *
	 * The test on the target item is just an Assert because _bt_getstackbuf
	 * should have guaranteed it has the expected contents.  The test on the
	 * next-child downlink is known to sometimes fail in the field, though.
	 */
	page = BufferGetPage(pbuf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);

#ifdef USE_ASSERT_CHECKING
	itemid = PageGetItemId(page, poffset);
	itup = (IndexTuple) PageGetItem(page, itemid);
	Assert(ItemPointerGetBlockNumber(&(itup->t_tid)) == target);
#endif

	if (!parent_half_dead)
	{
		OffsetNumber nextoffset;

		nextoffset = OffsetNumberNext(poffset);
		itemid = PageGetItemId(page, nextoffset);
		itup = (IndexTuple) PageGetItem(page, itemid);
		if (ItemPointerGetBlockNumber(&(itup->t_tid)) != rightsib)
			elog(ERROR, "right sibling %u of block %u is not next child %u of block %u in index \"%s\"",
				 rightsib, target, ItemPointerGetBlockNumber(&(itup->t_tid)),
				 parent, RelationGetRelationName(rel));
	}

	/*
	 * Here we begin doing the deletion.
	 */

	/* No ereport(ERROR) until changes are logged */
	START_CRIT_SECTION();

	/*
	 * Update parent.  The normal case is a tad tricky because we want to
	 * delete the target's downlink and the *following* key.  Easiest way is
	 * to copy the right sibling's downlink over the target downlink, and then
	 * delete the following item.
	 */
	if (parent_half_dead)
	{
		PageIndexTupleDelete(page, poffset);
		opaque->btpo_flags |= BTP_HALF_DEAD;
	}
	else
	{
		OffsetNumber nextoffset;

		itemid = PageGetItemId(page, poffset);
		itup = (IndexTuple) PageGetItem(page, itemid);
		ItemPointerSet(&(itup->t_tid), rightsib, P_HIKEY);

		nextoffset = OffsetNumberNext(poffset);
		PageIndexTupleDelete(page, nextoffset);
	}

	/*
	 * Update siblings' side-links.  Note the target page's side-links will
	 * continue to point to the siblings.  Asserts here are just rechecking
	 * things we already verified above.
	 */
	if (BufferIsValid(lbuf))
	{
		page = BufferGetPage(lbuf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		Assert(opaque->btpo_next == target);
		opaque->btpo_next = rightsib;
	}
	page = BufferGetPage(rbuf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	Assert(opaque->btpo_prev == target);
	opaque->btpo_prev = leftsib;
	rightsib_empty = (P_FIRSTDATAKEY(opaque) > PageGetMaxOffsetNumber(page));

	/*
	 * Mark the page itself deleted.  It can be recycled when all current
	 * transactions are gone.
	 */
	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	opaque->btpo_flags &= ~BTP_HALF_DEAD;
	opaque->btpo_flags |= BTP_DELETED;
	opaque->btpo.xact = ReadNewTransactionId();

	/* And update the metapage, if needed */
	if (BufferIsValid(metabuf))
	{
		metad->btm_fastroot = rightsib;
		metad->btm_fastlevel = targetlevel;
		MarkBufferDirty(metabuf);
	}

	/* Must mark buffers dirty before XLogInsert */
	MarkBufferDirty(pbuf);
	MarkBufferDirty(rbuf);
	MarkBufferDirty(buf);
	if (BufferIsValid(lbuf))
		MarkBufferDirty(lbuf);

	/* XLOG stuff */
	if (!rel->rd_istemp)
	{
		xl_btree_delete_page xlrec;
		xl_btree_metadata xlmeta;
		uint8		xlinfo;
		XLogRecPtr	recptr;
		XLogRecData rdata[5];
		XLogRecData *nextrdata;

		xlrec.target.node = rel->rd_node;
		ItemPointerSet(&(xlrec.target.tid), parent, poffset);
		xlrec.deadblk = target;
		xlrec.leftblk = leftsib;
		xlrec.rightblk = rightsib;
		xlrec.btpo_xact = opaque->btpo.xact;

		rdata[0].data = (char *) &xlrec;
		rdata[0].len = SizeOfBtreeDeletePage;
		rdata[0].buffer = InvalidBuffer;
		rdata[0].next = nextrdata = &(rdata[1]);

		if (BufferIsValid(metabuf))
		{
			xlmeta.root = metad->btm_root;
			xlmeta.level = metad->btm_level;
			xlmeta.fastroot = metad->btm_fastroot;
			xlmeta.fastlevel = metad->btm_fastlevel;

			nextrdata->data = (char *) &xlmeta;
			nextrdata->len = sizeof(xl_btree_metadata);
			nextrdata->buffer = InvalidBuffer;
			nextrdata->next = nextrdata + 1;
			nextrdata++;
			xlinfo = XLOG_BTREE_DELETE_PAGE_META;
		}
		else if (parent_half_dead)
			xlinfo = XLOG_BTREE_DELETE_PAGE_HALF;
		else
			xlinfo = XLOG_BTREE_DELETE_PAGE;

		nextrdata->data = NULL;
		nextrdata->len = 0;
		nextrdata->next = nextrdata + 1;
		nextrdata->buffer = pbuf;
		nextrdata->buffer_std = true;
		nextrdata++;

		nextrdata->data = NULL;
		nextrdata->len = 0;
		nextrdata->buffer = rbuf;
		nextrdata->buffer_std = true;
		nextrdata->next = NULL;

		if (BufferIsValid(lbuf))
		{
			nextrdata->next = nextrdata + 1;
			nextrdata++;
			nextrdata->data = NULL;
			nextrdata->len = 0;
			nextrdata->buffer = lbuf;
			nextrdata->buffer_std = true;
			nextrdata->next = NULL;
		}

		recptr = XLogInsert(RM_BTREE_ID, xlinfo, rdata);

		if (BufferIsValid(metabuf))
		{
			PageSetLSN(metapg, recptr);
			PageSetTLI(metapg, ThisTimeLineID);
		}
		page = BufferGetPage(pbuf);
		PageSetLSN(page, recptr);
		PageSetTLI(page, ThisTimeLineID);
		page = BufferGetPage(rbuf);
		PageSetLSN(page, recptr);
		PageSetTLI(page, ThisTimeLineID);
		page = BufferGetPage(buf);
		PageSetLSN(page, recptr);
		PageSetTLI(page, ThisTimeLineID);
		if (BufferIsValid(lbuf))
		{
			page = BufferGetPage(lbuf);
			PageSetLSN(page, recptr);
			PageSetTLI(page, ThisTimeLineID);
		}
	}

	END_CRIT_SECTION();

	/* release metapage; send out relcache inval if metapage changed */
	if (BufferIsValid(metabuf))
	{
		CacheInvalidateRelcache(rel);
		_bt_relbuf(rel, metabuf);
	}
	/* can always release leftsib immediately */
	if (BufferIsValid(lbuf))
		_bt_relbuf(rel, lbuf);

	/*
	 * If parent became half dead, recurse to delete it. Otherwise, if right
	 * sibling is empty and is now the last child of the parent, recurse to
	 * try to delete it.  (These cases cannot apply at the same time, though
	 * the second case might itself recurse to the first.)
	 *
	 * When recursing to parent, we hold the lock on the target page until
	 * done.  This delays any insertions into the keyspace that was just
	 * effectively reassigned to the parent's right sibling.  If we allowed
	 * that, and there were enough such insertions before we finish deleting
	 * the parent, page splits within that keyspace could lead to inserting
	 * out-of-order keys into the grandparent level.  It is thought that that
	 * wouldn't have any serious consequences, but it still seems like a
	 * pretty bad idea.
	 */
	if (parent_half_dead)
	{
		/* recursive call will release pbuf */
		_bt_relbuf(rel, rbuf);
		result = _bt_pagedel(rel, pbuf, stack->bts_parent) + 1;
		_bt_relbuf(rel, buf);
	}
	else if (parent_one_child && rightsib_empty)
	{
		_bt_relbuf(rel, pbuf);
		_bt_relbuf(rel, buf);
		/* recursive call will release rbuf */
		result = _bt_pagedel(rel, rbuf, stack) + 1;
	}
	else
	{
		_bt_relbuf(rel, pbuf);
		_bt_relbuf(rel, buf);
		_bt_relbuf(rel, rbuf);
		result = 1;
	}

	return result;
}
コード例 #9
0
ファイル: gist.c プロジェクト: kaigai/sepgsql
/*
 * Workhouse routine for doing insertion into a GiST index. Note that
 * this routine assumes it is invoked in a short-lived memory context,
 * so it does not bother releasing palloc'd allocations.
 */
void
gistdoinsert(Relation r, IndexTuple itup, Size freespace, GISTSTATE *giststate)
{
	ItemId		iid;
	IndexTuple	idxtuple;
	GISTInsertStack firststack;
	GISTInsertStack *stack;
	GISTInsertState state;
	bool		xlocked = false;

	memset(&state, 0, sizeof(GISTInsertState));
	state.freespace = freespace;
	state.r = r;

	/* Start from the root */
	firststack.blkno = GIST_ROOT_BLKNO;
	firststack.lsn = 0;
	firststack.parent = NULL;
	firststack.downlinkoffnum = InvalidOffsetNumber;
	state.stack = stack = &firststack;

	/*
	 * Walk down along the path of smallest penalty, updating the parent
	 * pointers with the key we're inserting as we go. If we crash in the
	 * middle, the tree is consistent, although the possible parent updates
	 * were a waste.
	 */
	for (;;)
	{
		if (XLogRecPtrIsInvalid(stack->lsn))
			stack->buffer = ReadBuffer(state.r, stack->blkno);

		/*
		 * Be optimistic and grab shared lock first. Swap it for an exclusive
		 * lock later if we need to update the page.
		 */
		if (!xlocked)
		{
			LockBuffer(stack->buffer, GIST_SHARE);
			gistcheckpage(state.r, stack->buffer);
		}

		stack->page = (Page) BufferGetPage(stack->buffer);
		stack->lsn = PageGetLSN(stack->page);
		Assert(!RelationNeedsWAL(state.r) || !XLogRecPtrIsInvalid(stack->lsn));

		/*
		 * If this page was split but the downlink was never inserted to the
		 * parent because the inserting backend crashed before doing that, fix
		 * that now.
		 */
		if (GistFollowRight(stack->page))
		{
			if (!xlocked)
			{
				LockBuffer(stack->buffer, GIST_UNLOCK);
				LockBuffer(stack->buffer, GIST_EXCLUSIVE);
				xlocked = true;
				/* someone might've completed the split when we unlocked */
				if (!GistFollowRight(stack->page))
					continue;
			}
			gistfixsplit(&state, giststate);

			UnlockReleaseBuffer(stack->buffer);
			xlocked = false;
			state.stack = stack = stack->parent;
			continue;
		}

		if (stack->blkno != GIST_ROOT_BLKNO &&
			stack->parent->lsn < GistPageGetNSN(stack->page))
		{
			/*
			 * Concurrent split detected. There's no guarantee that the
			 * downlink for this page is consistent with the tuple we're
			 * inserting anymore, so go back to parent and rechoose the best
			 * child.
			 */
			UnlockReleaseBuffer(stack->buffer);
			xlocked = false;
			state.stack = stack = stack->parent;
			continue;
		}

		if (!GistPageIsLeaf(stack->page))
		{
			/*
			 * This is an internal page so continue to walk down the tree.
			 * Find the child node that has the minimum insertion penalty.
			 */
			BlockNumber childblkno;
			IndexTuple	newtup;
			GISTInsertStack *item;
			OffsetNumber downlinkoffnum;

			downlinkoffnum = gistchoose(state.r, stack->page, itup, giststate);
			iid = PageGetItemId(stack->page, downlinkoffnum);
			idxtuple = (IndexTuple) PageGetItem(stack->page, iid);
			childblkno = ItemPointerGetBlockNumber(&(idxtuple->t_tid));

			/*
			 * Check that it's not a leftover invalid tuple from pre-9.1
			 */
			if (GistTupleIsInvalid(idxtuple))
				ereport(ERROR,
						(errmsg("index \"%s\" contains an inner tuple marked as invalid",
								RelationGetRelationName(r)),
						 errdetail("This is caused by an incomplete page split at crash recovery before upgrading to PostgreSQL 9.1."),
						 errhint("Please REINDEX it.")));

			/*
			 * Check that the key representing the target child node is
			 * consistent with the key we're inserting. Update it if it's not.
			 */
			newtup = gistgetadjusted(state.r, idxtuple, itup, giststate);
			if (newtup)
			{
				/*
				 * Swap shared lock for an exclusive one. Beware, the page may
				 * change while we unlock/lock the page...
				 */
				if (!xlocked)
				{
					LockBuffer(stack->buffer, GIST_UNLOCK);
					LockBuffer(stack->buffer, GIST_EXCLUSIVE);
					xlocked = true;
					stack->page = (Page) BufferGetPage(stack->buffer);

					if (PageGetLSN(stack->page) != stack->lsn)
					{
						/* the page was changed while we unlocked it, retry */
						continue;
					}
				}

				/*
				 * Update the tuple.
				 *
				 * We still hold the lock after gistinserttuple(), but it
				 * might have to split the page to make the updated tuple fit.
				 * In that case the updated tuple might migrate to the other
				 * half of the split, so we have to go back to the parent and
				 * descend back to the half that's a better fit for the new
				 * tuple.
				 */
				if (gistinserttuple(&state, stack, giststate, newtup,
									downlinkoffnum))
				{
					/*
					 * If this was a root split, the root page continues to be
					 * the parent and the updated tuple went to one of the
					 * child pages, so we just need to retry from the root
					 * page.
					 */
					if (stack->blkno != GIST_ROOT_BLKNO)
					{
						UnlockReleaseBuffer(stack->buffer);
						xlocked = false;
						state.stack = stack = stack->parent;
					}
					continue;
				}
			}
			LockBuffer(stack->buffer, GIST_UNLOCK);
			xlocked = false;

			/* descend to the chosen child */
			item = (GISTInsertStack *) palloc0(sizeof(GISTInsertStack));
			item->blkno = childblkno;
			item->parent = stack;
			item->downlinkoffnum = downlinkoffnum;
			state.stack = stack = item;
		}
		else
		{
			/*
			 * Leaf page. Insert the new key. We've already updated all the
			 * parents on the way down, but we might have to split the page if
			 * it doesn't fit. gistinserthere() will take care of that.
			 */

			/*
			 * Swap shared lock for an exclusive one. Be careful, the page may
			 * change while we unlock/lock the page...
			 */
			if (!xlocked)
			{
				LockBuffer(stack->buffer, GIST_UNLOCK);
				LockBuffer(stack->buffer, GIST_EXCLUSIVE);
				xlocked = true;
				stack->page = (Page) BufferGetPage(stack->buffer);
				stack->lsn = PageGetLSN(stack->page);

				if (stack->blkno == GIST_ROOT_BLKNO)
				{
					/*
					 * the only page that can become inner instead of leaf is
					 * the root page, so for root we should recheck it
					 */
					if (!GistPageIsLeaf(stack->page))
					{
						/*
						 * very rare situation: during unlock/lock index with
						 * number of pages = 1 was increased
						 */
						LockBuffer(stack->buffer, GIST_UNLOCK);
						xlocked = false;
						continue;
					}

					/*
					 * we don't need to check root split, because checking
					 * leaf/inner is enough to recognize split for root
					 */
				}
				else if (GistFollowRight(stack->page) ||
						 stack->parent->lsn < GistPageGetNSN(stack->page))
				{
					/*
					 * The page was split while we momentarily unlocked the
					 * page. Go back to parent.
					 */
					UnlockReleaseBuffer(stack->buffer);
					xlocked = false;
					state.stack = stack = stack->parent;
					continue;
				}
			}

			/* now state.stack->(page, buffer and blkno) points to leaf page */

			gistinserttuple(&state, stack, giststate, itup,
							InvalidOffsetNumber);
			LockBuffer(stack->buffer, GIST_UNLOCK);

			/* Release any pins we might still hold before exiting */
			for (; stack; stack = stack->parent)
				ReleaseBuffer(stack->buffer);
			break;
		}
	}
}
コード例 #10
0
ファイル: heapdesc.c プロジェクト: AlexHill/postgres
void
heap_desc(StringInfo buf, uint8 xl_info, char *rec)
{
	uint8		info = xl_info & ~XLR_INFO_MASK;

	info &= XLOG_HEAP_OPMASK;
	if (info == XLOG_HEAP_INSERT)
	{
		xl_heap_insert *xlrec = (xl_heap_insert *) rec;

		if (xl_info & XLOG_HEAP_INIT_PAGE)
			appendStringInfoString(buf, "insert(init): ");
		else
			appendStringInfoString(buf, "insert: ");
		out_target(buf, &(xlrec->target));
	}
	else if (info == XLOG_HEAP_DELETE)
	{
		xl_heap_delete *xlrec = (xl_heap_delete *) rec;

		appendStringInfoString(buf, "delete: ");
		out_target(buf, &(xlrec->target));
		appendStringInfoChar(buf, ' ');
		out_infobits(buf, xlrec->infobits_set);
	}
	else if (info == XLOG_HEAP_UPDATE)
	{
		xl_heap_update *xlrec = (xl_heap_update *) rec;

		if (xl_info & XLOG_HEAP_INIT_PAGE)
			appendStringInfoString(buf, "update(init): ");
		else
			appendStringInfoString(buf, "update: ");
		out_target(buf, &(xlrec->target));
		appendStringInfo(buf, " xmax %u ", xlrec->old_xmax);
		out_infobits(buf, xlrec->old_infobits_set);
		appendStringInfo(buf, "; new tid %u/%u xmax %u",
						 ItemPointerGetBlockNumber(&(xlrec->newtid)),
						 ItemPointerGetOffsetNumber(&(xlrec->newtid)),
						 xlrec->new_xmax);
	}
	else if (info == XLOG_HEAP_HOT_UPDATE)
	{
		xl_heap_update *xlrec = (xl_heap_update *) rec;

		if (xl_info & XLOG_HEAP_INIT_PAGE)		/* can this case happen? */
			appendStringInfoString(buf, "hot_update(init): ");
		else
			appendStringInfoString(buf, "hot_update: ");
		out_target(buf, &(xlrec->target));
		appendStringInfo(buf, " xmax %u ", xlrec->old_xmax);
		out_infobits(buf, xlrec->old_infobits_set);
		appendStringInfo(buf, "; new tid %u/%u xmax %u",
						 ItemPointerGetBlockNumber(&(xlrec->newtid)),
						 ItemPointerGetOffsetNumber(&(xlrec->newtid)),
						 xlrec->new_xmax);
	}
	else if (info == XLOG_HEAP_NEWPAGE)
	{
		xl_heap_newpage *xlrec = (xl_heap_newpage *) rec;

		appendStringInfo(buf, "newpage: rel %u/%u/%u; fork %u, blk %u",
						 xlrec->node.spcNode, xlrec->node.dbNode,
						 xlrec->node.relNode, xlrec->forknum,
						 xlrec->blkno);
	}
	else if (info == XLOG_HEAP_LOCK)
	{
		xl_heap_lock *xlrec = (xl_heap_lock *) rec;

		appendStringInfo(buf, "lock %u: ", xlrec->locking_xid);
		out_target(buf, &(xlrec->target));
		appendStringInfoChar(buf, ' ');
		out_infobits(buf, xlrec->infobits_set);
	}
	else if (info == XLOG_HEAP_INPLACE)
	{
		xl_heap_inplace *xlrec = (xl_heap_inplace *) rec;

		appendStringInfoString(buf, "inplace: ");
		out_target(buf, &(xlrec->target));
	}
	else
		appendStringInfoString(buf, "UNKNOWN");
}
コード例 #11
0
/* ----------------------------------------------------------------
 *		FunctionNext
 *
 *		This is a workhorse for ExecFunctionScan
 * ----------------------------------------------------------------
 */
static TupleTableSlot *
FunctionNext(FunctionScanState *node)
{
	TupleTableSlot *slot;
	EState	   *estate;
	ScanDirection direction;
	Tuplestorestate *tuplestorestate;

	/*
	 * get information from the estate and scan state
	 */
	estate = node->ss.ps.state;
	direction = estate->es_direction;

	tuplestorestate = node->tuplestorestate;

	/*
	 * If first time through, read all tuples from function and put them in a
	 * tuplestore. Subsequent calls just fetch tuples from tuplestore.
	 */
	if (tuplestorestate == NULL)
	{
		tuplestorestate = ExecMakeTableFunctionResult(
				node->funcexpr,
				node->ss.ps.ps_ExprContext,
				node->tupdesc,
				PlanStateOperatorMemKB( (PlanState *) node));
		node->tuplestorestate = tuplestorestate;

		/* CDB: Offer extra info for EXPLAIN ANALYZE. */
		if (node->ss.ps.instrument)
		{
			/* Let the tuplestore share our Instrumentation object. */
			tuplestore_set_instrument(tuplestorestate, node->ss.ps.instrument);

			/* Request a callback at end of query. */
			node->ss.ps.cdbexplainfun = ExecFunctionScanExplainEnd;
		}

	}

	/*
	 * Get the next tuple from tuplestore. Return NULL if no more tuples.
	 */
	slot = node->ss.ss_ScanTupleSlot;
	if (tuplestore_gettupleslot(tuplestorestate, 
				ScanDirectionIsForward(direction),
				slot))
	{
		/* CDB: Label each row with a synthetic ctid for subquery dedup. */
		if (node->cdb_want_ctid)
		{
			HeapTuple   tuple = ExecFetchSlotHeapTuple(slot); 

			/* Increment 48-bit row count */
			node->cdb_fake_ctid.ip_posid++;
			if (node->cdb_fake_ctid.ip_posid == 0)
				ItemPointerSetBlockNumber(&node->cdb_fake_ctid,
						1 + ItemPointerGetBlockNumber(&node->cdb_fake_ctid));

			tuple->t_self = node->cdb_fake_ctid;
		}
	}

	if (!TupIsNull(slot))
	{
		Gpmon_M_Incr_Rows_Out(GpmonPktFromFuncScanState(node));
		CheckSendPlanStateGpmonPkt(&node->ss.ps);
	}

	else if (!node->ss.ps.delayEagerFree)
	{
		ExecEagerFreeFunctionScan((FunctionScanState *)(&node->ss.ps));
	}
	
	return slot;
}
コード例 #12
0
ファイル: brin.c プロジェクト: JiannengSun/postgres
/*
 * A tuple in the heap is being inserted.  To keep a brin index up to date,
 * we need to obtain the relevant index tuple and compare its stored values
 * with those of the new tuple.  If the tuple values are not consistent with
 * the summary tuple, we need to update the index tuple.
 *
 * If the range is not currently summarized (i.e. the revmap returns NULL for
 * it), there's nothing to do.
 */
Datum
brininsert(PG_FUNCTION_ARGS)
{
	Relation	idxRel = (Relation) PG_GETARG_POINTER(0);
	Datum	   *values = (Datum *) PG_GETARG_POINTER(1);
	bool	   *nulls = (bool *) PG_GETARG_POINTER(2);
	ItemPointer heaptid = (ItemPointer) PG_GETARG_POINTER(3);

	/* we ignore the rest of our arguments */
	BlockNumber pagesPerRange;
	BrinDesc   *bdesc = NULL;
	BrinRevmap *revmap;
	Buffer		buf = InvalidBuffer;
	MemoryContext tupcxt = NULL;
	MemoryContext oldcxt = NULL;

	revmap = brinRevmapInitialize(idxRel, &pagesPerRange);

	for (;;)
	{
		bool		need_insert = false;
		OffsetNumber off;
		BrinTuple  *brtup;
		BrinMemTuple *dtup;
		BlockNumber heapBlk;
		int			keyno;
#ifdef USE_ASSERT_CHECKING
		BrinTuple  *tmptup;
		BrinMemTuple *tmpdtup;
		Size 		tmpsiz;
#endif

		CHECK_FOR_INTERRUPTS();

		heapBlk = ItemPointerGetBlockNumber(heaptid);
		/* normalize the block number to be the first block in the range */
		heapBlk = (heapBlk / pagesPerRange) * pagesPerRange;
		brtup = brinGetTupleForHeapBlock(revmap, heapBlk, &buf, &off, NULL,
										 BUFFER_LOCK_SHARE);

		/* if range is unsummarized, there's nothing to do */
		if (!brtup)
			break;

		/* First time through? */
		if (bdesc == NULL)
		{
			bdesc = brin_build_desc(idxRel);
			tupcxt = AllocSetContextCreate(CurrentMemoryContext,
										   "brininsert cxt",
										   ALLOCSET_DEFAULT_MINSIZE,
										   ALLOCSET_DEFAULT_INITSIZE,
										   ALLOCSET_DEFAULT_MAXSIZE);
			oldcxt = MemoryContextSwitchTo(tupcxt);
		}

		dtup = brin_deform_tuple(bdesc, brtup);

#ifdef USE_ASSERT_CHECKING
		{
			/*
			 * When assertions are enabled, we use this as an opportunity to
			 * test the "union" method, which would otherwise be used very
			 * rarely: first create a placeholder tuple, and addValue the
			 * value we just got into it.  Then union the existing index tuple
			 * with the updated placeholder tuple.  The tuple resulting from
			 * that union should be identical to the one resulting from the
			 * regular operation (straight addValue) below.
			 *
			 * Here we create the tuple to compare with; the actual comparison
			 * is below.
			 */
			tmptup = brin_form_placeholder_tuple(bdesc, heapBlk, &tmpsiz);
			tmpdtup = brin_deform_tuple(bdesc, tmptup);
			for (keyno = 0; keyno < bdesc->bd_tupdesc->natts; keyno++)
			{
				BrinValues *bval;
				FmgrInfo   *addValue;

				bval = &tmpdtup->bt_columns[keyno];
				addValue = index_getprocinfo(idxRel, keyno + 1,
											 BRIN_PROCNUM_ADDVALUE);
				FunctionCall4Coll(addValue,
								  idxRel->rd_indcollation[keyno],
								  PointerGetDatum(bdesc),
								  PointerGetDatum(bval),
								  values[keyno],
								  nulls[keyno]);
			}

			union_tuples(bdesc, tmpdtup, brtup);

			tmpdtup->bt_placeholder = dtup->bt_placeholder;
			tmptup = brin_form_tuple(bdesc, heapBlk, tmpdtup, &tmpsiz);
		}
#endif

		/*
		 * Compare the key values of the new tuple to the stored index values;
		 * our deformed tuple will get updated if the new tuple doesn't fit
		 * the original range (note this means we can't break out of the loop
		 * early). Make a note of whether this happens, so that we know to
		 * insert the modified tuple later.
		 */
		for (keyno = 0; keyno < bdesc->bd_tupdesc->natts; keyno++)
		{
			Datum		result;
			BrinValues *bval;
			FmgrInfo   *addValue;

			bval = &dtup->bt_columns[keyno];
			addValue = index_getprocinfo(idxRel, keyno + 1,
										 BRIN_PROCNUM_ADDVALUE);
			result = FunctionCall4Coll(addValue,
									   idxRel->rd_indcollation[keyno],
									   PointerGetDatum(bdesc),
									   PointerGetDatum(bval),
									   values[keyno],
									   nulls[keyno]);
			/* if that returned true, we need to insert the updated tuple */
			need_insert |= DatumGetBool(result);
		}

#ifdef USE_ASSERT_CHECKING
		{
			/*
			 * Now we can compare the tuple produced by the union function
			 * with the one from plain addValue.
			 */
			BrinTuple  *cmptup;
			Size		cmpsz;

			cmptup = brin_form_tuple(bdesc, heapBlk, dtup, &cmpsz);
			Assert(brin_tuples_equal(tmptup, tmpsiz, cmptup, cmpsz));
		}
#endif

		if (!need_insert)
		{
			/*
			 * The tuple is consistent with the new values, so there's nothing
			 * to do.
			 */
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
		}
		else
		{
			Page		page = BufferGetPage(buf);
			ItemId		lp = PageGetItemId(page, off);
			Size		origsz;
			BrinTuple  *origtup;
			Size		newsz;
			BrinTuple  *newtup;
			bool		samepage;

			/*
			 * Make a copy of the old tuple, so that we can compare it after
			 * re-acquiring the lock.
			 */
			origsz = ItemIdGetLength(lp);
			origtup = brin_copy_tuple(brtup, origsz);

			/*
			 * Before releasing the lock, check if we can attempt a same-page
			 * update.  Another process could insert a tuple concurrently in
			 * the same page though, so downstream we must be prepared to cope
			 * if this turns out to not be possible after all.
			 */
			newtup = brin_form_tuple(bdesc, heapBlk, dtup, &newsz);
			samepage = brin_can_do_samepage_update(buf, origsz, newsz);
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);

			/*
			 * Try to update the tuple.  If this doesn't work for whatever
			 * reason, we need to restart from the top; the revmap might be
			 * pointing at a different tuple for this block now, so we need to
			 * recompute to ensure both our new heap tuple and the other
			 * inserter's are covered by the combined tuple.  It might be that
			 * we don't need to update at all.
			 */
			if (!brin_doupdate(idxRel, pagesPerRange, revmap, heapBlk,
							   buf, off, origtup, origsz, newtup, newsz,
							   samepage))
			{
				/* no luck; start over */
				MemoryContextResetAndDeleteChildren(tupcxt);
				continue;
			}
		}

		/* success! */
		break;
	}

	brinRevmapTerminate(revmap);
	if (BufferIsValid(buf))
		ReleaseBuffer(buf);
	if (bdesc != NULL)
	{
		brin_free_desc(bdesc);
		MemoryContextSwitchTo(oldcxt);
		MemoryContextDelete(tupcxt);
	}

	return BoolGetDatum(false);
}
コード例 #13
0
/*
 *	_bt_search() -- Search the tree for a particular scankey,
 *		or more precisely for the first leaf page it could be on.
 *
 * The passed scankey must be an insertion-type scankey (see nbtree/README),
 * but it can omit the rightmost column(s) of the index.
 *
 * When nextkey is false (the usual case), we are looking for the first
 * item >= scankey.  When nextkey is true, we are looking for the first
 * item strictly greater than scankey.
 *
 * Return value is a stack of parent-page pointers.  *bufP is set to the
 * address of the leaf-page buffer, which is read-locked and pinned.
 * No locks are held on the parent pages, however!
 *
 * NOTE that the returned buffer is read-locked regardless of the access
 * parameter.  However, access = BT_WRITE will allow an empty root page
 * to be created and returned.	When access = BT_READ, an empty index
 * will result in *bufP being set to InvalidBuffer.
 */
BTStack
_bt_search(Relation rel, int keysz, ScanKey scankey, bool nextkey,
		   Buffer *bufP, int access)
{
	BTStack		stack_in = NULL;

	/* Get the root page to start with */
	*bufP = _bt_getroot(rel, access);

	/* If index is empty and access = BT_READ, no root page is created. */
	if (!BufferIsValid(*bufP))
		return (BTStack) NULL;

	/* Loop iterates once per level descended in the tree */
	for (;;)
	{
		Page		page;
		BTPageOpaque opaque;
		OffsetNumber offnum;
		ItemId		itemid;
		IndexTuple	itup;
		BlockNumber blkno;
		BlockNumber par_blkno;
		BTStack		new_stack;

		/*
		 * Race -- the page we just grabbed may have split since we read its
		 * pointer in the parent (or metapage).  If it has, we may need to
		 * move right to its new sibling.  Do that.
		 */
		*bufP = _bt_moveright(rel, *bufP, keysz, scankey, nextkey, BT_READ);

		/* if this is a leaf page, we're done */
		page = BufferGetPage(*bufP);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		if (P_ISLEAF(opaque))
			break;

		/*
		 * Find the appropriate item on the internal page, and get the child
		 * page that it points to.
		 */
		offnum = _bt_binsrch(rel, *bufP, keysz, scankey, nextkey);
		itemid = PageGetItemId(page, offnum);
		itup = (IndexTuple) PageGetItem(page, itemid);
		blkno = ItemPointerGetBlockNumber(&(itup->t_tid));
		par_blkno = BufferGetBlockNumber(*bufP);

		/*
		 * We need to save the location of the index entry we chose in the
		 * parent page on a stack. In case we split the tree, we'll use the
		 * stack to work back up to the parent page.  We also save the actual
		 * downlink (TID) to uniquely identify the index entry, in case it
		 * moves right while we're working lower in the tree.  See the paper
		 * by Lehman and Yao for how this is detected and handled. (We use the
		 * child link to disambiguate duplicate keys in the index -- Lehman
		 * and Yao disallow duplicate keys.)
		 */
		new_stack = (BTStack) palloc(sizeof(BTStackData));
		new_stack->bts_blkno = par_blkno;
		new_stack->bts_offset = offnum;
		memcpy(&new_stack->bts_btentry, itup, sizeof(IndexTupleData));
		new_stack->bts_parent = stack_in;

		/* drop the read lock on the parent page, acquire one on the child */
		*bufP = _bt_relandgetbuf(rel, *bufP, blkno, BT_READ);

		/* okay, all set to move down a level */
		stack_in = new_stack;
	}

	return stack_in;
}
コード例 #14
0
/*
 * _bt_get_endpoint() -- Find the first or last page on a given tree level
 *
 * If the index is empty, we will return InvalidBuffer; any other failure
 * condition causes ereport().	We will not return a dead page.
 *
 * The returned buffer is pinned and read-locked.
 */
Buffer
_bt_get_endpoint(Relation rel, uint32 level, bool rightmost)
{
	Buffer		buf;
	Page		page;
	BTPageOpaque opaque;
	OffsetNumber offnum;
	BlockNumber blkno;
	IndexTuple	itup;

	/*
	 * If we are looking for a leaf page, okay to descend from fast root;
	 * otherwise better descend from true root.  (There is no point in being
	 * smarter about intermediate levels.)
	 */
	if (level == 0)
		buf = _bt_getroot(rel, BT_READ);
	else
		buf = _bt_gettrueroot(rel);

	if (!BufferIsValid(buf))
	{
		/* empty index... */
		return InvalidBuffer;
	}

	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);

	for (;;)
	{
		/*
		 * If we landed on a deleted page, step right to find a live page
		 * (there must be one).  Also, if we want the rightmost page, step
		 * right if needed to get to it (this could happen if the page split
		 * since we obtained a pointer to it).
		 */
		while (P_IGNORE(opaque) ||
			   (rightmost && !P_RIGHTMOST(opaque)))
		{
			blkno = opaque->btpo_next;
			if (blkno == P_NONE)
				elog(ERROR, "fell off the end of \"%s\"",
					 RelationGetRelationName(rel));
			buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ);
			page = BufferGetPage(buf);
			opaque = (BTPageOpaque) PageGetSpecialPointer(page);
		}

		/* Done? */
		if (opaque->btpo.level == level)
			break;
		if (opaque->btpo.level < level)
			elog(ERROR, "btree level %u not found", level);

		/* Descend to leftmost or rightmost child page */
		if (rightmost)
			offnum = PageGetMaxOffsetNumber(page);
		else
			offnum = P_FIRSTDATAKEY(opaque);

		itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));
		blkno = ItemPointerGetBlockNumber(&(itup->t_tid));

		buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ);
		page = BufferGetPage(buf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	}

	return buf;
}
コード例 #15
0
ファイル: pruneheap.c プロジェクト: phan-pivotal/gpdb
/*
 * Prune specified item pointer or a HOT chain originating at that item.
 *
 * If the item is an index-referenced tuple (i.e. not a heap-only tuple),
 * the HOT chain is pruned by removing all DEAD tuples at the start of the HOT
 * chain.  We also prune any RECENTLY_DEAD tuples preceding a DEAD tuple.
 * This is OK because a RECENTLY_DEAD tuple preceding a DEAD tuple is really
 * DEAD, the OldestXmin test is just too coarse to detect it.
 *
 * The root line pointer is redirected to the tuple immediately after the
 * latest DEAD tuple.  If all tuples in the chain are DEAD, the root line
 * pointer is marked LP_DEAD.  (This includes the case of a DEAD simple
 * tuple, which we treat as a chain of length 1.)
 *
 * OldestXmin is the cutoff XID used to identify dead tuples.
 *
 * We don't actually change the page here, except perhaps for hint-bit updates
 * caused by HeapTupleSatisfiesVacuum.  We just add entries to the arrays in
 * prstate showing the changes to be made.  Items to be redirected are added
 * to the redirected[] array (two entries per redirection); items to be set to
 * LP_DEAD state are added to nowdead[]; and items to be set to LP_UNUSED
 * state are added to nowunused[].
 *
 * If redirect_move is true, we intend to get rid of redirecting line pointers,
 * not just make redirection entries.
 *
 * Returns the number of tuples (to be) deleted from the page.
 */
static int
heap_prune_chain(Relation relation, Buffer buffer, OffsetNumber rootoffnum,
				 TransactionId OldestXmin,
				 PruneState *prstate,
				 bool redirect_move)
{
	int			ndeleted = 0;
	Page		dp = (Page) BufferGetPage(buffer);
	TransactionId priorXmax = InvalidTransactionId;
	ItemId		rootlp;
	HeapTupleHeader htup;
	OffsetNumber latestdead = InvalidOffsetNumber,
				redirect_target = InvalidOffsetNumber,
				maxoff = PageGetMaxOffsetNumber(dp),
				offnum;
	OffsetNumber chainitems[MaxHeapTuplesPerPage];
	int			nchain = 0,
				i;

	rootlp = PageGetItemId(dp, rootoffnum);

	/*
	 * If it's a heap-only tuple, then it is not the start of a HOT chain.
	 */
	if (ItemIdIsNormal(rootlp))
	{
		htup = (HeapTupleHeader) PageGetItem(dp, rootlp);
		if (HeapTupleHeaderIsHeapOnly(htup))
		{
			/*
			 * If the tuple is DEAD and doesn't chain to anything else, mark
			 * it unused immediately.  (If it does chain, we can only remove
			 * it as part of pruning its chain.)
			 *
			 * We need this primarily to handle aborted HOT updates, that is,
			 * XMIN_INVALID heap-only tuples.  Those might not be linked to by
			 * any chain, since the parent tuple might be re-updated before
			 * any pruning occurs.	So we have to be able to reap them
			 * separately from chain-pruning.  (Note that
			 * HeapTupleHeaderIsHotUpdated will never return true for an
			 * XMIN_INVALID tuple, so this code will work even when there were
			 * sequential updates within the aborted transaction.)
			 *
			 * Note that we might first arrive at a dead heap-only tuple
			 * either here or while following a chain below.  Whichever path
			 * gets there first will mark the tuple unused.
			 */
			if (HeapTupleSatisfiesVacuum(relation, htup, OldestXmin, buffer)
				== HEAPTUPLE_DEAD && !HeapTupleHeaderIsHotUpdated(htup))
			{
				heap_prune_record_unused(prstate, rootoffnum);
				ndeleted++;
			}

			/* Nothing more to do */
			return ndeleted;
		}
	}

	/* Start from the root tuple */
	offnum = rootoffnum;

	/* while not end of the chain */
	for (;;)
	{
		ItemId		lp;
		bool		tupdead,
					recent_dead;

		/* Some sanity checks */
		if (offnum < FirstOffsetNumber || offnum > maxoff)
			break;

		/* If item is already processed, stop --- it must not be same chain */
		if (prstate->marked[offnum])
			break;

		lp = PageGetItemId(dp, offnum);

		/* Unused item obviously isn't part of the chain */
		if (!ItemIdIsUsed(lp))
			break;

		/*
		 * If we are looking at the redirected root line pointer, jump to the
		 * first normal tuple in the chain.  If we find a redirect somewhere
		 * else, stop --- it must not be same chain.
		 */
		if (ItemIdIsRedirected(lp))
		{
			if (nchain > 0)
				break;			/* not at start of chain */
			chainitems[nchain++] = offnum;
			offnum = ItemIdGetRedirect(rootlp);
			continue;
		}

		/*
		 * Likewise, a dead item pointer can't be part of the chain. (We
		 * already eliminated the case of dead root tuple outside this
		 * function.)
		 */
		if (ItemIdIsDead(lp))
			break;

		Assert(ItemIdIsNormal(lp));
		htup = (HeapTupleHeader) PageGetItem(dp, lp);

		/*
		 * Check the tuple XMIN against prior XMAX, if any
		 */
		if (TransactionIdIsValid(priorXmax) &&
			!TransactionIdEquals(HeapTupleHeaderGetXmin(htup), priorXmax))
			break;

		/*
		 * OK, this tuple is indeed a member of the chain.
		 */
		chainitems[nchain++] = offnum;

		/*
		 * Check tuple's visibility status.
		 */
		tupdead = recent_dead = false;

		switch (HeapTupleSatisfiesVacuum(relation, htup, OldestXmin, buffer))
		{
			case HEAPTUPLE_DEAD:
				tupdead = true;
				break;

			case HEAPTUPLE_RECENTLY_DEAD:
				recent_dead = true;

				/*
				 * This tuple may soon become DEAD.  Update the hint field so
				 * that the page is reconsidered for pruning in future.
				 */
				heap_prune_record_prunable(prstate,
										   HeapTupleHeaderGetXmax(htup));
				break;

			case HEAPTUPLE_DELETE_IN_PROGRESS:

				/*
				 * This tuple may soon become DEAD.  Update the hint field so
				 * that the page is reconsidered for pruning in future.
				 */
				heap_prune_record_prunable(prstate,
										   HeapTupleHeaderGetXmax(htup));
				break;

			case HEAPTUPLE_LIVE:
			case HEAPTUPLE_INSERT_IN_PROGRESS:

				/*
				 * If we wanted to optimize for aborts, we might consider
				 * marking the page prunable when we see INSERT_IN_PROGRESS.
				 * But we don't.  See related decisions about when to mark the
				 * page prunable in heapam.c.
				 */
				break;

			default:
				elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result");
				break;
		}

		/*
		 * Remember the last DEAD tuple seen.  We will advance past
		 * RECENTLY_DEAD tuples just in case there's a DEAD one after them;
		 * but we can't advance past anything else.  (XXX is it really worth
		 * continuing to scan beyond RECENTLY_DEAD?  The case where we will
		 * find another DEAD tuple is a fairly unusual corner case.)
		 */
		if (tupdead)
			latestdead = offnum;
		else if (!recent_dead)
			break;

		/*
		 * If the tuple is not HOT-updated, then we are at the end of this
		 * HOT-update chain.
		 */
		if (!HeapTupleHeaderIsHotUpdated(htup))
			break;

		/*
		 * Advance to next chain member.
		 */
		Assert(ItemPointerGetBlockNumber(&htup->t_ctid) ==
			   BufferGetBlockNumber(buffer));
		offnum = ItemPointerGetOffsetNumber(&htup->t_ctid);
		priorXmax = HeapTupleHeaderGetXmax(htup);
	}

	/*
	 * If we found a DEAD tuple in the chain, adjust the HOT chain so that all
	 * the DEAD tuples at the start of the chain are removed and the root line
	 * pointer is appropriately redirected.
	 */
	if (OffsetNumberIsValid(latestdead))
	{
		/*
		 * Mark as unused each intermediate item that we are able to remove
		 * from the chain.
		 *
		 * When the previous item is the last dead tuple seen, we are at the
		 * right candidate for redirection.
		 */
		for (i = 1; (i < nchain) && (chainitems[i - 1] != latestdead); i++)
		{
			heap_prune_record_unused(prstate, chainitems[i]);
			ndeleted++;
		}

		/*
		 * If the root entry had been a normal tuple, we are deleting it, so
		 * count it in the result.	But changing a redirect (even to DEAD
		 * state) doesn't count.
		 */
		if (ItemIdIsNormal(rootlp))
			ndeleted++;

		/*
		 * If the DEAD tuple is at the end of the chain, the entire chain is
		 * dead and the root line pointer can be marked dead.  Otherwise just
		 * redirect the root to the correct chain member.
		 */
		if (i >= nchain)
			heap_prune_record_dead(prstate, rootoffnum);
		else
		{
			heap_prune_record_redirect(prstate, rootoffnum, chainitems[i]);
			/* If the redirection will be a move, need more processing */
			if (redirect_move)
				redirect_target = chainitems[i];
		}
	}
	else if (nchain < 2 && ItemIdIsRedirected(rootlp))
	{
		/*
		 * We found a redirect item that doesn't point to a valid follow-on
		 * item.  This can happen if the loop in heap_page_prune caused us to
		 * visit the dead successor of a redirect item before visiting the
		 * redirect item.  We can clean up by setting the redirect item to
		 * DEAD state.
		 */
		heap_prune_record_dead(prstate, rootoffnum);
	}
	else if (redirect_move && ItemIdIsRedirected(rootlp))
	{
		/*
		 * If we desire to eliminate LP_REDIRECT items by moving tuples,
		 * make a redirection entry for each redirected root item; this
		 * will cause heap_page_prune_execute to actually do the move.
		 * (We get here only when there are no DEAD tuples in the chain;
		 * otherwise the redirection entry was made above.)
		 */
		heap_prune_record_redirect(prstate, rootoffnum, chainitems[1]);
		redirect_target = chainitems[1];
	}

	/*
	 * If we are going to implement a redirect by moving tuples, we have
	 * to issue a cache invalidation against the redirection target tuple,
	 * because its CTID will be effectively changed by the move.  Note that
	 * CacheInvalidateHeapTuple only queues the request, it doesn't send it;
	 * if we fail before reaching EndNonTransactionalInvalidation, nothing
	 * happens and no harm is done.
	 */
	if (OffsetNumberIsValid(redirect_target))
	{
		ItemId		firstlp = PageGetItemId(dp, redirect_target);
		HeapTupleData firsttup;

		Assert(ItemIdIsNormal(firstlp));
		/* Set up firsttup to reference the tuple at its existing CTID */
		firsttup.t_data = (HeapTupleHeader) PageGetItem(dp, firstlp);
		firsttup.t_len = ItemIdGetLength(firstlp);
		ItemPointerSet(&firsttup.t_self,
					   BufferGetBlockNumber(buffer),
					   redirect_target);
		CacheInvalidateHeapTuple(relation, &firsttup);
	}

	return ndeleted;
}
コード例 #16
0
ファイル: gist.c プロジェクト: kaigai/sepgsql
/*
 * Traverse the tree to find path from root page to specified "child" block.
 *
 * returns a new insertion stack, starting from the parent of "child", up
 * to the root. *downlinkoffnum is set to the offset of the downlink in the
 * direct parent of child.
 *
 * To prevent deadlocks, this should lock only one page at a time.
 */
static GISTInsertStack *
gistFindPath(Relation r, BlockNumber child, OffsetNumber *downlinkoffnum)
{
	Page		page;
	Buffer		buffer;
	OffsetNumber i,
				maxoff;
	ItemId		iid;
	IndexTuple	idxtuple;
	List	   *fifo;
	GISTInsertStack *top,
			   *ptr;
	BlockNumber blkno;

	top = (GISTInsertStack *) palloc0(sizeof(GISTInsertStack));
	top->blkno = GIST_ROOT_BLKNO;
	top->downlinkoffnum = InvalidOffsetNumber;

	fifo = list_make1(top);
	while (fifo != NIL)
	{
		/* Get next page to visit */
		top = linitial(fifo);
		fifo = list_delete_first(fifo);

		buffer = ReadBuffer(r, top->blkno);
		LockBuffer(buffer, GIST_SHARE);
		gistcheckpage(r, buffer);
		page = (Page) BufferGetPage(buffer);

		if (GistPageIsLeaf(page))
		{
			/*
			 * Because we scan the index top-down, all the rest of the pages
			 * in the queue must be leaf pages as well.
			 */
			UnlockReleaseBuffer(buffer);
			break;
		}

		top->lsn = PageGetLSN(page);

		/*
		 * If F_FOLLOW_RIGHT is set, the page to the right doesn't have a
		 * downlink. This should not normally happen..
		 */
		if (GistFollowRight(page))
			elog(ERROR, "concurrent GiST page split was incomplete");

		if (top->parent && top->parent->lsn < GistPageGetNSN(page) &&
			GistPageGetOpaque(page)->rightlink != InvalidBlockNumber /* sanity check */ )
		{
			/*
			 * Page was split while we looked elsewhere. We didn't see the
			 * downlink to the right page when we scanned the parent, so add
			 * it to the queue now.
			 *
			 * Put the right page ahead of the queue, so that we visit it
			 * next. That's important, because if this is the lowest internal
			 * level, just above leaves, we might already have queued up some
			 * leaf pages, and we assume that there can't be any non-leaf
			 * pages behind leaf pages.
			 */
			ptr = (GISTInsertStack *) palloc0(sizeof(GISTInsertStack));
			ptr->blkno = GistPageGetOpaque(page)->rightlink;
			ptr->downlinkoffnum = InvalidOffsetNumber;
			ptr->parent = top->parent;

			fifo = lcons(ptr, fifo);
		}

		maxoff = PageGetMaxOffsetNumber(page);

		for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
		{
			iid = PageGetItemId(page, i);
			idxtuple = (IndexTuple) PageGetItem(page, iid);
			blkno = ItemPointerGetBlockNumber(&(idxtuple->t_tid));
			if (blkno == child)
			{
				/* Found it! */
				UnlockReleaseBuffer(buffer);
				*downlinkoffnum = i;
				return top;
			}
			else
			{
				/* Append this child to the list of pages to visit later */
				ptr = (GISTInsertStack *) palloc0(sizeof(GISTInsertStack));
				ptr->blkno = blkno;
				ptr->downlinkoffnum = i;
				ptr->parent = top;

				fifo = lappend(fifo, ptr);
			}
		}

		UnlockReleaseBuffer(buffer);
	}

	elog(ERROR, "failed to re-find parent of a page in index \"%s\", block %u",
		 RelationGetRelationName(r), child);
	return NULL;				/* keep compiler quiet */
}
コード例 #17
0
ファイル: nodeTidscan.c プロジェクト: Epictetus/postgres
/*
 * Compute the list of TIDs to be visited, by evaluating the expressions
 * for them.
 *
 * (The result is actually an array, not a list.)
 */
static void
TidListCreate(TidScanState *tidstate)
{
	List	   *evalList = tidstate->tss_tidquals;
	ExprContext *econtext = tidstate->ss.ps.ps_ExprContext;
	BlockNumber nblocks;
	ItemPointerData *tidList;
	int			numAllocTids;
	int			numTids;
	ListCell   *l;

	/*
	 * We silently discard any TIDs that are out of range at the time of scan
	 * start.  (Since we hold at least AccessShareLock on the table, it won't
	 * be possible for someone to truncate away the blocks we intend to
	 * visit.)
	 */
	nblocks = RelationGetNumberOfBlocks(tidstate->ss.ss_currentRelation);

	/*
	 * We initialize the array with enough slots for the case that all quals
	 * are simple OpExprs or CurrentOfExprs.  If there are any
	 * ScalarArrayOpExprs, we may have to enlarge the array.
	 */
	numAllocTids = list_length(evalList);
	tidList = (ItemPointerData *)
		palloc(numAllocTids * sizeof(ItemPointerData));
	numTids = 0;
	tidstate->tss_isCurrentOf = false;

	foreach(l, evalList)
	{
		ExprState  *exstate = (ExprState *) lfirst(l);
		Expr	   *expr = exstate->expr;
		ItemPointer itemptr;
		bool		isNull;

		if (is_opclause(expr))
		{
			FuncExprState *fexstate = (FuncExprState *) exstate;
			Node	   *arg1;
			Node	   *arg2;

			arg1 = get_leftop(expr);
			arg2 = get_rightop(expr);
			if (IsCTIDVar(arg1))
				exstate = (ExprState *) lsecond(fexstate->args);
			else if (IsCTIDVar(arg2))
				exstate = (ExprState *) linitial(fexstate->args);
			else
				elog(ERROR, "could not identify CTID variable");

			itemptr = (ItemPointer)
				DatumGetPointer(ExecEvalExprSwitchContext(exstate,
														  econtext,
														  &isNull,
														  NULL));
			if (!isNull &&
				ItemPointerIsValid(itemptr) &&
				ItemPointerGetBlockNumber(itemptr) < nblocks)
			{
				if (numTids >= numAllocTids)
				{
					numAllocTids *= 2;
					tidList = (ItemPointerData *)
						repalloc(tidList,
								 numAllocTids * sizeof(ItemPointerData));
				}
				tidList[numTids++] = *itemptr;
			}
		}
		else if (expr && IsA(expr, ScalarArrayOpExpr))
		{
			ScalarArrayOpExprState *saexstate = (ScalarArrayOpExprState *) exstate;
			Datum		arraydatum;
			ArrayType  *itemarray;
			Datum	   *ipdatums;
			bool	   *ipnulls;
			int			ndatums;
			int			i;

			exstate = (ExprState *) lsecond(saexstate->fxprstate.args);
			arraydatum = ExecEvalExprSwitchContext(exstate,
												   econtext,
												   &isNull,
												   NULL);
			if (isNull)
				continue;
			itemarray = DatumGetArrayTypeP(arraydatum);
			deconstruct_array(itemarray,
							  TIDOID, SizeOfIptrData, false, 's',
							  &ipdatums, &ipnulls, &ndatums);
			if (numTids + ndatums > numAllocTids)
			{
				numAllocTids = numTids + ndatums;
				tidList = (ItemPointerData *)
					repalloc(tidList,
							 numAllocTids * sizeof(ItemPointerData));
			}
			for (i = 0; i < ndatums; i++)
			{
				if (!ipnulls[i])
				{
					itemptr = (ItemPointer) DatumGetPointer(ipdatums[i]);
					if (ItemPointerIsValid(itemptr) &&
						ItemPointerGetBlockNumber(itemptr) < nblocks)
						tidList[numTids++] = *itemptr;
				}
			}
			pfree(ipdatums);
			pfree(ipnulls);
		}
		else if (expr && IsA(expr, CurrentOfExpr))
		{
			CurrentOfExpr *cexpr = (CurrentOfExpr *) expr;
			ItemPointerData cursor_tid;

			if (execCurrentOf(cexpr, econtext,
						   RelationGetRelid(tidstate->ss.ss_currentRelation),
							  &cursor_tid))
			{
				if (numTids >= numAllocTids)
				{
					numAllocTids *= 2;
					tidList = (ItemPointerData *)
						repalloc(tidList,
								 numAllocTids * sizeof(ItemPointerData));
				}
				tidList[numTids++] = cursor_tid;
				tidstate->tss_isCurrentOf = true;
			}
		}
		else
			elog(ERROR, "could not identify CTID expression");
	}
コード例 #18
0
ファイル: gistxlog.c プロジェクト: eubide/postgres
/*
 * Get the latestRemovedXid from the heap pages pointed at by the index
 * tuples being deleted. See also btree_xlog_delete_get_latestRemovedXid,
 * on which this function is based.
 */
static TransactionId
gistRedoDeleteRecordGetLatestRemovedXid(XLogReaderState *record)
{
	gistxlogDelete *xlrec = (gistxlogDelete *) XLogRecGetData(record);
	OffsetNumber *todelete;
	Buffer		ibuffer,
				hbuffer;
	Page		ipage,
				hpage;
	RelFileNode rnode;
	BlockNumber blkno;
	ItemId		iitemid,
				hitemid;
	IndexTuple	itup;
	HeapTupleHeader htuphdr;
	BlockNumber hblkno;
	OffsetNumber hoffnum;
	TransactionId latestRemovedXid = InvalidTransactionId;
	int			i;

	/*
	 * If there's nothing running on the standby we don't need to derive a
	 * full latestRemovedXid value, so use a fast path out of here.  This
	 * returns InvalidTransactionId, and so will conflict with all HS
	 * transactions; but since we just worked out that that's zero people,
	 * it's OK.
	 *
	 * XXX There is a race condition here, which is that a new backend might
	 * start just after we look.  If so, it cannot need to conflict, but this
	 * coding will result in throwing a conflict anyway.
	 */
	if (CountDBBackends(InvalidOid) == 0)
		return latestRemovedXid;

	/*
	 * In what follows, we have to examine the previous state of the index
	 * page, as well as the heap page(s) it points to.  This is only valid if
	 * WAL replay has reached a consistent database state; which means that
	 * the preceding check is not just an optimization, but is *necessary*. We
	 * won't have let in any user sessions before we reach consistency.
	 */
	if (!reachedConsistency)
		elog(PANIC, "gistRedoDeleteRecordGetLatestRemovedXid: cannot operate with inconsistent data");

	/*
	 * Get index page.  If the DB is consistent, this should not fail, nor
	 * should any of the heap page fetches below.  If one does, we return
	 * InvalidTransactionId to cancel all HS transactions.  That's probably
	 * overkill, but it's safe, and certainly better than panicking here.
	 */
	XLogRecGetBlockTag(record, 0, &rnode, NULL, &blkno);
	ibuffer = XLogReadBufferExtended(rnode, MAIN_FORKNUM, blkno, RBM_NORMAL);
	if (!BufferIsValid(ibuffer))
		return InvalidTransactionId;
	LockBuffer(ibuffer, BUFFER_LOCK_EXCLUSIVE);
	ipage = (Page) BufferGetPage(ibuffer);

	/*
	 * Loop through the deleted index items to obtain the TransactionId from
	 * the heap items they point to.
	 */
	todelete = (OffsetNumber *) ((char *) xlrec + SizeOfGistxlogDelete);

	for (i = 0; i < xlrec->ntodelete; i++)
	{
		/*
		 * Identify the index tuple about to be deleted
		 */
		iitemid = PageGetItemId(ipage, todelete[i]);
		itup = (IndexTuple) PageGetItem(ipage, iitemid);

		/*
		 * Locate the heap page that the index tuple points at
		 */
		hblkno = ItemPointerGetBlockNumber(&(itup->t_tid));
		hbuffer = XLogReadBufferExtended(xlrec->hnode, MAIN_FORKNUM, hblkno, RBM_NORMAL);
		if (!BufferIsValid(hbuffer))
		{
			UnlockReleaseBuffer(ibuffer);
			return InvalidTransactionId;
		}
		LockBuffer(hbuffer, BUFFER_LOCK_SHARE);
		hpage = (Page) BufferGetPage(hbuffer);

		/*
		 * Look up the heap tuple header that the index tuple points at by
		 * using the heap node supplied with the xlrec. We can't use
		 * heap_fetch, since it uses ReadBuffer rather than XLogReadBuffer.
		 * Note that we are not looking at tuple data here, just headers.
		 */
		hoffnum = ItemPointerGetOffsetNumber(&(itup->t_tid));
		hitemid = PageGetItemId(hpage, hoffnum);

		/*
		 * Follow any redirections until we find something useful.
		 */
		while (ItemIdIsRedirected(hitemid))
		{
			hoffnum = ItemIdGetRedirect(hitemid);
			hitemid = PageGetItemId(hpage, hoffnum);
			CHECK_FOR_INTERRUPTS();
		}

		/*
		 * If the heap item has storage, then read the header and use that to
		 * set latestRemovedXid.
		 *
		 * Some LP_DEAD items may not be accessible, so we ignore them.
		 */
		if (ItemIdHasStorage(hitemid))
		{
			htuphdr = (HeapTupleHeader) PageGetItem(hpage, hitemid);

			HeapTupleHeaderAdvanceLatestRemovedXid(htuphdr, &latestRemovedXid);
		}
		else if (ItemIdIsDead(hitemid))
		{
			/*
			 * Conjecture: if hitemid is dead then it had xids before the xids
			 * marked on LP_NORMAL items. So we just ignore this item and move
			 * onto the next, for the purposes of calculating
			 * latestRemovedxids.
			 */
		}
		else
			Assert(!ItemIdIsUsed(hitemid));

		UnlockReleaseBuffer(hbuffer);
	}

	UnlockReleaseBuffer(ibuffer);

	/*
	 * If all heap tuples were LP_DEAD then we will be returning
	 * InvalidTransactionId here, which avoids conflicts. This matches
	 * existing logic which assumes that LP_DEAD tuples must already be older
	 * than the latestRemovedXid on the cleanup record that set them as
	 * LP_DEAD, hence must already have generated a conflict.
	 */
	return latestRemovedXid;
}