/** return the equation of the entity for quadratic, return a vector contains: m0 x^2 + m1 xy + m2 y^2 + m3 x + m4 y + m5 =0 for linear: m0 x + m1 y + m2 =0 **/ LC_Quadratic RS_ConstructionLine::getQuadratic() const { std::vector<double> ce(3,0.); auto&& dvp=data.point2 - data.point1; RS_Vector normal(-dvp.y,dvp.x); ce[0]=normal.x; ce[1]=normal.y; ce[2]=- normal.dotP(data.point2); return LC_Quadratic(ce); }
/** return the equation of the entity for quadratic, return a vector contains: m0 x^2 + m1 xy + m2 y^2 + m3 x + m4 y + m5 =0 for linear: m0 x + m1 y + m2 =0 **/ LC_Quadratic RS_Line::getQuadratic() const { std::vector<double> ce(3,0.); auto&& dvp=data.endpoint - data.startpoint; RS_Vector normal(-dvp.y,dvp.x); ce[0]=normal.x; ce[1]=normal.y; ce[2]=- normal.dotP(data.endpoint); return LC_Quadratic(ce); }
bool RS_ActionDrawCircleTan3::getData(){ if(getStatus() != SetCircle3) return false; //find the nearest circle int i=0; for(;i<circles.size();++i) if(circles[i]->rtti() == RS2::EntityLine) break; candidates.clear(); const int i1=(i+1)%3; const int i2=(i+2)%3; if(i<circles.size() && circles[i]->rtti() == RS2::EntityLine){ LC_Quadratic lc0(circles[i],circles[i1],false); LC_Quadratic lc01(circles[i],circles[i1],true); LC_Quadratic lc1; RS_VectorSolutions sol; //detect degenerate case two circles with the same radius if(circles[i1]->rtti()== RS2::EntityCircle && circles[i2]->rtti()== RS2::EntityCircle ){ RS_Circle* c1=static_cast<RS_Circle*>(circles[i1]); RS_Circle* c2=static_cast<RS_Circle*>(circles[i2]); if(fabs(fabs(c1->getRadius())-fabs(c2->getRadius()))<RS_TOLERANCE){ //degenerate const RS_Vector p0=(c1->getCenter()+c2->getCenter())*0.5; const RS_Vector p1=p0 + (c1->getCenter() - p0).rotate(0.5*M_PI); lc1=RS_Line(NULL, RS_LineData(p0,p1 )).getQuadratic(); sol=LC_Quadratic::getIntersection(lc0,lc1); sol.appendTo(LC_Quadratic::getIntersection(lc01,lc1)); lc1=RS_Line(NULL, RS_LineData(c1->getCenter(),c1->getCenter())).getQuadratic(); sol.appendTo(LC_Quadratic::getIntersection(lc0,lc1)); sol.appendTo(LC_Quadratic::getIntersection(lc01,lc1)); } } if(sol.size()==0) { switch(circles[i2]->rtti()){ case RS2::EntityCircle: lc1=LC_Quadratic(circles[i],circles[i2], true); sol.appendTo(LC_Quadratic::getIntersection(lc01,lc1)); if(circles[i1]->rtti()== RS2::EntityCircle ) sol.appendTo(LC_Quadratic::getIntersection(lc01,lc1)); //there's no break, because the default part would be run for circles as well default: lc1=LC_Quadratic(circles[i],circles[i2]); sol.appendTo(LC_Quadratic::getIntersection(lc01,lc1)); if(circles[i1]->rtti()== RS2::EntityCircle ) sol.appendTo(LC_Quadratic::getIntersection(lc01,lc1)); } } double d; //line passes circle center, need a second parabola as the image of the line for(int j=1;j<=2;j++){ if(circles[(i+j)%3]->rtti() == RS2::EntityCircle){ circles[i]->getNearestPointOnEntity(circles[(i+j)%3]->getCenter(), false,&d); if(d<RS_TOLERANCE) { LC_Quadratic lc2(circles[i],circles[(i+j)%3], true); sol.appendTo(LC_Quadratic::getIntersection(lc2,lc1)); } } } //clean up duplicate and invalid RS_VectorSolutions sol1; for(size_t j=0; j<sol.size(); ++j){ const RS_Vector&& vp=sol.at(j); if(vp.magnitude()>RS_MAXDOUBLE) continue; if(sol1.size()) if(sol1.getClosestDistance(vp)<RS_TOLERANCE) continue; sol1.push_back(vp); } for(size_t j=0;j<sol1.size();j++){ circles[i]->getNearestPointOnEntity(sol1[j],false,&d); RS_CircleData data(sol1[j],d); if(circles[(i+1)%3]->isTangent(data)==false) continue; if(circles[(i+2)%3]->isTangent(data)==false) continue; candidates<<RS_Circle(NULL,data); } }else{ RS_Circle c(NULL,cData); candidates=c.createTan3(circles); } valid = ( candidates.size() >0); return valid; }
/** return the equation of the entity for quadratic, return a vector contains: m0 x^2 + m1 xy + m2 y^2 + m3 x + m4 y + m5 =0 for linear: m0 x + m1 y + m2 =0 **/ LC_Quadratic RS_Entity::getQuadratic() const { return LC_Quadratic(); }
bool RS_ActionDrawCircleTan3::getData(){ if(getStatus() != SetCircle3) return false; //find the nearest circle size_t i=0; size_t const countLines=std::count_if(circles.begin(), circles.end(), [](RS_AtomicEntity* e)->bool { return e->rtti()==RS2::EntityLine; }); for(;i<circles.size();++i) if(circles[i]->rtti() == RS2::EntityLine) break; candidates.clear(); size_t i1=(i+1)%3; size_t i2=(i+2)%3; if(i<circles.size() && circles[i]->rtti() == RS2::EntityLine){ //one or more lines LC_Quadratic lc0(circles[i],circles[i1],false); LC_Quadratic lc1; RS_VectorSolutions sol; //detect degenerate case two circles with the same radius switch(countLines){ default: case 0: //this should not happen assert(false); case 1: //1 line, two circles { for(unsigned k=0; k<4; ++k){ //loop through all mirroring cases lc1=LC_Quadratic(circles[i],circles[i1], k & 1u); LC_Quadratic lc2=LC_Quadratic(circles[i],circles[i2], k & 2u); sol.appendTo(LC_Quadratic::getIntersection(lc1,lc2)); } } break; case 2: //2 lines, one circle { if(circles[i2]->rtti()==RS2::EntityLine){ std::swap(i1, i2); } //i2 is circle for(unsigned k=0; k<4; ++k){ //loop through all mirroring cases lc1=LC_Quadratic(circles[i2],circles[i], k & 1u); LC_Quadratic lc2=LC_Quadratic(circles[i2],circles[i1], k & 2u); sol.appendTo(LC_Quadratic::getIntersection(lc1,lc2)); } } break; case 3: //3 lines { lc0=circles[i]->getQuadratic(); lc1=circles[i1]->getQuadratic(); auto lc2=circles[i2]->getQuadratic(); //attempt to have intersections (lc0, lc1), (lc0, lc2) auto sol1=LC_Quadratic::getIntersection(lc0,lc1); if(sol1.size()<1) { std::swap(lc0, lc2); std::swap(i, i2); } sol1=LC_Quadratic::getIntersection(lc0,lc2); if(sol1.size()<1) { std::swap(lc0, lc1); std::swap(i, i1); } RS_Line* line0=static_cast<RS_Line*>(circles[i]); RS_Line* line1=static_cast<RS_Line*>(circles[i1]); RS_Line* line2=static_cast<RS_Line*>(circles[i2]); lc0=line0->getQuadratic(); lc1=line1->getQuadratic(); lc2=line2->getQuadratic(); //intersection 0, 1 sol1=LC_Quadratic::getIntersection(lc0,lc1); if(!sol1.size()) { return false; } RS_Vector const v1=sol1.at(0); double angle1=0.5*(line0->getAngle1()+line1->getAngle1()); //intersection 0, 2 sol1=LC_Quadratic::getIntersection(lc0,lc2); double angle2; if(sol1.size()<1) { return false; } angle2=0.5*(line0->getAngle1()+line2->getAngle1()); RS_Vector const& v2=sol1.at(0); //two bisector lines per intersection for(unsigned j=0; j<2; ++j){ RS_Line l1{v1, v1+RS_Vector{angle1}}; for(unsigned j1=0; j1<2; ++j1){ RS_Line l2{v2, v2+RS_Vector{angle2}}; sol.appendTo(RS_Information::getIntersectionLineLine(&l1, &l2)); angle2 += M_PI_2; } angle1 += M_PI_2; } } } double d; //line passes circle center, need a second parabola as the image of the line for(int j=1;j<=2;j++){ if(circles[(i+j)%3]->rtti() == RS2::EntityCircle){ circles[i]->getNearestPointOnEntity(circles[(i+j)%3]->getCenter(), false,&d); if(d<RS_TOLERANCE) { LC_Quadratic lc2(circles[i],circles[(i+j)%3], true); sol.appendTo(LC_Quadratic::getIntersection(lc2,lc1)); } } } //clean up duplicate and invalid RS_VectorSolutions sol1; for(const RS_Vector& vp: sol){ if(vp.magnitude()>RS_MAXDOUBLE) continue; if(sol1.size() && sol1.getClosestDistance(vp)<RS_TOLERANCE) continue; sol1.push_back(vp); } for(auto const& v: sol1){ circles[i]->getNearestPointOnEntity(v,false,&d); std::shared_ptr<RS_CircleData> data(new RS_CircleData(v,d)); if(circles[(i+1)%3]->isTangent(*data)==false) continue; if(circles[(i+2)%3]->isTangent(*data)==false) continue; candidates.push_back(data); } }else{ RS_Circle c(nullptr,*cData); auto solutions=c.createTan3(circles); candidates.clear(); for(const RS_Circle& s: solutions){ candidates.push_back(std::make_shared<RS_CircleData>(s.getData())); } } valid = ( candidates.size() >0); return valid; }