コード例 #1
0
ファイル: genreference.c プロジェクト: Sendence/ponyc
static LLVMValueRef gen_digestof_value(compile_t* c, LLVMValueRef value)
{
  LLVMTypeRef type = LLVMTypeOf(value);

  switch(LLVMGetTypeKind(type))
  {
    case LLVMFloatTypeKind:
      value = LLVMBuildBitCast(c->builder, value, c->i32, "");
      return LLVMBuildZExt(c->builder, value, c->i64, "");

    case LLVMDoubleTypeKind:
      return LLVMBuildBitCast(c->builder, value, c->i64, "");

    case LLVMIntegerTypeKind:
    {
      uint32_t width = LLVMGetIntTypeWidth(type);

      if(width < 64)
      {
        value = LLVMBuildZExt(c->builder, value, c->i64, "");
      } else if(width == 128) {
        LLVMValueRef shift = LLVMConstInt(c->i128, 64, false);
        LLVMValueRef high = LLVMBuildLShr(c->builder, value, shift, "");
        high = LLVMBuildTrunc(c->builder, high, c->i64, "");
        value = LLVMBuildTrunc(c->builder, value, c->i64, "");
        value = LLVMBuildXor(c->builder, value, high, "");
      }

      return value;
    }

    case LLVMStructTypeKind:
    {
      uint32_t count = LLVMCountStructElementTypes(type);
      LLVMValueRef result = LLVMConstInt(c->i64, 0, false);

      for(uint32_t i = 0; i < count; i++)
      {
        LLVMValueRef elem = LLVMBuildExtractValue(c->builder, value, i, "");
        elem = gen_digestof_value(c, elem);
        result = LLVMBuildXor(c->builder, result, elem, "");
      }

      return result;
    }

    case LLVMPointerTypeKind:
      return LLVMBuildPtrToInt(c->builder, value, c->i64, "");

    default: {}
  }

  assert(0);
  return NULL;
}
コード例 #2
0
ファイル: genreference.c プロジェクト: dipinhora/ponyc
static LLVMValueRef gen_digestof_int64(compile_t* c, LLVMValueRef value)
{
  pony_assert(LLVMTypeOf(value) == c->i64);

  if(target_is_ilp32(c->opt->triple))
  {
    LLVMValueRef shift = LLVMConstInt(c->i64, 32, false);
    LLVMValueRef high = LLVMBuildLShr(c->builder, value, shift, "");
    high = LLVMBuildTrunc(c->builder, high, c->i32, "");
    value = LLVMBuildTrunc(c->builder, value, c->i32, "");
    value = LLVMBuildXor(c->builder, value, high, "");
  }

  return value;
}
コード例 #3
0
ファイル: lp_bld_gather.c プロジェクト: ChillyWillyGuru/RSXGL
/**
 * Gather one element from scatter positions in memory.
 *
 * @sa lp_build_gather()
 */
LLVMValueRef
lp_build_gather_elem(struct gallivm_state *gallivm,
                     unsigned length,
                     unsigned src_width,
                     unsigned dst_width,
                     LLVMValueRef base_ptr,
                     LLVMValueRef offsets,
                     unsigned i)
{
   LLVMTypeRef src_type = LLVMIntTypeInContext(gallivm->context, src_width);
   LLVMTypeRef src_ptr_type = LLVMPointerType(src_type, 0);
   LLVMTypeRef dst_elem_type = LLVMIntTypeInContext(gallivm->context, dst_width);
   LLVMValueRef ptr;
   LLVMValueRef res;

   assert(LLVMTypeOf(base_ptr) == LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0));

   ptr = lp_build_gather_elem_ptr(gallivm, length, base_ptr, offsets, i);
   ptr = LLVMBuildBitCast(gallivm->builder, ptr, src_ptr_type, "");
   res = LLVMBuildLoad(gallivm->builder, ptr, "");

   assert(src_width <= dst_width);
   if (src_width > dst_width)
      res = LLVMBuildTrunc(gallivm->builder, res, dst_elem_type, "");
   if (src_width < dst_width)
      res = LLVMBuildZExt(gallivm->builder, res, dst_elem_type, "");

   return res;
}
コード例 #4
0
/**
 * Return (scalar-cast)val ? true : false;
 */
LLVMValueRef
lp_build_any_true_range(struct lp_build_context *bld,
                        unsigned real_length,
                        LLVMValueRef val)
{
   LLVMBuilderRef builder = bld->gallivm->builder;
   LLVMTypeRef scalar_type;
   LLVMTypeRef true_type;

   assert(real_length <= bld->type.length);

   true_type = LLVMIntTypeInContext(bld->gallivm->context,
                                    bld->type.width * real_length);
   scalar_type = LLVMIntTypeInContext(bld->gallivm->context,
                                      bld->type.width * bld->type.length);
   val = LLVMBuildBitCast(builder, val, scalar_type, "");
   /*
    * We're using always native types so we can use intrinsics.
    * However, if we don't do per-element calculations, we must ensure
    * the excess elements aren't used since they may contain garbage.
    */
   if (real_length < bld->type.length) {
      val = LLVMBuildTrunc(builder, val, true_type, "");
   }
   return LLVMBuildICmp(builder, LLVMIntNE,
                        val, LLVMConstNull(true_type), "");
}
コード例 #5
0
ファイル: lp_bld_gather.c プロジェクト: BNieuwenhuizen/mesa
/**
 * Gather one element from scatter positions in memory.
 *
 * @sa lp_build_gather()
 */
LLVMValueRef
lp_build_gather_elem(struct gallivm_state *gallivm,
                     unsigned length,
                     unsigned src_width,
                     unsigned dst_width,
                     boolean aligned,
                     LLVMValueRef base_ptr,
                     LLVMValueRef offsets,
                     unsigned i,
                     boolean vector_justify)
{
   LLVMTypeRef src_type = LLVMIntTypeInContext(gallivm->context, src_width);
   LLVMTypeRef src_ptr_type = LLVMPointerType(src_type, 0);
   LLVMTypeRef dst_elem_type = LLVMIntTypeInContext(gallivm->context, dst_width);
   LLVMValueRef ptr;
   LLVMValueRef res;

   assert(LLVMTypeOf(base_ptr) == LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0));

   ptr = lp_build_gather_elem_ptr(gallivm, length, base_ptr, offsets, i);
   ptr = LLVMBuildBitCast(gallivm->builder, ptr, src_ptr_type, "");
   res = LLVMBuildLoad(gallivm->builder, ptr, "");

   /* XXX
    * On some archs we probably really want to avoid having to deal
    * with alignments lower than 4 bytes (if fetch size is a power of
    * two >= 32). On x86 it doesn't matter, however.
    * We should be able to guarantee full alignment for any kind of texture
    * fetch (except ARB_texture_buffer_range, oops), but not vertex fetch
    * (there's PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY and friends
    * but I don't think that's quite what we wanted).
    * For ARB_texture_buffer_range, PIPE_CAP_TEXTURE_BUFFER_OFFSET_ALIGNMENT
    * looks like a good fit, but it seems this cap bit (and OpenGL) aren't
    * enforcing what we want (which is what d3d10 does, the offset needs to
    * be aligned to element size, but GL has bytes regardless of element
    * size which would only leave us with minimum alignment restriction of 16
    * which doesn't make much sense if the type isn't 4x32bit). Due to
    * translation of offsets to first_elem in sampler_views it actually seems
    * gallium could not do anything else except 16 no matter what...
    */
  if (!aligned) {
      LLVMSetAlignment(res, 1);
   }

   assert(src_width <= dst_width);
   if (src_width > dst_width) {
      res = LLVMBuildTrunc(gallivm->builder, res, dst_elem_type, "");
   } else if (src_width < dst_width) {
      res = LLVMBuildZExt(gallivm->builder, res, dst_elem_type, "");
      if (vector_justify) {
#ifdef PIPE_ARCH_BIG_ENDIAN
         res = LLVMBuildShl(gallivm->builder, res,
                            LLVMConstInt(dst_elem_type, dst_width - src_width, 0), "");
#endif
      }
   }

   return res;
}
コード例 #6
0
ファイル: genprim.c プロジェクト: georgemarrows/ponyc
static void number_conversion(compile_t* c, num_conv_t* from, num_conv_t* to,
  bool native128)
{
  if(!native128 &&
    ((from->is_float && (to->size > 64)) ||
    (to->is_float && (from->size > 64)))
    )
  {
    return;
  }

  reach_type_t* t = reach_type_name(c->reach, from->type_name);

  if(t == NULL)
    return;

  FIND_METHOD(to->fun_name);
  start_function(c, m, to->type, &from->type, 1);

  LLVMValueRef arg = LLVMGetParam(m->func, 0);
  LLVMValueRef result;

  if(from->is_float)
  {
    if(to->is_float)
    {
      if(from->size < to->size)
        result = LLVMBuildFPExt(c->builder, arg, to->type, "");
      else if(from->size > to->size)
        result = LLVMBuildFPTrunc(c->builder, arg, to->type, "");
      else
        result = arg;
    } else if(to->is_signed) {
      result = LLVMBuildFPToSI(c->builder, arg, to->type, "");
    } else {
      result = LLVMBuildFPToUI(c->builder, arg, to->type, "");
    }
  } else if(to->is_float) {
    if(from->is_signed)
      result = LLVMBuildSIToFP(c->builder, arg, to->type, "");
    else
      result = LLVMBuildUIToFP(c->builder, arg, to->type, "");
  } else if(from->size > to->size) {
      result = LLVMBuildTrunc(c->builder, arg, to->type, "");
  } else if(from->size < to->size) {
    if(from->is_signed)
      result = LLVMBuildSExt(c->builder, arg, to->type, "");
    else
      result = LLVMBuildZExt(c->builder, arg, to->type, "");
  } else {
    result = arg;
  }

  LLVMBuildRet(c->builder, result);
  codegen_finishfun(c);

  BOX_FUNCTION();
}
コード例 #7
0
ファイル: genmatch.c プロジェクト: danielaRiesgo/ponyc
static bool guard_match(compile_t* c, ast_t* guard,
  LLVMBasicBlockRef next_block)
{
  if(ast_id(guard) == TK_NONE)
    return true;

  LLVMValueRef value = gen_expr(c, guard);

  if(value == NULL)
    return false;

  LLVMBasicBlockRef continue_block = codegen_block(c, "pattern_continue");
  LLVMValueRef test = LLVMBuildTrunc(c->builder, value, c->i1, "");
  LLVMBuildCondBr(c->builder, test, continue_block, next_block);
  LLVMPositionBuilderAtEnd(c->builder, continue_block);
  return true;
}
コード例 #8
0
ファイル: genmatch.c プロジェクト: danielaRiesgo/ponyc
static bool check_value(compile_t* c, ast_t* pattern, ast_t* param_type,
  LLVMValueRef value, LLVMBasicBlockRef next_block)
{
  reach_type_t* t = reach_type(c->reach, param_type);
  LLVMValueRef r_value = gen_assign_cast(c, t->use_type, value, param_type);

  if(r_value == NULL)
    return false;

  LLVMValueRef result = gen_pattern_eq(c, pattern, r_value);

  if(result == NULL)
    return false;

  LLVMBasicBlockRef continue_block = codegen_block(c, "pattern_continue");
  LLVMValueRef test = LLVMBuildTrunc(c->builder, result, c->i1, "");
  LLVMBuildCondBr(c->builder, test, continue_block, next_block);
  LLVMPositionBuilderAtEnd(c->builder, continue_block);
  return true;
}
コード例 #9
0
/**
 * Gather elements from scatter positions in memory into a single vector.
 *
 * @param src_width src element width
 * @param dst_width result element width (source will be expanded to fit)
 * @param length length of the offsets,
 * @param base_ptr base pointer, should be a i8 pointer type.
 * @param offsets vector with offsets
 */
LLVMValueRef
lp_build_gather(LLVMBuilderRef builder,
                unsigned length,
                unsigned src_width,
                unsigned dst_width,
                LLVMValueRef base_ptr,
                LLVMValueRef offsets)
{
   LLVMTypeRef src_type = LLVMIntType(src_width);
   LLVMTypeRef src_ptr_type = LLVMPointerType(src_type, 0);
   LLVMTypeRef dst_elem_type = LLVMIntType(dst_width);
   LLVMTypeRef dst_vec_type = LLVMVectorType(dst_elem_type, length);
   LLVMValueRef res;
   unsigned i;

   res = LLVMGetUndef(dst_vec_type);
   for(i = 0; i < length; ++i) {
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
      LLVMValueRef elem_offset;
      LLVMValueRef elem_ptr;
      LLVMValueRef elem;

      elem_offset = LLVMBuildExtractElement(builder, offsets, index, "");
      elem_ptr = LLVMBuildGEP(builder, base_ptr, &elem_offset, 1, "");
      elem_ptr = LLVMBuildBitCast(builder, elem_ptr, src_ptr_type, "");
      elem = LLVMBuildLoad(builder, elem_ptr, "");

      assert(src_width <= dst_width);
      if(src_width > dst_width)
         elem = LLVMBuildTrunc(builder, elem, dst_elem_type, "");
      if(src_width < dst_width)
         elem = LLVMBuildZExt(builder, elem, dst_elem_type, "");

      res = LLVMBuildInsertElement(builder, res, elem, index, "");
   }

   return res;
}
コード例 #10
0
ファイル: gencall.c プロジェクト: killerswan/ponyc
static LLVMValueRef cast_ffi_arg(compile_t* c, LLVMValueRef arg,
  LLVMTypeRef param)
{
  if(arg == NULL)
    return NULL;

  LLVMTypeRef arg_type = LLVMTypeOf(arg);

  if(param == c->i1)
  {
    // If the parameter is an i1, it must be from an LLVM intrinsic. In that
    // case, the argument must be a Bool encoded as an ibool.
    if(arg_type != c->ibool)
      return NULL;

    // Truncate the Bool's i8 representation to i1.
    return LLVMBuildTrunc(c->builder, arg, c->i1, "");
  }

  switch(LLVMGetTypeKind(param))
  {
    case LLVMPointerTypeKind:
    {
      if(LLVMGetTypeKind(arg_type) == LLVMIntegerTypeKind)
        arg = LLVMBuildIntToPtr(c->builder, arg, param, "");
      else
        arg = LLVMBuildBitCast(c->builder, arg, param, "");

      break;
    }

    default: {}
  }

  return arg;
}
コード例 #11
0
static void emit_up2h(const struct lp_build_tgsi_action *action,
		      struct lp_build_tgsi_context *bld_base,
		      struct lp_build_emit_data *emit_data)
{
	LLVMBuilderRef builder = bld_base->base.gallivm->builder;
	LLVMContextRef context = bld_base->base.gallivm->context;
	struct lp_build_context *uint_bld = &bld_base->uint_bld;
	LLVMTypeRef fp16, i16;
	LLVMValueRef const16, input, val;
	unsigned i;

	fp16 = LLVMHalfTypeInContext(context);
	i16 = LLVMInt16TypeInContext(context);
	const16 = lp_build_const_int32(uint_bld->gallivm, 16);
	input = emit_data->args[0];

	for (i = 0; i < 2; i++) {
		val = i == 1 ? LLVMBuildLShr(builder, input, const16, "") : input;
		val = LLVMBuildTrunc(builder, val, i16, "");
		val = LLVMBuildBitCast(builder, val, fp16, "");
		emit_data->output[i] =
			LLVMBuildFPExt(builder, val, bld_base->base.elem_type, "");
	}
}
コード例 #12
0
ファイル: genoperator.c プロジェクト: enigma/ponyc
LLVMValueRef make_short_circuit(compile_t* c, ast_t* left, ast_t* right,
  bool is_and)
{
  LLVMBasicBlockRef entry_block = LLVMGetInsertBlock(c->builder);
  LLVMBasicBlockRef left_block = codegen_block(c, "sc_left");
  LLVMValueRef branch = LLVMBuildBr(c->builder, left_block);

  LLVMPositionBuilderAtEnd(c->builder, left_block);
  LLVMValueRef l_value = gen_expr(c, left);

  if(l_value == NULL)
    return NULL;

  if(LLVMIsAConstantInt(l_value))
  {
    LLVMInstructionEraseFromParent(branch);
    LLVMDeleteBasicBlock(left_block);
    LLVMPositionBuilderAtEnd(c->builder, entry_block);

    if(is_and)
    {
      if(is_always_false(l_value))
        return gen_expr(c, left);
    } else {
      if(is_always_true(l_value))
        return gen_expr(c, left);
    }

    return gen_expr(c, right);
  }

  LLVMBasicBlockRef left_exit_block = LLVMGetInsertBlock(c->builder);

  LLVMBasicBlockRef right_block = codegen_block(c, "sc_right");
  LLVMBasicBlockRef post_block = codegen_block(c, "sc_post");
  LLVMValueRef test = LLVMBuildTrunc(c->builder, l_value, c->i1, "");

  if(is_and)
    LLVMBuildCondBr(c->builder, test, right_block, post_block);
  else
    LLVMBuildCondBr(c->builder, test, post_block, right_block);

  LLVMPositionBuilderAtEnd(c->builder, right_block);
  LLVMValueRef r_value = gen_expr(c, right);

  if(r_value == NULL)
    return NULL;

  LLVMBasicBlockRef right_exit_block = LLVMGetInsertBlock(c->builder);
  LLVMBuildBr(c->builder, post_block);

  LLVMPositionBuilderAtEnd(c->builder, post_block);
  LLVMValueRef phi = LLVMBuildPhi(c->builder, c->ibool, "");

  LLVMAddIncoming(phi, &l_value, &left_exit_block, 1);
  LLVMAddIncoming(phi, &r_value, &right_exit_block, 1);

  if(LLVMIsAConstantInt(r_value))
  {
    if(is_and)
    {
      if(is_always_false(r_value))
        return r_value;
    } else {
      if(is_always_true(r_value))
        return r_value;
    }

    return l_value;
  }

  return phi;
}
コード例 #13
0
ファイル: gencontrol.c プロジェクト: Sendence/ponyc
LLVMValueRef gen_repeat(compile_t* c, ast_t* ast)
{
  bool needed = is_result_needed(ast);
  AST_GET_CHILDREN(ast, body, cond, else_clause);

  ast_t* type = ast_type(ast);
  ast_t* body_type = ast_type(body);
  ast_t* else_type = ast_type(else_clause);

  reach_type_t* phi_type = NULL;

  if(needed && !is_control_type(type))
    phi_type = reach_type(c->reach, type);

  LLVMBasicBlockRef body_block = codegen_block(c, "repeat_body");
  LLVMBasicBlockRef cond_block = codegen_block(c, "repeat_cond");
  LLVMBasicBlockRef else_block = codegen_block(c, "repeat_else");
  LLVMBasicBlockRef post_block = NULL;
  LLVMBuildBr(c->builder, body_block);

  // start the post block so that a break can modify the phi node
  LLVMValueRef phi = GEN_NOTNEEDED;

  if(!is_control_type(type))
  {
    // Start the post block so that a break can modify the phi node.
    post_block = codegen_block(c, "repeat_post");
    LLVMPositionBuilderAtEnd(c->builder, post_block);

    if(needed)
      phi = LLVMBuildPhi(c->builder, phi_type->use_type, "");
  }

  // Push the loop status.
  codegen_pushloop(c, cond_block, post_block, else_block);

  // Body.
  LLVMPositionBuilderAtEnd(c->builder, body_block);
  LLVMValueRef value = gen_expr(c, body);

  if(needed)
    value = gen_assign_cast(c, phi_type->use_type, value, body_type);

  if(value == NULL)
    return NULL;

  LLVMBasicBlockRef body_from = NULL;

  // If the body can't result in a value, don't generate the conditional
  // evaluation. This basic block for the body already has a terminator.
  if(value != GEN_NOVALUE)
  {
    // The body evaluates the condition itself, jumping either back to the body
    // or directly to the post block.
    LLVMValueRef c_value = gen_expr(c, cond);

    if(c_value == NULL)
      return NULL;

    body_from = LLVMGetInsertBlock(c->builder);
    LLVMValueRef test = LLVMBuildTrunc(c->builder, c_value, c->i1, "");
    LLVMBuildCondBr(c->builder, test, post_block, body_block);
  }

  // cond block
  // This is only evaluated from a continue, jumping either back to the body
  // or to the else block.
  LLVMPositionBuilderAtEnd(c->builder, cond_block);
  LLVMValueRef i_value = gen_expr(c, cond);

  LLVMValueRef test = LLVMBuildTrunc(c->builder, i_value, c->i1, "");
  LLVMBuildCondBr(c->builder, test, else_block, body_block);

  // Don't need loop status for the else block.
  codegen_poploop(c);

  // else
  // Only happens for a continue in the last iteration.
  LLVMPositionBuilderAtEnd(c->builder, else_block);
  LLVMValueRef else_value = gen_expr(c, else_clause);
  LLVMBasicBlockRef else_from = NULL;

  if(else_value == NULL)
    return NULL;

  if(needed)
    else_value = gen_assign_cast(c, phi_type->use_type, else_value, else_type);

  if(else_value != GEN_NOVALUE)
  {
    else_from = LLVMGetInsertBlock(c->builder);
    LLVMBuildBr(c->builder, post_block);
  }

  if(is_control_type(type))
    return GEN_NOVALUE;

  // post
  LLVMPositionBuilderAtEnd(c->builder, post_block);

  if(needed)
  {
    if(value != GEN_NOVALUE)
      LLVMAddIncoming(phi, &value, &body_from, 1);

    if(else_value != GEN_NOVALUE)
      LLVMAddIncoming(phi, &else_value, &else_from, 1);

    return phi;
  }

  return GEN_NOTNEEDED;
}
コード例 #14
0
ファイル: gencontrol.c プロジェクト: Sendence/ponyc
LLVMValueRef gen_if(compile_t* c, ast_t* ast)
{
  bool needed = is_result_needed(ast);
  ast_t* type = ast_type(ast);
  AST_GET_CHILDREN(ast, cond, left, right);

  ast_t* left_type = ast_type(left);
  ast_t* right_type = ast_type(right);

  // We will have no type if both branches have return statements.
  reach_type_t* phi_type = NULL;

  if(!is_control_type(type))
    phi_type = reach_type(c->reach, type);

  LLVMValueRef c_value = gen_expr(c, cond);

  if(c_value == NULL)
    return NULL;

  // If the conditional is constant, generate only one branch.
  bool gen_left = true;
  bool gen_right = true;

  if(LLVMIsAConstantInt(c_value))
  {
    int value = (int)LLVMConstIntGetZExtValue(c_value);

    if(value == 0)
      gen_left = false;
    else
      gen_right = false;
  }

  LLVMBasicBlockRef then_block = codegen_block(c, "if_then");
  LLVMBasicBlockRef else_block = codegen_block(c, "if_else");
  LLVMBasicBlockRef post_block = NULL;

  // If both branches return, we have no post block.
  if(!is_control_type(type))
    post_block = codegen_block(c, "if_post");

  LLVMValueRef test = LLVMBuildTrunc(c->builder, c_value, c->i1, "");
  LLVMBuildCondBr(c->builder, test, then_block, else_block);

  // Left branch.
  LLVMPositionBuilderAtEnd(c->builder, then_block);
  LLVMValueRef l_value;

  if(gen_left)
  {
    l_value = gen_expr(c, left);
  } else if(phi_type != NULL) {
    l_value = LLVMConstNull(phi_type->use_type);
  } else {
    LLVMBuildUnreachable(c->builder);
    l_value = GEN_NOVALUE;
  }

  if(l_value != GEN_NOVALUE)
  {
    if(needed)
      l_value = gen_assign_cast(c, phi_type->use_type, l_value, left_type);

    if(l_value == NULL)
      return NULL;

    then_block = LLVMGetInsertBlock(c->builder);
    LLVMBuildBr(c->builder, post_block);
  }

  // Right branch.
  LLVMPositionBuilderAtEnd(c->builder, else_block);
  LLVMValueRef r_value;

  if(gen_right)
  {
    r_value = gen_expr(c, right);
  } else if(phi_type != NULL) {
    r_value = LLVMConstNull(phi_type->use_type);
  } else {
    LLVMBuildUnreachable(c->builder);
    r_value = GEN_NOVALUE;
  }

  // If the right side returns, we don't branch to the post block.
  if(r_value != GEN_NOVALUE)
  {
    if(needed)
      r_value = gen_assign_cast(c, phi_type->use_type, r_value, right_type);

    if(r_value == NULL)
      return NULL;

    else_block = LLVMGetInsertBlock(c->builder);
    LLVMBuildBr(c->builder, post_block);
  }

  // If both sides return, we return a sentinal value.
  if(is_control_type(type))
    return GEN_NOVALUE;

  // Continue in the post block.
  LLVMPositionBuilderAtEnd(c->builder, post_block);

  if(needed)
  {
    LLVMValueRef phi = LLVMBuildPhi(c->builder, phi_type->use_type, "");

    if(l_value != GEN_NOVALUE)
      LLVMAddIncoming(phi, &l_value, &then_block, 1);

    if(r_value != GEN_NOVALUE)
      LLVMAddIncoming(phi, &r_value, &else_block, 1);

    return phi;
  }

  return GEN_NOTNEEDED;
}
コード例 #15
0
/**
 * Return mask ? a : b;
 *
 * mask is a bitwise mask, composed of 0 or ~0 for each element. Any other value
 * will yield unpredictable results.
 */
LLVMValueRef
lp_build_select(struct lp_build_context *bld,
                LLVMValueRef mask,
                LLVMValueRef a,
                LLVMValueRef b)
{
   LLVMBuilderRef builder = bld->gallivm->builder;
   LLVMContextRef lc = bld->gallivm->context;
   struct lp_type type = bld->type;
   LLVMValueRef res;

   assert(lp_check_value(type, a));
   assert(lp_check_value(type, b));

   if(a == b)
      return a;

   if (type.length == 1) {
      mask = LLVMBuildTrunc(builder, mask, LLVMInt1TypeInContext(lc), "");
      res = LLVMBuildSelect(builder, mask, a, b, "");
   }
   else if (0) {
      /* Generate a vector select.
       *
       * XXX: Using vector selects would avoid emitting intrinsics, but they aren't
       * properly supported yet.
       *
       * LLVM 3.0 includes experimental support provided the -promote-elements
       * options is passed to LLVM's command line (e.g., via
       * llvm::cl::ParseCommandLineOptions), but resulting code quality is much
       * worse, probably because some optimization passes don't know how to
       * handle vector selects.
       *
       * See also:
       * - http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-October/043659.html
       */

      /* Convert the mask to a vector of booleans.
       * XXX: There are two ways to do this. Decide what's best.
       */
      if (1) {
         LLVMTypeRef bool_vec_type = LLVMVectorType(LLVMInt1TypeInContext(lc), type.length);
         mask = LLVMBuildTrunc(builder, mask, bool_vec_type, "");
      } else {
         mask = LLVMBuildICmp(builder, LLVMIntNE, mask, LLVMConstNull(bld->int_vec_type), "");
      }
      res = LLVMBuildSelect(builder, mask, a, b, "");
   }
   else if (((util_cpu_caps.has_sse4_1 &&
              type.width * type.length == 128) ||
             (util_cpu_caps.has_avx &&
              type.width * type.length == 256 && type.width >= 32)) &&
            !LLVMIsConstant(a) &&
            !LLVMIsConstant(b) &&
            !LLVMIsConstant(mask)) {
      const char *intrinsic;
      LLVMTypeRef arg_type;
      LLVMValueRef args[3];

      /*
       *  There's only float blend in AVX but can just cast i32/i64
       *  to float.
       */
      if (type.width * type.length == 256) {
         if (type.width == 64) {
           intrinsic = "llvm.x86.avx.blendv.pd.256";
           arg_type = LLVMVectorType(LLVMDoubleTypeInContext(lc), 4);
         }
         else {
            intrinsic = "llvm.x86.avx.blendv.ps.256";
            arg_type = LLVMVectorType(LLVMFloatTypeInContext(lc), 8);
         }
      }
      else if (type.floating &&
               type.width == 64) {
         intrinsic = "llvm.x86.sse41.blendvpd";
         arg_type = LLVMVectorType(LLVMDoubleTypeInContext(lc), 2);
      } else if (type.floating &&
                 type.width == 32) {
         intrinsic = "llvm.x86.sse41.blendvps";
         arg_type = LLVMVectorType(LLVMFloatTypeInContext(lc), 4);
      } else {
         intrinsic = "llvm.x86.sse41.pblendvb";
         arg_type = LLVMVectorType(LLVMInt8TypeInContext(lc), 16);
      }

      if (arg_type != bld->int_vec_type) {
         mask = LLVMBuildBitCast(builder, mask, arg_type, "");
      }

      if (arg_type != bld->vec_type) {
         a = LLVMBuildBitCast(builder, a, arg_type, "");
         b = LLVMBuildBitCast(builder, b, arg_type, "");
      }

      args[0] = b;
      args[1] = a;
      args[2] = mask;

      res = lp_build_intrinsic(builder, intrinsic,
                               arg_type, args, Elements(args));

      if (arg_type != bld->vec_type) {
         res = LLVMBuildBitCast(builder, res, bld->vec_type, "");
      }
   }
   else {
      res = lp_build_select_bitwise(bld, mask, a, b);
   }

   return res;
}
コード例 #16
0
static LLVMValueRef
lp_build_extract_soa_chan(struct lp_build_context *bld,
                          unsigned blockbits,
                          boolean srgb_chan,
                          struct util_format_channel_description chan_desc,
                          LLVMValueRef packed)
{
   struct gallivm_state *gallivm = bld->gallivm;
   LLVMBuilderRef builder = gallivm->builder;
   struct lp_type type = bld->type;
   LLVMValueRef input = packed;
   const unsigned width = chan_desc.size;
   const unsigned start = chan_desc.shift;
   const unsigned stop = start + width;

   /* Decode the input vector component */

   switch(chan_desc.type) {
   case UTIL_FORMAT_TYPE_VOID:
      input = bld->undef;
      break;

   case UTIL_FORMAT_TYPE_UNSIGNED:
      /*
       * Align the LSB
       */
      if (start) {
         input = LLVMBuildLShr(builder, input,
                               lp_build_const_int_vec(gallivm, type, start), "");
      }

      /*
       * Zero the MSBs
       */
      if (stop < blockbits) {
         unsigned mask = ((unsigned long long)1 << width) - 1;
         input = LLVMBuildAnd(builder, input,
                              lp_build_const_int_vec(gallivm, type, mask), "");
      }

      /*
       * Type conversion
       */
      if (type.floating) {
         if (srgb_chan) {
            struct lp_type conv_type = lp_uint_type(type);
            input = lp_build_srgb_to_linear(gallivm, conv_type, width, input);
         }
         else {
            if(chan_desc.normalized)
               input = lp_build_unsigned_norm_to_float(gallivm, width, type, input);
            else
               input = LLVMBuildSIToFP(builder, input, bld->vec_type, "");
         }
      }
      else if (chan_desc.pure_integer) {
         /* Nothing to do */
      } else {
          /* FIXME */
          assert(0);
      }
      break;

   case UTIL_FORMAT_TYPE_SIGNED:
      /*
       * Align the sign bit first.
       */
      if (stop < type.width) {
         unsigned bits = type.width - stop;
         LLVMValueRef bits_val = lp_build_const_int_vec(gallivm, type, bits);
         input = LLVMBuildShl(builder, input, bits_val, "");
      }

      /*
       * Align the LSB (with an arithmetic shift to preserve the sign)
       */
      if (chan_desc.size < type.width) {
         unsigned bits = type.width - chan_desc.size;
         LLVMValueRef bits_val = lp_build_const_int_vec(gallivm, type, bits);
         input = LLVMBuildAShr(builder, input, bits_val, "");
      }

      /*
       * Type conversion
       */
      if (type.floating) {
         input = LLVMBuildSIToFP(builder, input, bld->vec_type, "");
         if (chan_desc.normalized) {
            double scale = 1.0 / ((1 << (chan_desc.size - 1)) - 1);
            LLVMValueRef scale_val = lp_build_const_vec(gallivm, type, scale);
            input = LLVMBuildFMul(builder, input, scale_val, "");
            /*
             * The formula above will produce value below -1.0 for most negative
             * value but everything seems happy with that hence disable for now.
             */
            if (0)
               input = lp_build_max(bld, input,
                                    lp_build_const_vec(gallivm, type, -1.0f));
         }
      }
      else if (chan_desc.pure_integer) {
         /* Nothing to do */
      } else {
          /* FIXME */
          assert(0);
      }
      break;

   case UTIL_FORMAT_TYPE_FLOAT:
      if (type.floating) {
         if (chan_desc.size == 16) {
            struct lp_type f16i_type = type;
            f16i_type.width /= 2;
            f16i_type.floating = 0;
            if (start) {
               input = LLVMBuildLShr(builder, input,
                                     lp_build_const_int_vec(gallivm, type, start), "");
            }
            input = LLVMBuildTrunc(builder, input,
                                   lp_build_vec_type(gallivm, f16i_type), "");
            input = lp_build_half_to_float(gallivm, input);
         } else {
            assert(start == 0);
            assert(stop == 32);
            assert(type.width == 32);
         }
         input = LLVMBuildBitCast(builder, input, bld->vec_type, "");
      }
      else {
         /* FIXME */
         assert(0);
         input = bld->undef;
      }
      break;

   case UTIL_FORMAT_TYPE_FIXED:
      if (type.floating) {
         double scale = 1.0 / ((1 << (chan_desc.size/2)) - 1);
         LLVMValueRef scale_val = lp_build_const_vec(gallivm, type, scale);
         input = LLVMBuildSIToFP(builder, input, bld->vec_type, "");
         input = LLVMBuildFMul(builder, input, scale_val, "");
      }
      else {
         /* FIXME */
         assert(0);
         input = bld->undef;
      }
      break;

   default:
      assert(0);
      input = bld->undef;
      break;
   }

   return input;
}
コード例 #17
0
ファイル: lp_bld_depth.c プロジェクト: blckshrk/Mesa
/**
 * Store depth/stencil values.
 * Incoming values are swizzled (typically n 2x2 quads), stored linear.
 * If there's a mask it will do select/store otherwise just store.
 *
 * \param type  the data type of the fragment depth/stencil values
 * \param format_desc  description of the depth/stencil surface
 * \param mask  the alive/dead pixel mask for the quad (vector)
 * \param z_fb  z values read from fb (with padding)
 * \param s_fb  s values read from fb (with padding)
 * \param loop_counter  the current loop iteration
 * \param depth_ptr  pointer to the depth/stencil values of this 4x4 block
 * \param depth_stride  stride of the depth/stencil buffer
 * \param z_value the depth values to store (with padding)
 * \param s_value the stencil values to store (with padding)
 */
void
lp_build_depth_stencil_write_swizzled(struct gallivm_state *gallivm,
                                      struct lp_type z_src_type,
                                      const struct util_format_description *format_desc,
                                      struct lp_build_mask_context *mask,
                                      LLVMValueRef z_fb,
                                      LLVMValueRef s_fb,
                                      LLVMValueRef loop_counter,
                                      LLVMValueRef depth_ptr,
                                      LLVMValueRef depth_stride,
                                      LLVMValueRef z_value,
                                      LLVMValueRef s_value)
{
   struct lp_build_context z_bld;
   LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH / 4];
   LLVMBuilderRef builder = gallivm->builder;
   LLVMValueRef mask_value = NULL;
   LLVMValueRef zs_dst1, zs_dst2;
   LLVMValueRef zs_dst_ptr1, zs_dst_ptr2;
   LLVMValueRef depth_offset1, depth_offset2;
   LLVMTypeRef load_ptr_type;
   unsigned depth_bytes = format_desc->block.bits / 8;
   struct lp_type zs_type = lp_depth_type(format_desc, z_src_type.length);
   struct lp_type z_type = zs_type;
   struct lp_type zs_load_type = zs_type;

   zs_load_type.length = zs_load_type.length / 2;
   load_ptr_type = LLVMPointerType(lp_build_vec_type(gallivm, zs_load_type), 0);

   z_type.width = z_src_type.width;

   lp_build_context_init(&z_bld, gallivm, z_type);

   /*
    * This is far from ideal, at least for late depth write we should do this
    * outside the fs loop to avoid all the swizzle stuff.
    */
   if (z_src_type.length == 4) {
      LLVMValueRef looplsb = LLVMBuildAnd(builder, loop_counter,
                                          lp_build_const_int32(gallivm, 1), "");
      LLVMValueRef loopmsb = LLVMBuildAnd(builder, loop_counter,
                                          lp_build_const_int32(gallivm, 2), "");
      LLVMValueRef offset2 = LLVMBuildMul(builder, loopmsb,
                                          depth_stride, "");
      depth_offset1 = LLVMBuildMul(builder, looplsb,
                                   lp_build_const_int32(gallivm, depth_bytes * 2), "");
      depth_offset1 = LLVMBuildAdd(builder, depth_offset1, offset2, "");
   }
   else {
      unsigned i;
      LLVMValueRef loopx2 = LLVMBuildShl(builder, loop_counter,
                                         lp_build_const_int32(gallivm, 1), "");
      assert(z_src_type.length == 8);
      depth_offset1 = LLVMBuildMul(builder, loopx2, depth_stride, "");
      /*
       * We load 2x4 values, and need to swizzle them (order
       * 0,1,4,5,2,3,6,7) - not so hot with avx unfortunately.
       */
      for (i = 0; i < 8; i++) {
         shuffles[i] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2);
      }
   }

   depth_offset2 = LLVMBuildAdd(builder, depth_offset1, depth_stride, "");

   zs_dst_ptr1 = LLVMBuildGEP(builder, depth_ptr, &depth_offset1, 1, "");
   zs_dst_ptr1 = LLVMBuildBitCast(builder, zs_dst_ptr1, load_ptr_type, "");
   zs_dst_ptr2 = LLVMBuildGEP(builder, depth_ptr, &depth_offset2, 1, "");
   zs_dst_ptr2 = LLVMBuildBitCast(builder, zs_dst_ptr2, load_ptr_type, "");

   if (format_desc->block.bits > 32) {
      s_value = LLVMBuildBitCast(builder, s_value, z_bld.vec_type, "");
   }

   if (mask) {
      mask_value = lp_build_mask_value(mask);
      z_value = lp_build_select(&z_bld, mask_value, z_value, z_fb);
      if (format_desc->block.bits > 32) {
         s_fb = LLVMBuildBitCast(builder, s_fb, z_bld.vec_type, "");
         s_value = lp_build_select(&z_bld, mask_value, s_value, s_fb);
      }
   }

   if (zs_type.width < z_src_type.width) {
      /* Truncate ZS values (e.g., when writing to Z16_UNORM) */
      z_value = LLVMBuildTrunc(builder, z_value,
                               lp_build_int_vec_type(gallivm, zs_type), "");
   }

   if (format_desc->block.bits <= 32) {
      if (z_src_type.length == 4) {
         zs_dst1 = lp_build_extract_range(gallivm, z_value, 0, 2);
         zs_dst2 = lp_build_extract_range(gallivm, z_value, 2, 2);
      }
      else {
         assert(z_src_type.length == 8);
         zs_dst1 = LLVMBuildShuffleVector(builder, z_value, z_value,
                                          LLVMConstVector(&shuffles[0],
                                                          zs_load_type.length), "");
         zs_dst2 = LLVMBuildShuffleVector(builder, z_value, z_value,
                                          LLVMConstVector(&shuffles[4],
                                                          zs_load_type.length), "");
      }
   }
   else {
      if (z_src_type.length == 4) {
         zs_dst1 = lp_build_interleave2(gallivm, z_type,
                                        z_value, s_value, 0);
         zs_dst2 = lp_build_interleave2(gallivm, z_type,
                                        z_value, s_value, 1);
      }
      else {
         unsigned i;
         LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH / 2];
         assert(z_src_type.length == 8);
         for (i = 0; i < 8; i++) {
            shuffles[i*2] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2);
            shuffles[i*2+1] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2 +
                                                   z_src_type.length);
         }
         zs_dst1 = LLVMBuildShuffleVector(builder, z_value, s_value,
                                          LLVMConstVector(&shuffles[0],
                                                          z_src_type.length), "");
         zs_dst2 = LLVMBuildShuffleVector(builder, z_value, s_value,
                                          LLVMConstVector(&shuffles[8],
                                                          z_src_type.length), "");
      }
      zs_dst1 = LLVMBuildBitCast(builder, zs_dst1,
                                 lp_build_vec_type(gallivm, zs_load_type), "");
      zs_dst2 = LLVMBuildBitCast(builder, zs_dst2,
                                 lp_build_vec_type(gallivm, zs_load_type), "");
   }

   LLVMBuildStore(builder, zs_dst1, zs_dst_ptr1);
   LLVMBuildStore(builder, zs_dst2, zs_dst_ptr2);
}
コード例 #18
0
ファイル: lp_bld_depth.c プロジェクト: blckshrk/Mesa
/**
 * Perform the occlusion test and increase the counter.
 * Test the depth mask. Add the number of channel which has none zero mask
 * into the occlusion counter. e.g. maskvalue is {-1, -1, -1, -1}.
 * The counter will add 4.
 *
 * \param type holds element type of the mask vector.
 * \param maskvalue is the depth test mask.
 * \param counter is a pointer of the uint32 counter.
 */
void
lp_build_occlusion_count(struct gallivm_state *gallivm,
                         struct lp_type type,
                         LLVMValueRef maskvalue,
                         LLVMValueRef counter)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMContextRef context = gallivm->context;
   LLVMValueRef countmask = lp_build_const_int_vec(gallivm, type, 1);
   LLVMValueRef count, newcount;

   assert(type.length <= 16);
   assert(type.floating);

   if(util_cpu_caps.has_sse && type.length == 4) {
      const char *movmskintr = "llvm.x86.sse.movmsk.ps";
      const char *popcntintr = "llvm.ctpop.i32";
      LLVMValueRef bits = LLVMBuildBitCast(builder, maskvalue,
                                           lp_build_vec_type(gallivm, type), "");
      bits = lp_build_intrinsic_unary(builder, movmskintr,
                                      LLVMInt32TypeInContext(context), bits);
      count = lp_build_intrinsic_unary(builder, popcntintr,
                                       LLVMInt32TypeInContext(context), bits);
   }
   else if(util_cpu_caps.has_avx && type.length == 8) {
      const char *movmskintr = "llvm.x86.avx.movmsk.ps.256";
      const char *popcntintr = "llvm.ctpop.i32";
      LLVMValueRef bits = LLVMBuildBitCast(builder, maskvalue,
                                           lp_build_vec_type(gallivm, type), "");
      bits = lp_build_intrinsic_unary(builder, movmskintr,
                                      LLVMInt32TypeInContext(context), bits);
      count = lp_build_intrinsic_unary(builder, popcntintr,
                                       LLVMInt32TypeInContext(context), bits);
   }
   else {
      unsigned i;
      LLVMValueRef countv = LLVMBuildAnd(builder, maskvalue, countmask, "countv");
      LLVMTypeRef counttype = LLVMIntTypeInContext(context, type.length * 8);
      LLVMTypeRef i8vntype = LLVMVectorType(LLVMInt8TypeInContext(context), type.length * 4);
      LLVMValueRef shufflev, countd;
      LLVMValueRef shuffles[16];
      const char *popcntintr = NULL;

      countv = LLVMBuildBitCast(builder, countv, i8vntype, "");

       for (i = 0; i < type.length; i++) {
          shuffles[i] = lp_build_const_int32(gallivm, 4*i);
       }

       shufflev = LLVMConstVector(shuffles, type.length);
       countd = LLVMBuildShuffleVector(builder, countv, LLVMGetUndef(i8vntype), shufflev, "");
       countd = LLVMBuildBitCast(builder, countd, counttype, "countd");

       /*
        * XXX FIXME
        * this is bad on cpus without popcount (on x86 supported by intel
        * nehalem, amd barcelona, and up - not tied to sse42).
        * Would be much faster to just sum the 4 elements of the vector with
        * some horizontal add (shuffle/add/shuffle/add after the initial and).
        */
       switch (type.length) {
       case 4:
          popcntintr = "llvm.ctpop.i32";
          break;
       case 8:
          popcntintr = "llvm.ctpop.i64";
          break;
       case 16:
          popcntintr = "llvm.ctpop.i128";
          break;
       default:
          assert(0);
       }
       count = lp_build_intrinsic_unary(builder, popcntintr, counttype, countd);

       if (type.length > 4) {
          count = LLVMBuildTrunc(builder, count, LLVMIntTypeInContext(context, 32), "");
       }
   }
   newcount = LLVMBuildLoad(builder, counter, "origcount");
   newcount = LLVMBuildAdd(builder, newcount, count, "newcount");
   LLVMBuildStore(builder, newcount, counter);
}
コード例 #19
0
ファイル: lp_bld_sample_aos.c プロジェクト: nikai3d/mesa
/**
 * Sample the texture/mipmap using given image filter and mip filter.
 * data0_ptr and data1_ptr point to the two mipmap levels to sample
 * from.  width0/1_vec, height0/1_vec, depth0/1_vec indicate their sizes.
 * If we're using nearest miplevel sampling the '1' values will be null/unused.
 */
static void
lp_build_sample_mipmap(struct lp_build_sample_context *bld,
                       unsigned img_filter,
                       unsigned mip_filter,
                       LLVMValueRef s,
                       LLVMValueRef t,
                       LLVMValueRef r,
                       LLVMValueRef ilevel0,
                       LLVMValueRef ilevel1,
                       LLVMValueRef lod_fpart,
                       LLVMValueRef colors_lo_var,
                       LLVMValueRef colors_hi_var)
{
   LLVMBuilderRef builder = bld->gallivm->builder;
   LLVMValueRef size0;
   LLVMValueRef size1;
   LLVMValueRef row_stride0_vec;
   LLVMValueRef row_stride1_vec;
   LLVMValueRef img_stride0_vec;
   LLVMValueRef img_stride1_vec;
   LLVMValueRef data_ptr0;
   LLVMValueRef data_ptr1;
   LLVMValueRef colors0_lo, colors0_hi;
   LLVMValueRef colors1_lo, colors1_hi;

   /* sample the first mipmap level */
   lp_build_mipmap_level_sizes(bld, ilevel0,
                               &size0,
                               &row_stride0_vec, &img_stride0_vec);
   data_ptr0 = lp_build_get_mipmap_level(bld, ilevel0);
   if (img_filter == PIPE_TEX_FILTER_NEAREST) {
      lp_build_sample_image_nearest(bld,
                                    size0,
                                    row_stride0_vec, img_stride0_vec,
                                    data_ptr0, s, t, r,
                                    &colors0_lo, &colors0_hi);
   }
   else {
      assert(img_filter == PIPE_TEX_FILTER_LINEAR);
      lp_build_sample_image_linear(bld,
                                   size0,
                                   row_stride0_vec, img_stride0_vec,
                                   data_ptr0, s, t, r,
                                   &colors0_lo, &colors0_hi);
   }

   /* Store the first level's colors in the output variables */
   LLVMBuildStore(builder, colors0_lo, colors_lo_var);
   LLVMBuildStore(builder, colors0_hi, colors_hi_var);

   if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR) {
      LLVMValueRef h16_scale = lp_build_const_float(bld->gallivm, 256.0);
      LLVMTypeRef i32_type = LLVMIntTypeInContext(bld->gallivm->context, 32);
      struct lp_build_if_state if_ctx;
      LLVMValueRef need_lerp;

      lod_fpart = LLVMBuildFMul(builder, lod_fpart, h16_scale, "");
      lod_fpart = LLVMBuildFPToSI(builder, lod_fpart, i32_type, "lod_fpart.fixed16");

      /* need_lerp = lod_fpart > 0 */
      need_lerp = LLVMBuildICmp(builder, LLVMIntSGT,
                                lod_fpart, LLVMConstNull(i32_type),
                                "need_lerp");

      lp_build_if(&if_ctx, bld->gallivm, need_lerp);
      {
         struct lp_build_context h16_bld;

         lp_build_context_init(&h16_bld, bld->gallivm, lp_type_ufixed(16));

         /* sample the second mipmap level */
         lp_build_mipmap_level_sizes(bld, ilevel1,
                                     &size1,
                                     &row_stride1_vec, &img_stride1_vec);
         data_ptr1 = lp_build_get_mipmap_level(bld, ilevel1);
         if (img_filter == PIPE_TEX_FILTER_NEAREST) {
            lp_build_sample_image_nearest(bld,
                                          size1,
                                          row_stride1_vec, img_stride1_vec,
                                          data_ptr1, s, t, r,
                                          &colors1_lo, &colors1_hi);
         }
         else {
            lp_build_sample_image_linear(bld,
                                         size1,
                                         row_stride1_vec, img_stride1_vec,
                                         data_ptr1, s, t, r,
                                         &colors1_lo, &colors1_hi);
         }

         /* interpolate samples from the two mipmap levels */

         lod_fpart = LLVMBuildTrunc(builder, lod_fpart, h16_bld.elem_type, "");
         lod_fpart = lp_build_broadcast_scalar(&h16_bld, lod_fpart);

#if HAVE_LLVM == 0x208
         /* This is a work-around for a bug in LLVM 2.8.
          * Evidently, something goes wrong in the construction of the
          * lod_fpart short[8] vector.  Adding this no-effect shuffle seems
          * to force the vector to be properly constructed.
          * Tested with mesa-demos/src/tests/mipmap_limits.c (press t, f).
          */
         {
            LLVMValueRef shuffles[8], shuffle;
            int i;
            assert(h16_bld.type.length <= Elements(shuffles));
            for (i = 0; i < h16_bld.type.length; i++)
               shuffles[i] = lp_build_const_int32(bld->gallivm, 2 * (i & 1));
            shuffle = LLVMConstVector(shuffles, h16_bld.type.length);
            lod_fpart = LLVMBuildShuffleVector(builder,
                                               lod_fpart, lod_fpart,
                                               shuffle, "");
         }
#endif

         colors0_lo = lp_build_lerp(&h16_bld, lod_fpart,
                                    colors0_lo, colors1_lo);
         colors0_hi = lp_build_lerp(&h16_bld, lod_fpart,
                                    colors0_hi, colors1_hi);

         LLVMBuildStore(builder, colors0_lo, colors_lo_var);
         LLVMBuildStore(builder, colors0_hi, colors_hi_var);
      }
      lp_build_endif(&if_ctx);
   }
}
コード例 #20
0
ファイル: gencontrol.c プロジェクト: Sendence/ponyc
LLVMValueRef gen_while(compile_t* c, ast_t* ast)
{
  bool needed = is_result_needed(ast);
  AST_GET_CHILDREN(ast, cond, body, else_clause);

  ast_t* type = ast_type(ast);
  ast_t* body_type = ast_type(body);
  ast_t* else_type = ast_type(else_clause);

  reach_type_t* phi_type = NULL;

  if(needed && !is_control_type(type))
    phi_type = reach_type(c->reach, type);

  LLVMBasicBlockRef init_block = codegen_block(c, "while_init");
  LLVMBasicBlockRef body_block = codegen_block(c, "while_body");
  LLVMBasicBlockRef else_block = codegen_block(c, "while_else");
  LLVMBasicBlockRef post_block = NULL;
  LLVMBuildBr(c->builder, init_block);

  // start the post block so that a break can modify the phi node
  LLVMValueRef phi = GEN_NOTNEEDED;

  if(!is_control_type(type))
  {
    // Start the post block so that a break can modify the phi node.
    post_block = codegen_block(c, "while_post");
    LLVMPositionBuilderAtEnd(c->builder, post_block);

    if(needed)
      phi = LLVMBuildPhi(c->builder, phi_type->use_type, "");
  }

  // Push the loop status.
  codegen_pushloop(c, init_block, post_block, else_block);

  // init
  // This jumps either to the body or the else clause. This is not evaluated
  // on each loop iteration: only on the first entry or after a continue.
  LLVMPositionBuilderAtEnd(c->builder, init_block);
  LLVMValueRef i_value = gen_expr(c, cond);

  if(i_value == NULL)
    return NULL;

  LLVMValueRef test = LLVMBuildTrunc(c->builder, i_value, c->i1, "");
  LLVMBuildCondBr(c->builder, test, body_block, else_block);

  // Body.
  LLVMPositionBuilderAtEnd(c->builder, body_block);
  LLVMValueRef l_value = gen_expr(c, body);

  if(needed)
    l_value = gen_assign_cast(c, phi_type->use_type, l_value, body_type);

  if(l_value == NULL)
    return NULL;

  LLVMBasicBlockRef body_from = NULL;

  // If the body can't result in a value, don't generate the conditional
  // evaluation. This basic block for the body already has a terminator.
  if(l_value != GEN_NOVALUE)
  {
    // The body evaluates the condition itself, jumping either back to the body
    // or directly to the post block.
    LLVMValueRef c_value = gen_expr(c, cond);

    if(c_value == NULL)
      return NULL;

    body_from = LLVMGetInsertBlock(c->builder);
    LLVMValueRef test = LLVMBuildTrunc(c->builder, c_value, c->i1, "");
    LLVMBuildCondBr(c->builder, test, body_block, post_block);
  }

  // Don't need loop status for the else block.
  codegen_poploop(c);

  // else
  // If the loop doesn't generate a value (doesn't execute, or continues on the
  // last iteration), the else clause generates the value.
  LLVMPositionBuilderAtEnd(c->builder, else_block);
  LLVMValueRef r_value = gen_expr(c, else_clause);
  LLVMBasicBlockRef else_from = NULL;

  if(r_value != GEN_NOVALUE)
  {
    if(r_value == NULL)
      return NULL;

    if(needed)
      r_value = gen_assign_cast(c, phi_type->use_type, r_value, else_type);

    else_from = LLVMGetInsertBlock(c->builder);
    LLVMBuildBr(c->builder, post_block);
  }

  if(is_control_type(type))
    return GEN_NOVALUE;

  // post
  LLVMPositionBuilderAtEnd(c->builder, post_block);

  if(needed)
  {
    if(l_value != GEN_NOVALUE)
      LLVMAddIncoming(phi, &l_value, &body_from, 1);

    if(r_value != GEN_NOVALUE)
      LLVMAddIncoming(phi, &r_value, &else_from, 1);

    return phi;
  }

  return GEN_NOTNEEDED;
}
コード例 #21
0
ファイル: genreference.c プロジェクト: dipinhora/ponyc
static LLVMValueRef gen_digestof_value(compile_t* c, ast_t* type,
  LLVMValueRef value)
{
  LLVMTypeRef impl_type = LLVMTypeOf(value);

  switch(LLVMGetTypeKind(impl_type))
  {
    case LLVMFloatTypeKind:
      value = LLVMBuildBitCast(c->builder, value, c->i32, "");
      return LLVMBuildZExt(c->builder, value, c->intptr, "");

    case LLVMDoubleTypeKind:
      value = LLVMBuildBitCast(c->builder, value, c->i64, "");
      return gen_digestof_int64(c, value);

    case LLVMIntegerTypeKind:
    {
      uint32_t width = LLVMGetIntTypeWidth(impl_type);

      if(width < 64)
      {
        return LLVMBuildZExt(c->builder, value, c->intptr, "");
      } else if(width == 64) {
        return gen_digestof_int64(c, value);
      } else if(width == 128) {
        LLVMValueRef shift = LLVMConstInt(c->i128, 64, false);
        LLVMValueRef high = LLVMBuildLShr(c->builder, value, shift, "");
        high = LLVMBuildTrunc(c->builder, high, c->i64, "");
        value = LLVMBuildTrunc(c->builder, value, c->i64, "");
        high = gen_digestof_int64(c, high);
        value = gen_digestof_int64(c, value);
        return LLVMBuildXor(c->builder, value, high, "");
      }
      break;
    }

    case LLVMStructTypeKind:
    {
      uint32_t count = LLVMCountStructElementTypes(impl_type);
      LLVMValueRef result = LLVMConstInt(c->intptr, 0, false);
      ast_t* child = ast_child(type);

      for(uint32_t i = 0; i < count; i++)
      {
        LLVMValueRef elem = LLVMBuildExtractValue(c->builder, value, i, "");
        elem = gen_digestof_value(c, child, elem);
        result = LLVMBuildXor(c->builder, result, elem, "");
        child = ast_sibling(child);
      }

      pony_assert(child == NULL);

      return result;
    }

    case LLVMPointerTypeKind:
      if(!is_known(type))
      {
        reach_type_t* t = reach_type(c->reach, type);
        int sub_kind = subtype_kind(t);

        if((sub_kind & SUBTYPE_KIND_BOXED) != 0)
          return gen_digestof_box(c, t, value, sub_kind);
      }

      return LLVMBuildPtrToInt(c->builder, value, c->intptr, "");

    default: {}
  }

  pony_assert(0);
  return NULL;
}
コード例 #22
0
/**
 * Converts float32 to int16 half-float
 * Note this can be performed in 1 instruction if vcvtps2ph exists (f16c/cvt16)
 * [llvm.x86.vcvtps2ph / _mm_cvtps_ph]
 *
 * @param src           value to convert
 *
 * Convert float32 to half floats, preserving Infs and NaNs,
 * with rounding towards zero (trunc).
 */
LLVMValueRef
lp_build_float_to_half(struct gallivm_state *gallivm,
                       LLVMValueRef src)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMTypeRef f32_vec_type = LLVMTypeOf(src);
   unsigned length = LLVMGetTypeKind(f32_vec_type) == LLVMVectorTypeKind
                   ? LLVMGetVectorSize(f32_vec_type) : 1;
   struct lp_type i32_type = lp_type_int_vec(32, 32 * length);
   struct lp_type i16_type = lp_type_int_vec(16, 16 * length);
   LLVMValueRef result;

   if (util_cpu_caps.has_f16c && HAVE_LLVM >= 0x0301 &&
       (length == 4 || length == 8)) {
      struct lp_type i168_type = lp_type_int_vec(16, 16 * 8);
      unsigned mode = 3; /* same as LP_BUILD_ROUND_TRUNCATE */
      LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
      const char *intrinsic = NULL;
      if (length == 4) {
         intrinsic = "llvm.x86.vcvtps2ph.128";
      }
      else {
         intrinsic = "llvm.x86.vcvtps2ph.256";
      }
      result = lp_build_intrinsic_binary(builder, intrinsic,
                                         lp_build_vec_type(gallivm, i168_type),
                                         src, LLVMConstInt(i32t, mode, 0));
      if (length == 4) {
         result = lp_build_extract_range(gallivm, result, 0, 4);
      }
   }

   else {
      result = lp_build_float_to_smallfloat(gallivm, i32_type, src, 10, 5, 0, true);
      /* Convert int32 vector to int16 vector by trunc (might generate bad code) */
      result = LLVMBuildTrunc(builder, result, lp_build_vec_type(gallivm, i16_type), "");
   }

   /*
    * Debugging code.
    */
   if (0) {
     LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
     LLVMTypeRef i16t = LLVMInt16TypeInContext(gallivm->context);
     LLVMTypeRef f32t = LLVMFloatTypeInContext(gallivm->context);
     LLVMValueRef ref_result = LLVMGetUndef(LLVMVectorType(i16t, length));
     unsigned i;

     LLVMTypeRef func_type = LLVMFunctionType(i16t, &f32t, 1, 0);
     LLVMValueRef func = lp_build_const_int_pointer(gallivm, func_to_pointer((func_pointer)util_float_to_half));
     func = LLVMBuildBitCast(builder, func, LLVMPointerType(func_type, 0), "util_float_to_half");

     for (i = 0; i < length; ++i) {
        LLVMValueRef index = LLVMConstInt(i32t, i, 0);
        LLVMValueRef f32 = LLVMBuildExtractElement(builder, src, index, "");
#if 0
        /* XXX: not really supported by backends */
        LLVMValueRef f16 = lp_build_intrinsic_unary(builder, "llvm.convert.to.fp16", i16t, f32);
#else
        LLVMValueRef f16 = LLVMBuildCall(builder, func, &f32, 1, "");
#endif
        ref_result = LLVMBuildInsertElement(builder, ref_result, f16, index, "");
     }

     lp_build_print_value(gallivm, "src  = ", src);
     lp_build_print_value(gallivm, "llvm = ", result);
     lp_build_print_value(gallivm, "util = ", ref_result);
     lp_build_printf(gallivm, "\n");
  }

   return result;
}
コード例 #23
0
/**
 * Pack a single pixel.
 *
 * @param rgba 4 float vector with the unpacked components.
 *
 * XXX: This is mostly for reference and testing -- operating a single pixel at
 * a time is rarely if ever needed.
 */
LLVMValueRef
lp_build_pack_rgba_aos(struct gallivm_state *gallivm,
                       const struct util_format_description *desc,
                       LLVMValueRef rgba)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMTypeRef type;
   LLVMValueRef packed = NULL;
   LLVMValueRef swizzles[4];
   LLVMValueRef shifted, casted, scaled, unswizzled;
   LLVMValueRef shifts[4];
   LLVMValueRef scales[4];
   boolean normalized;
   unsigned shift;
   unsigned i, j;

   assert(desc->layout == UTIL_FORMAT_LAYOUT_PLAIN);
   assert(desc->block.width == 1);
   assert(desc->block.height == 1);

   type = LLVMIntTypeInContext(gallivm->context, desc->block.bits);

   /* Unswizzle the color components into the source vector. */
   for (i = 0; i < 4; ++i) {
      for (j = 0; j < 4; ++j) {
         if (desc->swizzle[j] == i)
            break;
      }
      if (j < 4)
         swizzles[i] = lp_build_const_int32(gallivm, j);
      else
         swizzles[i] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
   }

   unswizzled = LLVMBuildShuffleVector(builder, rgba,
                                       LLVMGetUndef(LLVMVectorType(LLVMFloatTypeInContext(gallivm->context), 4)),
                                       LLVMConstVector(swizzles, 4), "");

   normalized = FALSE;
   shift = 0;
   for (i = 0; i < 4; ++i) {
      unsigned bits = desc->channel[i].size;

      if (desc->channel[i].type == UTIL_FORMAT_TYPE_VOID) {
         shifts[i] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
         scales[i] =  LLVMGetUndef(LLVMFloatTypeInContext(gallivm->context));
      }
      else {
         unsigned mask = (1 << bits) - 1;

         assert(desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED);
         assert(bits < 32);

         shifts[i] = lp_build_const_int32(gallivm, shift);

         if (desc->channel[i].normalized) {
            scales[i] = lp_build_const_float(gallivm, mask);
            normalized = TRUE;
         }
         else
            scales[i] = lp_build_const_float(gallivm, 1.0);
      }

      shift += bits;
   }

   if (normalized)
      scaled = LLVMBuildFMul(builder, unswizzled, LLVMConstVector(scales, 4), "");
   else
      scaled = unswizzled;

   casted = LLVMBuildFPToSI(builder, scaled, LLVMVectorType(LLVMInt32TypeInContext(gallivm->context), 4), "");

   shifted = LLVMBuildShl(builder, casted, LLVMConstVector(shifts, 4), "");
   
   /* Bitwise or all components */
   for (i = 0; i < 4; ++i) {
      if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED) {
         LLVMValueRef component = LLVMBuildExtractElement(builder, shifted,
                                               lp_build_const_int32(gallivm, i), "");
         if (packed)
            packed = LLVMBuildOr(builder, packed, component, "");
         else
            packed = component;
      }
   }

   if (!packed)
      packed = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));

   if (desc->block.bits < 32)
      packed = LLVMBuildTrunc(builder, packed, type, "");

   return packed;
}
コード例 #24
0
ファイル: val.c プロジェクト: 3upperm2n/gpuSimulators
struct cl2llvm_val_t *llvm_type_cast(struct cl2llvm_val_t * original_val, 
	struct cl2llvmTypeWrap *totype_w_sign)
{
	struct cl2llvm_val_t *llvm_val = cl2llvm_val_create();

	int i;
	struct cl2llvmTypeWrap *elem_type;
	struct cl2llvm_val_t *cast_original_val;
	LLVMValueRef index;
	LLVMValueRef vector_addr;
	LLVMValueRef vector;
	LLVMValueRef const_elems[16];
	LLVMTypeRef fromtype = cl2llvmTypeWrapGetLlvmType(original_val->type);
	LLVMTypeRef totype = cl2llvmTypeWrapGetLlvmType(totype_w_sign);
	int fromsign = cl2llvmTypeWrapGetSign(original_val->type);
	int tosign = cl2llvmTypeWrapGetSign(totype_w_sign);

	/*By default the return value is the same as the original_val*/
	llvm_val->val = original_val->val;
	cl2llvmTypeWrapSetLlvmType(llvm_val->type, cl2llvmTypeWrapGetLlvmType(original_val->type));
	cl2llvmTypeWrapSetSign(llvm_val->type, cl2llvmTypeWrapGetSign(original_val->type));
	
	snprintf(temp_var_name, sizeof temp_var_name,
		"tmp_%d", temp_var_count++);
		
	/* Check that fromtype is not a vector, unless both types are identical. */
	if (LLVMGetTypeKind(fromtype) == LLVMVectorTypeKind)
	{
		if ((LLVMGetVectorSize(fromtype) != LLVMGetVectorSize(totype) 
			|| LLVMGetElementType(fromtype) 
			!= LLVMGetElementType(totype)) 
			|| fromsign != tosign)
		{
			if (LLVMGetTypeKind(totype) == LLVMVectorTypeKind)
				cl2llvm_yyerror("Casts between vector types are forbidden");
			cl2llvm_yyerror("A vector may not be cast to any other type.");
		}
	}

	/* If totype is a vector, create a vector whose components are equal to 
	original_val */

	if (LLVMGetTypeKind(totype) == LLVMVectorTypeKind
		&& LLVMGetTypeKind(fromtype) != LLVMVectorTypeKind)
	{
		/*Go to entry block and declare vector*/
		LLVMPositionBuilder(cl2llvm_builder, cl2llvm_current_function->entry_block,
			cl2llvm_current_function->branch_instr);
		
		snprintf(temp_var_name, sizeof temp_var_name,
			"tmp_%d", temp_var_count++);
			
		vector_addr = LLVMBuildAlloca(cl2llvm_builder, 
			totype, temp_var_name);
		LLVMPositionBuilderAtEnd(cl2llvm_builder, current_basic_block);

		/* Load vector */
		snprintf(temp_var_name, sizeof temp_var_name,
			"tmp_%d", temp_var_count++);
	
		vector = LLVMBuildLoad(cl2llvm_builder, vector_addr, temp_var_name);
		
		/* Create object to represent element type of totype */
		elem_type = cl2llvmTypeWrapCreate(LLVMGetElementType(totype), tosign);

		/* If original_val is constant create a constant vector */
		if (LLVMIsConstant(original_val->val))
		{
			cast_original_val = llvm_type_cast(original_val, elem_type);
			for (i = 0; i < LLVMGetVectorSize(totype); i++)
				const_elems[i] = cast_original_val->val;

			vector = LLVMConstVector(const_elems, 	
				LLVMGetVectorSize(totype));
			llvm_val->val = vector;

			cl2llvm_val_free(cast_original_val);
		}
		/* If original value is not constant insert elements */
		else
		{
			for (i = 0; i < LLVMGetVectorSize(totype); i++)
			{
				index = LLVMConstInt(LLVMInt32Type(), i, 0);
				cast_original_val = llvm_type_cast(original_val, elem_type);
				snprintf(temp_var_name, sizeof temp_var_name,
					"tmp_%d", temp_var_count++);
	
				vector = LLVMBuildInsertElement(cl2llvm_builder, 
					vector, cast_original_val->val, index, temp_var_name);
				cl2llvm_val_free(cast_original_val);
			}
		}
		cl2llvmTypeWrapFree(elem_type);
		llvm_val->val = vector;
	}


	if (fromtype == LLVMInt64Type())
	{
		if (totype == LLVMDoubleType())
		{
			if (fromsign)
			{
				llvm_val->val =
						LLVMBuildSIToFP(cl2llvm_builder,
						  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMFloatType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMHalfType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMInt64Type())
		{
			if (tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
			temp_var_count--;
		}
		else if (totype == LLVMInt32Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt32Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt16Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt16Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt8Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt8Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt1Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt1Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
			
	}
	else if (fromtype == LLVMInt32Type())
	{
		if (totype == LLVMDoubleType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMFloatType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMHalfType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMInt64Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			if (tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt32Type())
		{
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
			temp_var_count--;
		}
		else if (totype == LLVMInt16Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt16Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt8Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				 original_val->val, LLVMInt8Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt1Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt1Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
			
	}
	else if (fromtype == LLVMInt16Type())
	{
		if (totype == LLVMDoubleType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMFloatType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMHalfType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMInt64Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			if (tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt32Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt32Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt32Type(),
					temp_var_name);
			}
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt16Type())
		{
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
			temp_var_count--;
		}
		else if (totype == LLVMInt8Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt8Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt1Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt1Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
			
	}
	else if (fromtype == LLVMInt8Type())
	{
		if (totype == LLVMDoubleType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMFloatType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMHalfType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMInt64Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			if (tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt32Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt32Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt32Type(),
					temp_var_name);
			}
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt16Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt16Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt16Type(),
					temp_var_name);
			}
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt8Type())
		{
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
			temp_var_count--;
		}
		else if (totype == LLVMInt1Type())
		{
			llvm_val->val = LLVMBuildTrunc(cl2llvm_builder,
				  original_val->val, LLVMInt1Type(), temp_var_name);
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
			
	}
	else if (fromtype == LLVMInt1Type())
	{
		if (totype == LLVMDoubleType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMDoubleType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMFloatType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMFloatType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMHalfType())
		{
			if (fromsign)
			{
				llvm_val->val =
					LLVMBuildSIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			else
			{
				llvm_val->val =
					LLVMBuildUIToFP(cl2llvm_builder,
					  original_val->val, LLVMHalfType(),
					temp_var_name);
			}
			cl2llvmTypeWrapSetSign(llvm_val->type, 1);
		}
		else if (totype == LLVMInt64Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt64Type(),
					temp_var_name);
			}
			if (tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt32Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt32Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt32Type(),
					temp_var_name);
			}
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt16Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt16Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt16Type(),
					temp_var_name);
			}
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt8Type())
		{
			if (fromsign)
			{
				llvm_val->val = LLVMBuildSExt(cl2llvm_builder,
					  original_val->val, LLVMInt8Type(),
					temp_var_name);
			}
			else
			{
				llvm_val->val = LLVMBuildZExt(cl2llvm_builder,
					  original_val->val, LLVMInt8Type(),
					temp_var_name);
			}
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
		}
		else if (totype == LLVMInt1Type())
		{
			if(tosign)
				cl2llvmTypeWrapSetSign(llvm_val->type, 1);
			else
				cl2llvmTypeWrapSetSign(llvm_val->type, 0);
			temp_var_count--;
		}			
	}

	/*We now know that from type must be a floating point.*/

	/*Floating point to signed integer conversions*/
	else if (tosign && LLVMGetTypeKind(totype) == 8)
	{
		if (totype == LLVMInt64Type())
		{
			llvm_val->val = LLVMBuildFPToSI(cl2llvm_builder, 
				  original_val->val, LLVMInt64Type(), temp_var_name);
		}
		else if (totype == LLVMInt32Type())
		{
			llvm_val->val = LLVMBuildFPToSI(cl2llvm_builder, 
				  original_val->val, LLVMInt32Type(), temp_var_name);
		}
		else if (totype == LLVMInt16Type())
		{
			llvm_val->val = LLVMBuildFPToSI(cl2llvm_builder, 
				  original_val->val, LLVMInt16Type(), temp_var_name);
		}
		else if (totype == LLVMInt8Type())
		{
			llvm_val->val = LLVMBuildFPToSI(cl2llvm_builder, 
				  original_val->val, LLVMInt8Type(), temp_var_name);
		}
		else if (totype == LLVMInt1Type())
		{
			llvm_val->val = LLVMBuildFPToSI(cl2llvm_builder, 
				  original_val->val, LLVMInt1Type(), temp_var_name);
		}
		cl2llvmTypeWrapSetSign(llvm_val->type, 1);
	}
	/*Floating point to unsigned integer conversions*/
	else if (!tosign)
	{
		if (totype == LLVMInt64Type())
		{
			llvm_val->val = LLVMBuildFPToUI(cl2llvm_builder, 
				  original_val->val, LLVMInt64Type(), temp_var_name);
		}
		else if (totype == LLVMInt32Type())
		{
			llvm_val->val = LLVMBuildFPToUI(cl2llvm_builder, 
				  original_val->val, LLVMInt32Type(), temp_var_name);
		}
		else if (totype == LLVMInt16Type())
		{
			llvm_val->val = LLVMBuildFPToUI(cl2llvm_builder, 
				  original_val->val, LLVMInt16Type(), temp_var_name);
		}
		else if (totype == LLVMInt8Type())
		{
			llvm_val->val = LLVMBuildFPToUI(cl2llvm_builder, 
				  original_val->val, LLVMInt8Type(), temp_var_name);
		}
		else if (totype == LLVMInt1Type())
		{
			llvm_val->val = LLVMBuildFPToUI(cl2llvm_builder, 
				  original_val->val, LLVMInt1Type(), temp_var_name);
		}
		cl2llvmTypeWrapSetSign(llvm_val->type, 0);
	}
	else if (totype == LLVMDoubleType())
	{
		llvm_val->val = LLVMBuildFPExt(cl2llvm_builder, 
			  original_val->val, LLVMDoubleType(), temp_var_name);
		cl2llvmTypeWrapSetSign(llvm_val->type, 1);
	}
	else if (totype == LLVMFloatType())
	{
		if (fromtype == LLVMDoubleType())
		{
			llvm_val->val = LLVMBuildFPTrunc(cl2llvm_builder, 
				  original_val->val, LLVMFloatType(), temp_var_name);
		}
		else if (fromtype == LLVMHalfType())
		{
			llvm_val->val = LLVMBuildFPExt(cl2llvm_builder, 
				  original_val->val, LLVMFloatType(), temp_var_name);
		}
		cl2llvmTypeWrapSetSign(llvm_val->type, 1);
	}
	else if (totype == LLVMHalfType())
	{
		llvm_val->val = LLVMBuildFPTrunc(cl2llvm_builder, 
			  original_val->val, LLVMHalfType(), temp_var_name);
		cl2llvmTypeWrapSetSign(llvm_val->type, 1);
	}
	cl2llvmTypeWrapSetLlvmType(llvm_val->type, totype);
	cl2llvmTypeWrapSetSign(llvm_val->type, tosign);
	
	return llvm_val;
}