/** Compute the interaction matrix from a subset of * the possible features. */ dg::Matrix& FeatureProjectedLine:: computeJacobian( dg::Matrix& J,int time ) { sotDEBUGIN(15); const MatrixHomogeneous & A = xaSIN(time), & B = xbSIN(time); const dg::Vector & C = xcSIN(time); const double xa=A(0,3),xb=B(0,3),xc=C(0), ya=A(1,3),yb=B(1,3),yc=C(1); const dg::Matrix & JA = JaSIN(time), & JB = JbSIN(time); const int nq=JA.cols(); assert((int)JB.cols()==nq); J.resize(1,nq); for( int i=0;i<nq;++i ) { const double & dxa=JA(0,i),& dxb=JB(0,i), & dya=JA(1,i),& dyb=JB(1,i); J(0,i) = dxa*(yb-yc) - dxb*(ya-yc) - dya*(xb-xc) + dyb*(xa-xc); } sotDEBUGOUT(15); return J; }
int main(int argc, char *argv[]) { int ierr = 0; double elapsed_time; double total_flops; double MFLOPs; #ifdef EPETRA_MPI // Initialize MPI MPI_Init(&argc,&argv); Epetra_MpiComm comm( MPI_COMM_WORLD ); #else Epetra_SerialComm comm; #endif bool verbose = false; bool summary = false; // Check if we should print verbose results to standard out if (argc>6) if (argv[6][0]=='-' && argv[6][1]=='v') verbose = true; // Check if we should print verbose results to standard out if (argc>6) if (argv[6][0]=='-' && argv[6][1]=='s') summary = true; if(argc < 6) { cerr << "Usage: " << argv[0] << " NumNodesX NumNodesY NumProcX NumProcY NumPoints [-v|-s]" << endl << "where:" << endl << "NumNodesX - Number of mesh nodes in X direction per processor" << endl << "NumNodesY - Number of mesh nodes in Y direction per processor" << endl << "NumProcX - Number of processors to use in X direction" << endl << "NumProcY - Number of processors to use in Y direction" << endl << "NumPoints - Number of points to use in stencil (5, 9 or 25 only)" << endl << "-v|-s - (Optional) Run in verbose mode if -v present or summary mode if -s present" << endl << " NOTES: NumProcX*NumProcY must equal the number of processors used to run the problem." << endl << endl << " Serial example:" << endl << argv[0] << " 16 12 1 1 25 -v" << endl << " Run this program in verbose mode on 1 processor using a 16 X 12 grid with a 25 point stencil."<< endl <<endl << " MPI example:" << endl << "mpirun -np 32 " << argv[0] << " 10 12 4 8 9 -v" << endl << " Run this program in verbose mode on 32 processors putting a 10 X 12 subgrid on each processor using 4 processors "<< endl << " in the X direction and 8 in the Y direction. Total grid size is 40 points in X and 96 in Y with a 9 point stencil."<< endl << endl; return(1); } //char tmp; //if (comm.MyPID()==0) cout << "Press any key to continue..."<< endl; //if (comm.MyPID()==0) cin >> tmp; //comm.Barrier(); comm.SetTracebackMode(0); // This should shut down any error traceback reporting if (verbose && comm.MyPID()==0) cout << Epetra_Version() << endl << endl; if (summary && comm.MyPID()==0) { if (comm.NumProc()==1) cout << Epetra_Version() << endl << endl; else cout << endl << endl; // Print two blank line to keep output columns lined up } if (verbose) cout << comm <<endl; // Redefine verbose to only print on PE 0 if (verbose && comm.MyPID()!=0) verbose = false; if (summary && comm.MyPID()!=0) summary = false; int numNodesX = atoi(argv[1]); int numNodesY = atoi(argv[2]); int numProcsX = atoi(argv[3]); int numProcsY = atoi(argv[4]); int numPoints = atoi(argv[5]); if (verbose || (summary && comm.NumProc()==1)) { cout << " Number of local nodes in X direction = " << numNodesX << endl << " Number of local nodes in Y direction = " << numNodesY << endl << " Number of global nodes in X direction = " << numNodesX*numProcsX << endl << " Number of global nodes in Y direction = " << numNodesY*numProcsY << endl << " Number of local nonzero entries = " << numNodesX*numNodesY*numPoints << endl << " Number of global nonzero entries = " << numNodesX*numNodesY*numPoints*numProcsX*numProcsY << endl << " Number of Processors in X direction = " << numProcsX << endl << " Number of Processors in Y direction = " << numProcsY << endl << " Number of Points in stencil = " << numPoints << endl << endl; } // Print blank line to keep output columns lined up if (summary && comm.NumProc()>1) cout << endl << endl << endl << endl << endl << endl << endl << endl<< endl << endl; if (numProcsX*numProcsY!=comm.NumProc()) { cerr << "Number of processors = " << comm.NumProc() << endl << " is not the product of " << numProcsX << " and " << numProcsY << endl << endl; return(1); } if (numPoints!=5 && numPoints!=9 && numPoints!=25) { cerr << "Number of points specified = " << numPoints << endl << " is not 5, 9, 25" << endl << endl; return(1); } if (numNodesX*numNodesY<=0) { cerr << "Product of number of nodes is <= zero" << endl << endl; return(1); } Epetra_IntSerialDenseVector Xoff, XLoff, XUoff; Epetra_IntSerialDenseVector Yoff, YLoff, YUoff; if (numPoints==5) { // Generate a 5-point 2D Finite Difference matrix Xoff.Size(5); Yoff.Size(5); Xoff[0] = -1; Xoff[1] = 1; Xoff[2] = 0; Xoff[3] = 0; Xoff[4] = 0; Yoff[0] = 0; Yoff[1] = 0; Yoff[2] = 0; Yoff[3] = -1; Yoff[4] = 1; // Generate a 2-point 2D Lower triangular Finite Difference matrix XLoff.Size(2); YLoff.Size(2); XLoff[0] = -1; XLoff[1] = 0; YLoff[0] = 0; YLoff[1] = -1; // Generate a 3-point 2D upper triangular Finite Difference matrix XUoff.Size(3); YUoff.Size(3); XUoff[0] = 0; XUoff[1] = 1; XUoff[2] = 0; YUoff[0] = 0; YUoff[1] = 0; YUoff[2] = 1; } else if (numPoints==9) { // Generate a 9-point 2D Finite Difference matrix Xoff.Size(9); Yoff.Size(9); Xoff[0] = -1; Xoff[1] = 0; Xoff[2] = 1; Yoff[0] = -1; Yoff[1] = -1; Yoff[2] = -1; Xoff[3] = -1; Xoff[4] = 0; Xoff[5] = 1; Yoff[3] = 0; Yoff[4] = 0; Yoff[5] = 0; Xoff[6] = -1; Xoff[7] = 0; Xoff[8] = 1; Yoff[6] = 1; Yoff[7] = 1; Yoff[8] = 1; // Generate a 5-point lower triangular 2D Finite Difference matrix XLoff.Size(5); YLoff.Size(5); XLoff[0] = -1; XLoff[1] = 0; Xoff[2] = 1; YLoff[0] = -1; YLoff[1] = -1; Yoff[2] = -1; XLoff[3] = -1; XLoff[4] = 0; YLoff[3] = 0; YLoff[4] = 0; // Generate a 4-point upper triangular 2D Finite Difference matrix XUoff.Size(4); YUoff.Size(4); XUoff[0] = 1; YUoff[0] = 0; XUoff[1] = -1; XUoff[2] = 0; XUoff[3] = 1; YUoff[1] = 1; YUoff[2] = 1; YUoff[3] = 1; } else { // Generate a 25-point 2D Finite Difference matrix Xoff.Size(25); Yoff.Size(25); int xi = 0, yi = 0; int xo = -2, yo = -2; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Yoff[yi++] = yo ; Yoff[yi++] = yo ; Yoff[yi++] = yo ; Yoff[yi++] = yo ; Yoff[yi++] = yo ; xo = -2, yo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Yoff[yi++] = yo ; Yoff[yi++] = yo ; Yoff[yi++] = yo ; Yoff[yi++] = yo ; Yoff[yi++] = yo ; xo = -2, yo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Yoff[yi++] = yo ; Yoff[yi++] = yo ; Yoff[yi++] = yo ; Yoff[yi++] = yo ; Yoff[yi++] = yo ; xo = -2, yo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Yoff[yi++] = yo ; Yoff[yi++] = yo ; Yoff[yi++] = yo ; Yoff[yi++] = yo ; Yoff[yi++] = yo ; xo = -2, yo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Yoff[yi++] = yo ; Yoff[yi++] = yo ; Yoff[yi++] = yo ; Yoff[yi++] = yo ; Yoff[yi++] = yo ; // Generate a 13-point lower triangular 2D Finite Difference matrix XLoff.Size(13); YLoff.Size(13); xi = 0, yi = 0; xo = -2, yo = -2; XLoff[xi++] = xo++; XLoff[xi++] = xo++; XLoff[xi++] = xo++; XLoff[xi++] = xo++; XLoff[xi++] = xo++; YLoff[yi++] = yo ; YLoff[yi++] = yo ; YLoff[yi++] = yo ; YLoff[yi++] = yo ; YLoff[yi++] = yo ; xo = -2, yo++; XLoff[xi++] = xo++; XLoff[xi++] = xo++; XLoff[xi++] = xo++; XLoff[xi++] = xo++; XLoff[xi++] = xo++; YLoff[yi++] = yo ; YLoff[yi++] = yo ; YLoff[yi++] = yo ; YLoff[yi++] = yo ; YLoff[yi++] = yo ; xo = -2, yo++; XLoff[xi++] = xo++; XLoff[xi++] = xo++; XLoff[xi++] = xo++; YLoff[yi++] = yo ; YLoff[yi++] = yo ; YLoff[yi++] = yo ; // Generate a 13-point upper triangular 2D Finite Difference matrix XUoff.Size(13); YUoff.Size(13); xi = 0, yi = 0; xo = 0, yo = 0; XUoff[xi++] = xo++; XUoff[xi++] = xo++; XUoff[xi++] = xo++; YUoff[yi++] = yo ; YUoff[yi++] = yo ; YUoff[yi++] = yo ; xo = -2, yo++; XUoff[xi++] = xo++; XUoff[xi++] = xo++; XUoff[xi++] = xo++; XUoff[xi++] = xo++; XUoff[xi++] = xo++; YUoff[yi++] = yo ; YUoff[yi++] = yo ; YUoff[yi++] = yo ; YUoff[yi++] = yo ; YUoff[yi++] = yo ; xo = -2, yo++; XUoff[xi++] = xo++; XUoff[xi++] = xo++; XUoff[xi++] = xo++; XUoff[xi++] = xo++; XUoff[xi++] = xo++; YUoff[yi++] = yo ; YUoff[yi++] = yo ; YUoff[yi++] = yo ; YUoff[yi++] = yo ; YUoff[yi++] = yo ; } Epetra_Map * map; Epetra_Map * mapL; Epetra_Map * mapU; Epetra_CrsMatrix * A; Epetra_CrsMatrix * L; Epetra_CrsMatrix * U; Epetra_MultiVector * b; Epetra_MultiVector * bt; Epetra_MultiVector * xexact; Epetra_MultiVector * bL; Epetra_MultiVector * btL; Epetra_MultiVector * xexactL; Epetra_MultiVector * bU; Epetra_MultiVector * btU; Epetra_MultiVector * xexactU; Epetra_SerialDenseVector resvec(0); //Timings Epetra_Flops flopcounter; Epetra_Time timer(comm); #ifdef EPETRA_VERY_SHORT_PERFTEST int jstop = 1; #elif EPETRA_SHORT_PERFTEST int jstop = 1; #else int jstop = 2; #endif for (int j=0; j<jstop; j++) { for (int k=1; k<17; k++) { #ifdef EPETRA_VERY_SHORT_PERFTEST if (k<3 || (k%4==0 && k<9)) { #elif EPETRA_SHORT_PERFTEST if (k<6 || k%4==0) { #else if (k<7 || k%2==0) { #endif int nrhs=k; if (verbose) cout << "\n*************** Results for " << nrhs << " RHS with "; bool StaticProfile = (j!=0); if (verbose) { if (StaticProfile) cout << " static profile\n"; else cout << " dynamic profile\n"; } GenerateCrsProblem(numNodesX, numNodesY, numProcsX, numProcsY, numPoints, Xoff.Values(), Yoff.Values(), nrhs, comm, verbose, summary, map, A, b, bt, xexact, StaticProfile, false); #ifdef EPETRA_HAVE_JADMATRIX timer.ResetStartTime(); Epetra_JadMatrix JA(*A); elapsed_time = timer.ElapsedTime(); if (verbose) cout << "Time to create Jagged diagonal matrix = " << elapsed_time << endl; //cout << "A = " << *A << endl; //cout << "JA = " << JA << endl; runJadMatrixTests(&JA, b, bt, xexact, StaticProfile, verbose, summary); #endif runMatrixTests(A, b, bt, xexact, StaticProfile, verbose, summary); delete A; delete b; delete bt; delete xexact; GenerateCrsProblem(numNodesX, numNodesY, numProcsX, numProcsY, XLoff.Length(), XLoff.Values(), YLoff.Values(), nrhs, comm, verbose, summary, mapL, L, bL, btL, xexactL, StaticProfile, true); GenerateCrsProblem(numNodesX, numNodesY, numProcsX, numProcsY, XUoff.Length(), XUoff.Values(), YUoff.Values(), nrhs, comm, verbose, summary, mapU, U, bU, btU, xexactU, StaticProfile, true); runLUMatrixTests(L, bL, btL, xexactL, U, bU, btU, xexactU, StaticProfile, verbose, summary); delete L; delete bL; delete btL; delete xexactL; delete mapL; delete U; delete bU; delete btU; delete xexactU; delete mapU; Epetra_MultiVector q(*map, nrhs); Epetra_MultiVector z(q); Epetra_MultiVector r(q); delete map; q.SetFlopCounter(flopcounter); z.SetFlopCounter(q); r.SetFlopCounter(q); resvec.Resize(nrhs); flopcounter.ResetFlops(); timer.ResetStartTime(); //10 norms for( int i = 0; i < 10; ++i ) q.Norm2( resvec.Values() ); elapsed_time = timer.ElapsedTime(); total_flops = q.Flops(); MFLOPs = total_flops/elapsed_time/1000000.0; if (verbose) cout << "\nTotal MFLOPs for 10 Norm2's= " << MFLOPs << endl; if (summary) { if (comm.NumProc()==1) cout << "Norm2" << '\t'; cout << MFLOPs << endl; } flopcounter.ResetFlops(); timer.ResetStartTime(); //10 dot's for( int i = 0; i < 10; ++i ) q.Dot(z, resvec.Values()); elapsed_time = timer.ElapsedTime(); total_flops = q.Flops(); MFLOPs = total_flops/elapsed_time/1000000.0; if (verbose) cout << "Total MFLOPs for 10 Dot's = " << MFLOPs << endl; if (summary) { if (comm.NumProc()==1) cout << "DotProd" << '\t'; cout << MFLOPs << endl; } flopcounter.ResetFlops(); timer.ResetStartTime(); //10 dot's for( int i = 0; i < 10; ++i ) q.Update(1.0, z, 1.0, r, 0.0); elapsed_time = timer.ElapsedTime(); total_flops = q.Flops(); MFLOPs = total_flops/elapsed_time/1000000.0; if (verbose) cout << "Total MFLOPs for 10 Updates= " << MFLOPs << endl; if (summary) { if (comm.NumProc()==1) cout << "Update" << '\t'; cout << MFLOPs << endl; } } } } #ifdef EPETRA_MPI MPI_Finalize() ; #endif return ierr ; } // Constructs a 2D PDE finite difference matrix using the list of x and y offsets. // // nx (In) - number of grid points in x direction // ny (In) - number of grid points in y direction // The total number of equations will be nx*ny ordered such that the x direction changes // most rapidly: // First equation is at point (0,0) // Second at (1,0) // ... // nx equation at (nx-1,0) // nx+1st equation at (0,1) // numPoints (In) - number of points in finite difference stencil // xoff (In) - stencil offsets in x direction (of length numPoints) // yoff (In) - stencil offsets in y direction (of length numPoints) // A standard 5-point finite difference stencil would be described as: // numPoints = 5 // xoff = [-1, 1, 0, 0, 0] // yoff = [ 0, 0, 0, -1, 1] // nrhs - Number of rhs to generate. (First interface produces vectors, so nrhs is not needed // comm (In) - an Epetra_Comm object describing the parallel machine (numProcs and my proc ID) // map (Out) - Epetra_Map describing distribution of matrix and vectors/multivectors // A (Out) - Epetra_CrsMatrix constructed for nx by ny grid using prescribed stencil // Off-diagonal values are random between 0 and 1. If diagonal is part of stencil, // diagonal will be slightly diag dominant. // b (Out) - Generated RHS. Values satisfy b = A*xexact // bt (Out) - Generated RHS. Values satisfy b = A'*xexact // xexact (Out) - Generated exact solution to Ax = b and b' = A'xexact // Note: Caller of this function is responsible for deleting all output objects. void GenerateCrsProblem(int numNodesX, int numNodesY, int numProcsX, int numProcsY, int numPoints, int * xoff, int * yoff, const Epetra_Comm &comm, bool verbose, bool summary, Epetra_Map *& map, Epetra_CrsMatrix *& A, Epetra_Vector *& b, Epetra_Vector *& bt, Epetra_Vector *&xexact, bool StaticProfile, bool MakeLocalOnly) { Epetra_MultiVector * b1, * bt1, * xexact1; GenerateCrsProblem(numNodesX, numNodesY, numProcsX, numProcsY, numPoints, xoff, yoff, 1, comm, verbose, summary, map, A, b1, bt1, xexact1, StaticProfile, MakeLocalOnly); b = dynamic_cast<Epetra_Vector *>(b1); bt = dynamic_cast<Epetra_Vector *>(bt1); xexact = dynamic_cast<Epetra_Vector *>(xexact1); return; } void GenerateCrsProblem(int numNodesX, int numNodesY, int numProcsX, int numProcsY, int numPoints, int * xoff, int * yoff, int nrhs, const Epetra_Comm &comm, bool verbose, bool summary, Epetra_Map *& map, Epetra_CrsMatrix *& A, Epetra_MultiVector *& b, Epetra_MultiVector *& bt, Epetra_MultiVector *&xexact, bool StaticProfile, bool MakeLocalOnly) { Epetra_Time timer(comm); // Determine my global IDs long long * myGlobalElements; GenerateMyGlobalElements(numNodesX, numNodesY, numProcsX, numProcsY, comm.MyPID(), myGlobalElements); int numMyEquations = numNodesX*numNodesY; map = new Epetra_Map((long long)-1, numMyEquations, myGlobalElements, 0, comm); // Create map with 2D block partitioning. delete [] myGlobalElements; long long numGlobalEquations = map->NumGlobalElements64(); int profile = 0; if (StaticProfile) profile = numPoints; #ifdef EPETRA_HAVE_STATICPROFILE if (MakeLocalOnly) A = new Epetra_CrsMatrix(Copy, *map, *map, profile, StaticProfile); // Construct matrix with rowmap=colmap else A = new Epetra_CrsMatrix(Copy, *map, profile, StaticProfile); // Construct matrix #else if (MakeLocalOnly) A = new Epetra_CrsMatrix(Copy, *map, *map, profile); // Construct matrix with rowmap=colmap else A = new Epetra_CrsMatrix(Copy, *map, profile); // Construct matrix #endif long long * indices = new long long[numPoints]; double * values = new double[numPoints]; double dnumPoints = (double) numPoints; int nx = numNodesX*numProcsX; for (int i=0; i<numMyEquations; i++) { long long rowID = map->GID64(i); int numIndices = 0; for (int j=0; j<numPoints; j++) { long long colID = rowID + xoff[j] + nx*yoff[j]; // Compute column ID based on stencil offsets if (colID>-1 && colID<numGlobalEquations) { indices[numIndices] = colID; double value = - ((double) rand())/ ((double) RAND_MAX); if (colID==rowID) values[numIndices++] = dnumPoints - value; // Make diagonal dominant else values[numIndices++] = value; } } //cout << "Building row " << rowID << endl; A->InsertGlobalValues(rowID, numIndices, values, indices); } delete [] indices; delete [] values; double insertTime = timer.ElapsedTime(); timer.ResetStartTime(); A->FillComplete(false); double fillCompleteTime = timer.ElapsedTime(); if (verbose) cout << "Time to insert matrix values = " << insertTime << endl << "Time to complete fill = " << fillCompleteTime << endl; if (summary) { if (comm.NumProc()==1) cout << "InsertTime" << '\t'; cout << insertTime << endl; if (comm.NumProc()==1) cout << "FillCompleteTime" << '\t'; cout << fillCompleteTime << endl; } if (nrhs<=1) { b = new Epetra_Vector(*map); bt = new Epetra_Vector(*map); xexact = new Epetra_Vector(*map); } else { b = new Epetra_MultiVector(*map, nrhs); bt = new Epetra_MultiVector(*map, nrhs); xexact = new Epetra_MultiVector(*map, nrhs); } xexact->Random(); // Fill xexact with random values A->Multiply(false, *xexact, *b); A->Multiply(true, *xexact, *bt); return; }