コード例 #1
0
ファイル: safety.c プロジェクト: Bjarne-Madsen/Firmware
static void
failsafe_blink(void *arg)
{
	/* indicate that a serious initialisation error occured */
	if (!(r_status_flags & PX4IO_P_STATUS_FLAGS_INIT_OK)) {
		LED_AMBER(true);
		return;
	}

	static bool failsafe = false;

	/* blink the failsafe LED if we don't have FMU input */
	if (!(r_status_flags & PX4IO_P_STATUS_FLAGS_FMU_OK)) {
		failsafe = !failsafe;
	} else {
		failsafe = false;
	}

	LED_AMBER(failsafe);
}
コード例 #2
0
ファイル: px4io.c プロジェクト: NikiRegina/Firmware
int user_start(int argc, char *argv[])
{
	/* run C++ ctors before we go any further */
	up_cxxinitialize();

	/* reset all to zero */
	memset(&system_state, 0, sizeof(system_state));
	/* default to 50 Hz PWM outputs */
	system_state.servo_rate = 50;

	/* configure the high-resolution time/callout interface */
	hrt_init();

	/* print some startup info */
	lib_lowprintf("\nPX4IO: starting\n");

	/* default all the LEDs to off while we start */
	LED_AMBER(false);
	LED_BLUE(false);
	LED_SAFETY(false);

	/* turn on servo power */
	POWER_SERVO(true);

	/* start the safety switch handler */
	safety_init();

	/* configure the first 8 PWM outputs (i.e. all of them) */
	up_pwm_servo_init(0xff);

	/* start the flight control signal handler */
	task_create("FCon",
		    SCHED_PRIORITY_DEFAULT,
		    1024,
		    (main_t)controls_main,
		    NULL);


	struct mallinfo minfo = mallinfo();
	lib_lowprintf("free %u largest %u\n", minfo.mxordblk, minfo.fordblks);

	/* we're done here, go run the communications loop */
	comms_main();
}
コード例 #3
0
ファイル: px4io.c プロジェクト: PX4-Works/Firmware
int
user_start(int argc, char *argv[])
{
	/* run C++ ctors before we go any further */
	up_cxxinitialize();

	/* reset all to zero */
	memset(&system_state, 0, sizeof(system_state));

	/* configure the high-resolution time/callout interface */
	hrt_init();

	/* calculate our fw CRC so FMU can decide if we need to update */
	calculate_fw_crc();

	/*
	 * Poll at 1ms intervals for received bytes that have not triggered
	 * a DMA event.
	 */
#ifdef CONFIG_ARCH_DMA
	hrt_call_every(&serial_dma_call, 1000, 1000, (hrt_callout)stm32_serial_dma_poll, NULL);
#endif

	/* print some startup info */
	lowsyslog("\nPX4IO: starting\n");

	/* default all the LEDs to off while we start */
	LED_AMBER(false);
	LED_BLUE(false);
	LED_SAFETY(false);
#ifdef GPIO_LED4
	LED_RING(false);
#endif

	/* turn on servo power (if supported) */
#ifdef POWER_SERVO
	POWER_SERVO(true);
#endif

	/* turn off S.Bus out (if supported) */
#ifdef ENABLE_SBUS_OUT
	ENABLE_SBUS_OUT(false);
#endif

	/* start the safety switch handler */
	safety_init();

	/* configure the first 8 PWM outputs (i.e. all of them) */
	up_pwm_servo_init(0xff);

	/* initialise the control inputs */
	controls_init();

	/* set up the ADC */
	adc_init();

	/* start the FMU interface */
	interface_init();

	/* add a performance counter for mixing */
	perf_counter_t mixer_perf = perf_alloc(PC_ELAPSED, "mix");

	/* add a performance counter for controls */
	perf_counter_t controls_perf = perf_alloc(PC_ELAPSED, "controls");

	/* and one for measuring the loop rate */
	perf_counter_t loop_perf = perf_alloc(PC_INTERVAL, "loop");

	struct mallinfo minfo = mallinfo();
	lowsyslog("MEM: free %u, largest %u\n", minfo.mxordblk, minfo.fordblks);

	/* initialize PWM limit lib */
	pwm_limit_init(&pwm_limit);

	/*
	 *    P O L I C E    L I G H T S
	 *
	 * Not enough memory, lock down.
	 *
	 * We might need to allocate mixers later, and this will
	 * ensure that a developer doing a change will notice
	 * that he just burned the remaining RAM with static
	 * allocations. We don't want him to be able to
	 * get past that point. This needs to be clearly
	 * documented in the dev guide.
	 *
	 */
	if (minfo.mxordblk < 600) {

		lowsyslog("ERR: not enough MEM");
		bool phase = false;

		while (true) {

			if (phase) {
				LED_AMBER(true);
				LED_BLUE(false);

			} else {
				LED_AMBER(false);
				LED_BLUE(true);
			}

			up_udelay(250000);

			phase = !phase;
		}
	}

	/* Start the failsafe led init */
	failsafe_led_init();

	/*
	 * Run everything in a tight loop.
	 */

	uint64_t last_debug_time = 0;
	uint64_t last_heartbeat_time = 0;

	for (;;) {

		/* track the rate at which the loop is running */
		perf_count(loop_perf);

		/* kick the mixer */
		perf_begin(mixer_perf);
		mixer_tick();
		perf_end(mixer_perf);

		/* kick the control inputs */
		perf_begin(controls_perf);
		controls_tick();
		perf_end(controls_perf);

		if ((hrt_absolute_time() - last_heartbeat_time) > 250 * 1000) {
			last_heartbeat_time = hrt_absolute_time();
			heartbeat_blink();
		}

		ring_blink();

		check_reboot();

		/* check for debug activity (default: none) */
		show_debug_messages();

		/* post debug state at ~1Hz - this is via an auxiliary serial port
		 * DEFAULTS TO OFF!
		 */
		if (hrt_absolute_time() - last_debug_time > (1000 * 1000)) {

			isr_debug(1, "d:%u s=0x%x a=0x%x f=0x%x m=%u",
				  (unsigned)r_page_setup[PX4IO_P_SETUP_SET_DEBUG],
				  (unsigned)r_status_flags,
				  (unsigned)r_setup_arming,
				  (unsigned)r_setup_features,
				  (unsigned)mallinfo().mxordblk);
			last_debug_time = hrt_absolute_time();
		}
	}
}
コード例 #4
0
ファイル: registers.c プロジェクト: IR-LOCK/PX4Firmware-solo
static int
registers_set_one(uint8_t page, uint8_t offset, uint16_t value)
{
	switch (page) {

	case PX4IO_PAGE_STATUS:
		switch (offset) {
		case PX4IO_P_STATUS_ALARMS:
			/* clear bits being written */
			r_status_alarms &= ~value;
			break;

		case PX4IO_P_STATUS_FLAGS:
			/* 
			 * Allow FMU override of arming state (to allow in-air restores),
			 * but only if the arming state is not in sync on the IO side.
			 */
			if (!(r_status_flags & PX4IO_P_STATUS_FLAGS_ARM_SYNC)) {
				r_status_flags = value;
			}
			break;

		default:
			/* just ignore writes to other registers in this page */
			break;
		}
		break;

	case PX4IO_PAGE_SETUP:
		switch (offset) {
		case PX4IO_P_SETUP_FEATURES:

			value &= PX4IO_P_SETUP_FEATURES_VALID;

			/* some of the options conflict - give S.BUS out precedence, then ADC RSSI, then PWM RSSI */

			/* switch S.Bus output pin as needed */
			#ifdef ENABLE_SBUS_OUT
			ENABLE_SBUS_OUT(value & (PX4IO_P_SETUP_FEATURES_SBUS1_OUT | PX4IO_P_SETUP_FEATURES_SBUS2_OUT));

			/* disable the conflicting options with SBUS 1 */
			if (value & (PX4IO_P_SETUP_FEATURES_SBUS1_OUT)) {
				value &= ~(PX4IO_P_SETUP_FEATURES_PWM_RSSI |
					PX4IO_P_SETUP_FEATURES_ADC_RSSI |
					PX4IO_P_SETUP_FEATURES_SBUS2_OUT);
			}

			/* disable the conflicting options with SBUS 2 */
			if (value & (PX4IO_P_SETUP_FEATURES_SBUS2_OUT)) {
				value &= ~(PX4IO_P_SETUP_FEATURES_PWM_RSSI |
					PX4IO_P_SETUP_FEATURES_ADC_RSSI |
					PX4IO_P_SETUP_FEATURES_SBUS1_OUT);
			}
			#endif

			/* disable the conflicting options with ADC RSSI */
			if (value & (PX4IO_P_SETUP_FEATURES_ADC_RSSI)) {
				value &= ~(PX4IO_P_SETUP_FEATURES_PWM_RSSI |
					PX4IO_P_SETUP_FEATURES_SBUS1_OUT |
					PX4IO_P_SETUP_FEATURES_SBUS2_OUT);
			}

			/* disable the conflicting options with PWM RSSI (without effect here, but for completeness) */
			if (value & (PX4IO_P_SETUP_FEATURES_PWM_RSSI)) {
				value &= ~(PX4IO_P_SETUP_FEATURES_ADC_RSSI |
					PX4IO_P_SETUP_FEATURES_SBUS1_OUT |
					PX4IO_P_SETUP_FEATURES_SBUS2_OUT);
			}

			/* apply changes */
			r_setup_features = value;

			break;

		case PX4IO_P_SETUP_ARMING:

			value &= PX4IO_P_SETUP_ARMING_VALID;

			/*
			 * Update arming state - disarm if no longer OK.
			 * This builds on the requirement that the FMU driver
			 * asks about the FMU arming state on initialization,
			 * so that an in-air reset of FMU can not lead to a
			 * lockup of the IO arming state.
			 */

			if (value & PX4IO_P_SETUP_ARMING_RC_HANDLING_DISABLED) {
				r_status_flags |= PX4IO_P_STATUS_FLAGS_INIT_OK;
			}

			/*
			 * If the failsafe termination flag is set, do not allow the autopilot to unset it
			 */
			value |= (r_setup_arming & PX4IO_P_SETUP_ARMING_TERMINATION_FAILSAFE);

			/*
			 * If failsafe termination is enabled and force failsafe bit is set, do not allow
			 * the autopilot to clear it.
			 */
			if (r_setup_arming & PX4IO_P_SETUP_ARMING_TERMINATION_FAILSAFE) {
				value |= (r_setup_arming & PX4IO_P_SETUP_ARMING_FORCE_FAILSAFE);
			}

			r_setup_arming = value;

			break;

		case PX4IO_P_SETUP_PWM_RATES:
			value &= PX4IO_P_SETUP_RATES_VALID;
			pwm_configure_rates(value, r_setup_pwm_defaultrate, r_setup_pwm_altrate);
			break;

		case PX4IO_P_SETUP_PWM_DEFAULTRATE:
			if (value < 50) {
				value = 50;
			}
			if (value > 400) {
				value = 400;
			}
			pwm_configure_rates(r_setup_pwm_rates, value, r_setup_pwm_altrate);
			break;

		case PX4IO_P_SETUP_PWM_ALTRATE:
			if (value < 50) {
				value = 50;
			}
			if (value > 400) {
				value = 400;
			}
			pwm_configure_rates(r_setup_pwm_rates, r_setup_pwm_defaultrate, value);
			break;

#ifdef CONFIG_ARCH_BOARD_PX4IO_V1
		case PX4IO_P_SETUP_RELAYS:
			value &= PX4IO_P_SETUP_RELAYS_VALID;
			r_setup_relays = value;
			POWER_RELAY1((value & PX4IO_P_SETUP_RELAYS_POWER1) ? 1 : 0);
			POWER_RELAY2((value & PX4IO_P_SETUP_RELAYS_POWER2) ? 1 : 0);
			POWER_ACC1((value & PX4IO_P_SETUP_RELAYS_ACC1) ? 1 : 0);
			POWER_ACC2((value & PX4IO_P_SETUP_RELAYS_ACC2) ? 1 : 0);
			break;
#endif

		case PX4IO_P_SETUP_VBATT_SCALE:
			r_page_setup[PX4IO_P_SETUP_VBATT_SCALE] = value;
			break;

		case PX4IO_P_SETUP_SET_DEBUG:
			r_page_setup[PX4IO_P_SETUP_SET_DEBUG] = value;
			isr_debug(0, "set debug %u\n", (unsigned)r_page_setup[PX4IO_P_SETUP_SET_DEBUG]);
			break;

		case PX4IO_P_SETUP_REBOOT_BL:
			if (r_status_flags & PX4IO_P_STATUS_FLAGS_SAFETY_OFF) {
				// don't allow reboot while armed
				break;
			}

			// check the magic value
			if (value != PX4IO_REBOOT_BL_MAGIC) {
				break;
			}

                        // we schedule a reboot rather than rebooting
                        // immediately to allow the IO board to ACK
                        // the reboot command
                        schedule_reboot(100000);
			break;

		case PX4IO_P_SETUP_DSM:
			dsm_bind(value & 0x0f, (value >> 4) & 0xF);
			break;

		case PX4IO_P_SETUP_FORCE_SAFETY_ON:
			if (value == PX4IO_FORCE_SAFETY_MAGIC) {
				r_status_flags &= ~PX4IO_P_STATUS_FLAGS_SAFETY_OFF;
            } else {
                return -1;
            }
			break;

		case PX4IO_P_SETUP_FORCE_SAFETY_OFF:
			if (value == PX4IO_FORCE_SAFETY_MAGIC) {
				r_status_flags |= PX4IO_P_STATUS_FLAGS_SAFETY_OFF;
			} else {
                return -1;
            }
			break;

		case PX4IO_P_SETUP_RC_THR_FAILSAFE_US:
			if (value > 650 && value < 2350) {
				r_page_setup[PX4IO_P_SETUP_RC_THR_FAILSAFE_US] = value;
			}
			break;

		default:
			return -1;
		}
		break;

	case PX4IO_PAGE_RC_CONFIG: {

		/**
		 * do not allow a RC config change while safety is off
		 */
		if (r_status_flags & PX4IO_P_STATUS_FLAGS_SAFETY_OFF) {
			break;
		}

		unsigned channel = offset / PX4IO_P_RC_CONFIG_STRIDE;
		unsigned index = offset - channel * PX4IO_P_RC_CONFIG_STRIDE;
		uint16_t *conf = &r_page_rc_input_config[channel * PX4IO_P_RC_CONFIG_STRIDE];

		if (channel >= PX4IO_RC_INPUT_CHANNELS)
			return -1;

		/* disable the channel until we have a chance to sanity-check it */
		conf[PX4IO_P_RC_CONFIG_OPTIONS] &= PX4IO_P_RC_CONFIG_OPTIONS_ENABLED;

		switch (index) {

		case PX4IO_P_RC_CONFIG_MIN:
		case PX4IO_P_RC_CONFIG_CENTER:
		case PX4IO_P_RC_CONFIG_MAX:
		case PX4IO_P_RC_CONFIG_DEADZONE:
		case PX4IO_P_RC_CONFIG_ASSIGNMENT:
			conf[index] = value;
			break;

		case PX4IO_P_RC_CONFIG_OPTIONS:
			value &= PX4IO_P_RC_CONFIG_OPTIONS_VALID;
			r_status_flags |= PX4IO_P_STATUS_FLAGS_INIT_OK;

			/* clear any existing RC disabled flag */
			r_setup_arming &= ~(PX4IO_P_SETUP_ARMING_RC_HANDLING_DISABLED);

			/* set all options except the enabled option */
			conf[index] = value & ~PX4IO_P_RC_CONFIG_OPTIONS_ENABLED;

			/* should the channel be enabled? */
			/* this option is normally set last */
			if (value & PX4IO_P_RC_CONFIG_OPTIONS_ENABLED) {
				uint8_t count = 0;
				bool disabled = false;

				/* assert min..center..max ordering */
				if (conf[PX4IO_P_RC_CONFIG_MIN] < 500) {
					count++;
				}
				if (conf[PX4IO_P_RC_CONFIG_MAX] > 2500) {
					count++;
				}
				if (conf[PX4IO_P_RC_CONFIG_CENTER] < conf[PX4IO_P_RC_CONFIG_MIN]) {
					count++;
				}
				if (conf[PX4IO_P_RC_CONFIG_CENTER] > conf[PX4IO_P_RC_CONFIG_MAX]) {
					count++;
				}
				/* assert deadzone is sane */
				if (conf[PX4IO_P_RC_CONFIG_DEADZONE] > 500) {
					count++;
				}

				if (conf[PX4IO_P_RC_CONFIG_ASSIGNMENT] == UINT8_MAX) {
					disabled = true;
				} else if ((conf[PX4IO_P_RC_CONFIG_ASSIGNMENT] >= PX4IO_RC_MAPPED_CONTROL_CHANNELS) &&
					   (conf[PX4IO_P_RC_CONFIG_ASSIGNMENT] != PX4IO_P_RC_CONFIG_ASSIGNMENT_MODESWITCH)) {
					count++;
				}

				/* sanity checks pass, enable channel */
				if (count) {
					isr_debug(0, "ERROR: %d config error(s) for RC%d.\n", count, (channel + 1));
					r_status_flags &= ~PX4IO_P_STATUS_FLAGS_INIT_OK;
				} else if (!disabled) {
					conf[index] |= PX4IO_P_RC_CONFIG_OPTIONS_ENABLED;
				}
			}
			break;
			/* inner switch: case PX4IO_P_RC_CONFIG_OPTIONS */

		}
		break;
		/* case PX4IO_RC_PAGE_CONFIG */
	}

	case PX4IO_PAGE_TEST:
		switch (offset) {
		case PX4IO_P_TEST_LED:
			LED_AMBER(value & 1);
			break;
		}
		break;

	default:
		return -1;
	}
	return 0;
}
コード例 #5
0
ファイル: px4io.c プロジェクト: HimanshuKamat/Firmware
int
user_start(int argc, char *argv[])
{
	/* run C++ ctors before we go any further */
	up_cxxinitialize();

	/* reset all to zero */
	memset(&system_state, 0, sizeof(system_state));

	/* configure the high-resolution time/callout interface */
	hrt_init();

	/*
	 * Poll at 1ms intervals for received bytes that have not triggered
	 * a DMA event.
	 */
#ifdef CONFIG_ARCH_DMA
	hrt_call_every(&serial_dma_call, 1000, 1000, (hrt_callout)stm32_serial_dma_poll, NULL);
#endif

	/* print some startup info */
	lowsyslog("\nPX4IO: starting\n");

	/* default all the LEDs to off while we start */
	LED_AMBER(false);
	LED_BLUE(false);
	LED_SAFETY(false);

	/* turn on servo power */
	POWER_SERVO(true);

	/* start the safety switch handler */
	safety_init();

	/* configure the first 8 PWM outputs (i.e. all of them) */
	up_pwm_servo_init(0xff);

	/* initialise the control inputs */
	controls_init();

#ifdef CONFIG_STM32_I2C1
	/* start the i2c handler */
	i2c_init();
#endif

	/* add a performance counter for mixing */
	perf_counter_t mixer_perf = perf_alloc(PC_ELAPSED, "mix");

	/* add a performance counter for controls */
	perf_counter_t controls_perf = perf_alloc(PC_ELAPSED, "controls");

	/* and one for measuring the loop rate */
	perf_counter_t loop_perf = perf_alloc(PC_INTERVAL, "loop");

	struct mallinfo minfo = mallinfo();
	lowsyslog("MEM: free %u, largest %u\n", minfo.mxordblk, minfo.fordblks);

#if 0
	/* not enough memory, lock down */
	if (minfo.mxordblk < 500) {
		lowsyslog("ERR: not enough MEM");
		bool phase = false;

		if (phase) {
			LED_AMBER(true);
			LED_BLUE(false);
		} else {
			LED_AMBER(false);
			LED_BLUE(true);
		}

		phase = !phase;
		usleep(300000);
	}
#endif

	/*
	 * Run everything in a tight loop.
	 */

	uint64_t last_debug_time = 0;
	for (;;) {

		/* track the rate at which the loop is running */
		perf_count(loop_perf);

		/* kick the mixer */
		perf_begin(mixer_perf);
		mixer_tick();
		perf_end(mixer_perf);

		/* kick the control inputs */
		perf_begin(controls_perf);
		controls_tick();
		perf_end(controls_perf);

		/* check for debug activity */
		show_debug_messages();

		/* post debug state at ~1Hz */
		if (hrt_absolute_time() - last_debug_time > (1000 * 1000)) {

			struct mallinfo minfo = mallinfo();

			isr_debug(1, "d:%u s=0x%x a=0x%x f=0x%x r=%u m=%u", 
				  (unsigned)r_page_setup[PX4IO_P_SETUP_SET_DEBUG],
				  (unsigned)r_status_flags,
				  (unsigned)r_setup_arming,
				  (unsigned)r_setup_features,
				  (unsigned)i2c_loop_resets,
				  (unsigned)minfo.mxordblk);
			last_debug_time = hrt_absolute_time();
		}
	}
}
コード例 #6
0
ファイル: px4io.c プロジェクト: Aerovinci/Firmware
int
user_start(int argc, char *argv[])
{
	/* configure the first 8 PWM outputs (i.e. all of them) */
	up_pwm_servo_init(0xff);

#if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE)

	/* run C++ ctors before we go any further */

	up_cxxinitialize();

#	if defined(CONFIG_EXAMPLES_NSH_CXXINITIALIZE)
#  		error CONFIG_EXAMPLES_NSH_CXXINITIALIZE Must not be defined! Use CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE.
#	endif

#else
#  error platform is dependent on c++ both CONFIG_HAVE_CXX and CONFIG_HAVE_CXXINITIALIZE must be defined.
#endif

	/* reset all to zero */
	memset(&system_state, 0, sizeof(system_state));

	/* configure the high-resolution time/callout interface */
	hrt_init();

	/* calculate our fw CRC so FMU can decide if we need to update */
	calculate_fw_crc();

	/*
	 * Poll at 1ms intervals for received bytes that have not triggered
	 * a DMA event.
	 */
#ifdef CONFIG_ARCH_DMA
	hrt_call_every(&serial_dma_call, 1000, 1000, (hrt_callout)stm32_serial_dma_poll, NULL);
#endif

	/* print some startup info */
	syslog(LOG_INFO, "\nPX4IO: starting\n");

	/* default all the LEDs to off while we start */
	LED_AMBER(false);
	LED_BLUE(false);
	LED_SAFETY(false);
#ifdef GPIO_LED4
	LED_RING(false);
#endif

	/* turn on servo power (if supported) */
#ifdef POWER_SERVO
	POWER_SERVO(true);
#endif

	/* turn off S.Bus out (if supported) */
#ifdef ENABLE_SBUS_OUT
	ENABLE_SBUS_OUT(false);
#endif

	/* start the safety switch handler */
	safety_init();

	/* initialise the control inputs */
	controls_init();

	/* set up the ADC */
	adc_init();

	/* start the FMU interface */
	interface_init();

	/* add a performance counter for mixing */
	perf_counter_t mixer_perf = perf_alloc(PC_ELAPSED, "mix");

	/* add a performance counter for controls */
	perf_counter_t controls_perf = perf_alloc(PC_ELAPSED, "controls");

	/* and one for measuring the loop rate */
	perf_counter_t loop_perf = perf_alloc(PC_INTERVAL, "loop");

	struct mallinfo minfo = mallinfo();
	r_page_status[PX4IO_P_STATUS_FREEMEM] = minfo.mxordblk;
	syslog(LOG_INFO, "MEM: free %u, largest %u\n", minfo.mxordblk, minfo.fordblks);

	/* initialize PWM limit lib */
	pwm_limit_init(&pwm_limit);

	/*
	 *    P O L I C E    L I G H T S
	 *
	 * Not enough memory, lock down.
	 *
	 * We might need to allocate mixers later, and this will
	 * ensure that a developer doing a change will notice
	 * that he just burned the remaining RAM with static
	 * allocations. We don't want him to be able to
	 * get past that point. This needs to be clearly
	 * documented in the dev guide.
	 *
	 */
	if (minfo.mxordblk < 600) {

		syslog(LOG_ERR, "ERR: not enough MEM");
		bool phase = false;

		while (true) {

			if (phase) {
				LED_AMBER(true);
				LED_BLUE(false);

			} else {
				LED_AMBER(false);
				LED_BLUE(true);
			}

			up_udelay(250000);

			phase = !phase;
		}
	}

	/* Start the failsafe led init */
	failsafe_led_init();

	/*
	 * Run everything in a tight loop.
	 */

	uint64_t last_debug_time = 0;
	uint64_t last_heartbeat_time = 0;
	uint64_t last_loop_time = 0;

	for (;;) {
		dt = (hrt_absolute_time() - last_loop_time) / 1000000.0f;
		last_loop_time = hrt_absolute_time();

		if (dt < 0.0001f) {
			dt = 0.0001f;

		} else if (dt > 0.02f) {
			dt = 0.02f;
		}

		/* track the rate at which the loop is running */
		perf_count(loop_perf);

		/* kick the mixer */
		perf_begin(mixer_perf);
		mixer_tick();
		perf_end(mixer_perf);

		/* kick the control inputs */
		perf_begin(controls_perf);
		controls_tick();
		perf_end(controls_perf);

		/* some boards such as Pixhawk 2.1 made
		   the unfortunate choice to combine the blue led channel with
		   the IMU heater. We need a software hack to fix the hardware hack
		   by allowing to disable the LED / heater.
		 */
		if (r_page_setup[PX4IO_P_SETUP_THERMAL] == PX4IO_THERMAL_IGNORE) {
			/*
			  blink blue LED at 4Hz in normal operation. When in
			  override blink 4x faster so the user can clearly see
			  that override is happening. This helps when
			  pre-flight testing the override system
			 */
			uint32_t heartbeat_period_us = 250 * 1000UL;

			if (r_status_flags & PX4IO_P_STATUS_FLAGS_OVERRIDE) {
				heartbeat_period_us /= 4;
			}

			if ((hrt_absolute_time() - last_heartbeat_time) > heartbeat_period_us) {
				last_heartbeat_time = hrt_absolute_time();
				heartbeat_blink();
			}

		} else if (r_page_setup[PX4IO_P_SETUP_THERMAL] < PX4IO_THERMAL_FULL) {
			/* switch resistive heater off */
			LED_BLUE(false);

		} else {
			/* switch resistive heater hard on */
			LED_BLUE(true);
		}

		update_mem_usage();

		ring_blink();

		check_reboot();

		/* check for debug activity (default: none) */
		show_debug_messages();

		/* post debug state at ~1Hz - this is via an auxiliary serial port
		 * DEFAULTS TO OFF!
		 */
		if (hrt_absolute_time() - last_debug_time > (1000 * 1000)) {

			isr_debug(1, "d:%u s=0x%x a=0x%x f=0x%x m=%u",
				  (unsigned)r_page_setup[PX4IO_P_SETUP_SET_DEBUG],
				  (unsigned)r_status_flags,
				  (unsigned)r_setup_arming,
				  (unsigned)r_setup_features,
				  (unsigned)mallinfo().mxordblk);
			last_debug_time = hrt_absolute_time();
		}
	}
}
コード例 #7
0
static int
registers_set_one(uint8_t page, uint8_t offset, uint16_t value)
{
    switch (page) {

    case PX4IO_PAGE_STATUS:
        switch (offset) {
        case PX4IO_P_STATUS_ALARMS:
            /* clear bits being written */
            r_status_alarms &= ~value;
            break;

        case PX4IO_P_STATUS_FLAGS:
            /*
             * Allow FMU override of arming state (to allow in-air restores),
             * but only if the arming state is not in sync on the IO side.
             */
            if (!(r_status_flags & PX4IO_P_STATUS_FLAGS_ARM_SYNC)) {
                r_status_flags = value;
            }
            break;

        default:
            /* just ignore writes to other registers in this page */
            break;
        }
        break;

    case PX4IO_PAGE_SETUP:
        switch (offset) {
        case PX4IO_P_SETUP_FEATURES:

            value &= PX4IO_P_SETUP_FEATURES_VALID;
            r_setup_features = value;

            /* no implemented feature selection at this point */

            break;

        case PX4IO_P_SETUP_ARMING:

            value &= PX4IO_P_SETUP_ARMING_VALID;

            /*
             * Update arming state - disarm if no longer OK.
             * This builds on the requirement that the FMU driver
             * asks about the FMU arming state on initialization,
             * so that an in-air reset of FMU can not lead to a
             * lockup of the IO arming state.
             */

            // XXX do not reset IO's safety state by FMU for now
            // if ((r_setup_arming & PX4IO_P_SETUP_ARMING_FMU_ARMED) && !(value & PX4IO_P_SETUP_ARMING_FMU_ARMED)) {
            // 	r_status_flags &= ~PX4IO_P_STATUS_FLAGS_ARMED;
            // }

            if (value & PX4IO_P_SETUP_ARMING_RC_HANDLING_DISABLED) {
                r_status_flags |= PX4IO_P_STATUS_FLAGS_INIT_OK;
            }

            r_setup_arming = value;

            break;

        case PX4IO_P_SETUP_PWM_RATES:
            value &= PX4IO_P_SETUP_RATES_VALID;
            pwm_configure_rates(value, r_setup_pwm_defaultrate, r_setup_pwm_altrate);
            break;

        case PX4IO_P_SETUP_PWM_DEFAULTRATE:
            if (value < 50)
                value = 50;
            if (value > 400)
                value = 400;
            pwm_configure_rates(r_setup_pwm_rates, value, r_setup_pwm_altrate);
            break;

        case PX4IO_P_SETUP_PWM_ALTRATE:
            if (value < 50)
                value = 50;
            if (value > 400)
                value = 400;
            pwm_configure_rates(r_setup_pwm_rates, r_setup_pwm_defaultrate, value);
            break;

#ifdef CONFIG_ARCH_BOARD_PX4IO_V1
        case PX4IO_P_SETUP_RELAYS:
            value &= PX4IO_P_SETUP_RELAYS_VALID;
            r_setup_relays = value;
            POWER_RELAY1((value & PX4IO_P_SETUP_RELAYS_POWER1) ? 1 : 0);
            POWER_RELAY2((value & PX4IO_P_SETUP_RELAYS_POWER2) ? 1 : 0);
            POWER_ACC1((value & PX4IO_P_SETUP_RELAYS_ACC1) ? 1 : 0);
            POWER_ACC2((value & PX4IO_P_SETUP_RELAYS_ACC2) ? 1 : 0);
            break;
#endif

        case PX4IO_P_SETUP_VBATT_SCALE:
            r_page_setup[PX4IO_P_SETUP_VBATT_SCALE] = value;
            break;

        case PX4IO_P_SETUP_SET_DEBUG:
            r_page_setup[PX4IO_P_SETUP_SET_DEBUG] = value;
            isr_debug(0, "set debug %u\n", (unsigned)r_page_setup[PX4IO_P_SETUP_SET_DEBUG]);
            break;

        case PX4IO_P_SETUP_DSM:
            dsm_bind(value & 0x0f, (value >> 4) & 7);
            break;

        default:
            return -1;
        }
        break;

    case PX4IO_PAGE_RC_CONFIG: {

        /**
         * do not allow a RC config change while outputs armed
         */
        if ((r_status_flags & PX4IO_P_STATUS_FLAGS_SAFETY_OFF) ||
                (r_status_flags & PX4IO_P_STATUS_FLAGS_OVERRIDE) ||
                (r_setup_arming & PX4IO_P_SETUP_ARMING_FMU_ARMED)) {
            break;
        }

        unsigned channel = offset / PX4IO_P_RC_CONFIG_STRIDE;
        unsigned index = offset - channel * PX4IO_P_RC_CONFIG_STRIDE;
        uint16_t *conf = &r_page_rc_input_config[channel * PX4IO_P_RC_CONFIG_STRIDE];

        if (channel >= PX4IO_CONTROL_CHANNELS)
            return -1;

        /* disable the channel until we have a chance to sanity-check it */
        conf[PX4IO_P_RC_CONFIG_OPTIONS] &= PX4IO_P_RC_CONFIG_OPTIONS_ENABLED;

        switch (index) {

        case PX4IO_P_RC_CONFIG_MIN:
        case PX4IO_P_RC_CONFIG_CENTER:
        case PX4IO_P_RC_CONFIG_MAX:
        case PX4IO_P_RC_CONFIG_DEADZONE:
        case PX4IO_P_RC_CONFIG_ASSIGNMENT:
            conf[index] = value;
            break;

        case PX4IO_P_RC_CONFIG_OPTIONS:
            value &= PX4IO_P_RC_CONFIG_OPTIONS_VALID;
            r_status_flags |= PX4IO_P_STATUS_FLAGS_INIT_OK;

            /* clear any existing RC disabled flag */
            r_setup_arming &= ~(PX4IO_P_SETUP_ARMING_RC_HANDLING_DISABLED);

            /* set all options except the enabled option */
            conf[index] = value & ~PX4IO_P_RC_CONFIG_OPTIONS_ENABLED;

            /* should the channel be enabled? */
            /* this option is normally set last */
            if (value & PX4IO_P_RC_CONFIG_OPTIONS_ENABLED) {
                uint8_t count = 0;

                /* assert min..center..max ordering */
                if (conf[PX4IO_P_RC_CONFIG_MIN] < 500) {
                    count++;
                }
                if (conf[PX4IO_P_RC_CONFIG_MAX] > 2500) {
                    count++;
                }
                if (conf[PX4IO_P_RC_CONFIG_CENTER] < conf[PX4IO_P_RC_CONFIG_MIN]) {
                    count++;
                }
                if (conf[PX4IO_P_RC_CONFIG_CENTER] > conf[PX4IO_P_RC_CONFIG_MAX]) {
                    count++;
                }
                /* assert deadzone is sane */
                if (conf[PX4IO_P_RC_CONFIG_DEADZONE] > 500) {
                    count++;
                }
                if (conf[PX4IO_P_RC_CONFIG_ASSIGNMENT] >= PX4IO_CONTROL_CHANNELS) {
                    count++;
                }

                /* sanity checks pass, enable channel */
                if (count) {
                    isr_debug(0, "ERROR: %d config error(s) for RC%d.\n", count, (channel + 1));
                    r_status_flags &= ~PX4IO_P_STATUS_FLAGS_INIT_OK;
                } else {
                    conf[index] |= PX4IO_P_RC_CONFIG_OPTIONS_ENABLED;
                }
            }
            break;
            /* inner switch: case PX4IO_P_RC_CONFIG_OPTIONS */

        }
        break;
        /* case PX4IO_RC_PAGE_CONFIG */
    }

    case PX4IO_PAGE_TEST:
        switch (offset) {
        case PX4IO_P_TEST_LED:
            LED_AMBER(value & 1);
            break;
        }
        break;

    default:
        return -1;
    }
    return 0;
}