コード例 #1
0
ファイル: LUN.hpp プロジェクト: YingzhouLi/Elemental
void LUNMedium
( const AbstractDistMatrix<F>& UPre, AbstractDistMatrix<F>& XPre, 
  bool checkIfSingular )
{
    DEBUG_CSE
    const Int m = XPre.Height();
    const Int bsize = Blocksize();
    const Grid& g = UPre.Grid();

    DistMatrixReadProxy<F,F,MC,MR> UProx( UPre );
    DistMatrixReadWriteProxy<F,F,MC,MR> XProx( XPre );
    auto& U = UProx.GetLocked();
    auto& X = XProx.Get();

    DistMatrix<F,MC,  STAR> U01_MC_STAR(g);
    DistMatrix<F,STAR,STAR> U11_STAR_STAR(g);
    DistMatrix<F,MR,  STAR> X1Trans_MR_STAR(g);

    const Int kLast = LastOffset( m, bsize );
    Int k=kLast, kOld=m;
    while( true )
    {
        const bool in2x2 = ( k>0 && U.Get(k,k-1) != F(0) );
        if( in2x2 )
            --k;
        const Int nb = kOld-k;

        const Range<Int> ind0( 0, k    ),
                         ind1( k, k+nb );

        auto U01 = U( ind0, ind1 );
        auto U11 = U( ind1, ind1 );

        auto X0 = X( ind0, ALL );
        auto X1 = X( ind1, ALL );

        U11_STAR_STAR = U11; // U11[* ,* ] <- U11[MC,MR]
        X1Trans_MR_STAR.AlignWith( X0 );
        Transpose( X1, X1Trans_MR_STAR );
        
        // X1^T[MR,* ] := X1^T[MR,* ] U11^-T[* ,* ]
        //              = (U11^-1[* ,* ] X1[* ,MR])^T
        LocalQuasiTrsm
        ( RIGHT, UPPER, TRANSPOSE,
          F(1), U11_STAR_STAR, X1Trans_MR_STAR, checkIfSingular );
        Transpose( X1Trans_MR_STAR, X1 );

        U01_MC_STAR.AlignWith( X0 );
        U01_MC_STAR = U01;  // U01[MC,* ] <- U01[MC,MR]

        // X0[MC,MR] -= U01[MC,* ] X1[* ,MR]
        LocalGemm
        ( NORMAL, TRANSPOSE, F(-1), U01_MC_STAR, X1Trans_MR_STAR, F(1), X0 );

        if( k == 0 )
            break;
        kOld = k;
        k -= Min(bsize,k);
    }
}
コード例 #2
0
ファイル: LUN.hpp プロジェクト: elemental/Elemental
void LUNMedium
( UnitOrNonUnit diag, 
  const AbstractDistMatrix<F>& UPre,
        AbstractDistMatrix<F>& XPre,
  bool checkIfSingular )
{
    EL_DEBUG_CSE
    const Int m = XPre.Height();
    const Int bsize = Blocksize();
    const Grid& g = UPre.Grid();

    DistMatrixReadProxy<F,F,MC,MR> UProx( UPre );
    DistMatrixReadWriteProxy<F,F,MC,MR> XProx( XPre );
    auto& U = UProx.GetLocked();
    auto& X = XProx.Get();

    DistMatrix<F,MC,  STAR> U01_MC_STAR(g);
    DistMatrix<F,STAR,STAR> U11_STAR_STAR(g);
    DistMatrix<F,MR,  STAR> X1Trans_MR_STAR(g);

    const Int kLast = LastOffset( m, bsize );
    for( Int k=kLast; k>=0; k-=bsize )
    {
        const Int nb = Min(bsize,m-k);

        const Range<Int> ind0( 0, k    ),
                         ind1( k, k+nb );

        auto U01 = U( ind0, ind1 );
        auto U11 = U( ind1, ind1 );

        auto X0 = X( ind0, ALL );
        auto X1 = X( ind1, ALL );

        U11_STAR_STAR = U11; // U11[* ,* ] <- U11[MC,MR]
        X1Trans_MR_STAR.AlignWith( X0 );
        Transpose( X1, X1Trans_MR_STAR );
        
        // X1^T[MR,* ] := X1^T[MR,* ] U11^-T[* ,* ]
        //              = (U11^-1[* ,* ] X1[* ,MR])^T
        LocalTrsm
        ( RIGHT, UPPER, TRANSPOSE, diag, 
          F(1), U11_STAR_STAR, X1Trans_MR_STAR, checkIfSingular );
        Transpose( X1Trans_MR_STAR, X1 );

        U01_MC_STAR.AlignWith( X0 );
        U01_MC_STAR = U01;  // U01[MC,* ] <- U01[MC,MR]

        // X0[MC,MR] -= U01[MC,* ] X1[* ,MR]
        LocalGemm
        ( NORMAL, TRANSPOSE, F(-1), U01_MC_STAR, X1Trans_MR_STAR, F(1), X0 );
    }
}
コード例 #3
0
ファイル: LLN.hpp プロジェクト: YingzhouLi/Elemental
void LLNMedium
( const AbstractDistMatrix<F>& LPre,
        AbstractDistMatrix<F>& XPre, 
  bool checkIfSingular )
{
    DEBUG_CSE
    const Int m = XPre.Height();
    const Int bsize = Blocksize();
    const Grid& g = LPre.Grid();

    DistMatrixReadProxy<F,F,MC,MR> LProx( LPre );
    DistMatrixReadWriteProxy<F,F,MC,MR> XProx( XPre );
    auto& L = LProx.GetLocked();
    auto& X = XProx.Get();

    DistMatrix<F,STAR,STAR> L11_STAR_STAR(g);
    DistMatrix<F,MC,  STAR> L21_MC_STAR(g);
    DistMatrix<F,MR,  STAR> X1Trans_MR_STAR(g);

    for( Int k=0; k<m; k+=bsize )
    {
        const Int nbProp = Min(bsize,m-k);
        const bool in2x2 = ( k+nbProp<m && L.Get(k+nbProp-1,k+nbProp) != F(0) );
        const Int nb = ( in2x2 ? nbProp+1 : nbProp );

        const Range<Int> ind1( k,    k+nb ),
                         ind2( k+nb, m    );

        auto L11 = L( ind1, ind1 );
        auto L21 = L( ind2, ind1 );

        auto X1 = X( ind1, ALL );
        auto X2 = X( ind2, ALL );

        L11_STAR_STAR = L11; // L11[* ,* ] <- L11[MC,MR]
        X1Trans_MR_STAR.AlignWith( X2 );
        Transpose( X1, X1Trans_MR_STAR );

        // X1^T[MR,* ] := X1^T[MR,* ] L11^-T[* ,* ]
        //              = (L11^-1[* ,* ] X1[* ,MR])^T
        LocalQuasiTrsm
        ( RIGHT, LOWER, TRANSPOSE,
          F(1), L11_STAR_STAR, X1Trans_MR_STAR, checkIfSingular );

        Transpose( X1Trans_MR_STAR, X1 );
        L21_MC_STAR.AlignWith( X2 );
        L21_MC_STAR = L21;                   // L21[MC,* ] <- L21[MC,MR]
        
        // X2[MC,MR] -= L21[MC,* ] X1[* ,MR]
        LocalGemm
        ( NORMAL, TRANSPOSE, F(-1), L21_MC_STAR, X1Trans_MR_STAR, F(1), X2 );
    }
}
コード例 #4
0
ファイル: LUN.hpp プロジェクト: elemental/Elemental
void LUNLarge
( UnitOrNonUnit diag,
  const AbstractDistMatrix<F>& UPre,
        AbstractDistMatrix<F>& XPre, 
  bool checkIfSingular )
{
    EL_DEBUG_CSE
    const Int m = XPre.Height();
    const Int bsize = Blocksize();
    const Grid& g = UPre.Grid();

    DistMatrixReadProxy<F,F,MC,MR> UProx( UPre );
    DistMatrixReadWriteProxy<F,F,MC,MR> XProx( XPre );
    auto& U = UProx.GetLocked();
    auto& X = XProx.Get();

    DistMatrix<F,MC,  STAR> U01_MC_STAR(g);
    DistMatrix<F,STAR,STAR> U11_STAR_STAR(g);
    DistMatrix<F,STAR,MR  > X1_STAR_MR(g);
    DistMatrix<F,STAR,VR  > X1_STAR_VR(g);

    const Int kLast = LastOffset( m, bsize );
    for( Int k=kLast; k>=0; k-=bsize )
    {
        const Int nb = Min(bsize,m-k);

        const Range<Int> ind0( 0, k    ),
                         ind1( k, k+nb );

        auto U01 = U( ind0, ind1 );
        auto U11 = U( ind1, ind1 );

        auto X0 = X( ind0, ALL );
        auto X1 = X( ind1, ALL );

        U11_STAR_STAR = U11; // U11[* ,* ] <- U11[MC,MR]
        X1_STAR_VR    = X1;  // X1[* ,VR] <- X1[MC,MR]
        
        // X1[* ,VR] := U11^-1[* ,* ] X1[* ,VR]
        LocalTrsm
        ( LEFT, UPPER, NORMAL, diag, F(1), U11_STAR_STAR, X1_STAR_VR,
          checkIfSingular );

        X1_STAR_MR.AlignWith( X0 );
        X1_STAR_MR  = X1_STAR_VR; // X1[* ,MR]  <- X1[* ,VR]
        X1          = X1_STAR_MR; // X1[MC,MR] <- X1[* ,MR]
        U01_MC_STAR.AlignWith( X0 );
        U01_MC_STAR = U01;        // U01[MC,* ] <- U01[MC,MR]

        // X0[MC,MR] -= U01[MC,* ] X1[* ,MR]
        LocalGemm( NORMAL, NORMAL, F(-1), U01_MC_STAR, X1_STAR_MR, F(1), X0 );
    }
}
コード例 #5
0
ファイル: LLN.hpp プロジェクト: YingzhouLi/Elemental
void LLNLarge
( const AbstractDistMatrix<F>& LPre,
        AbstractDistMatrix<F>& XPre, 
  bool checkIfSingular )
{
    DEBUG_CSE
    const Int m = XPre.Height();
    const Int bsize = Blocksize();
    const Grid& g = LPre.Grid();

    DistMatrixReadProxy<F,F,MC,MR> LProx( LPre );
    DistMatrixReadWriteProxy<F,F,MC,MR> XProx( XPre );
    auto& L = LProx.GetLocked();
    auto& X = XProx.Get();

    DistMatrix<F,STAR,STAR> L11_STAR_STAR(g);
    DistMatrix<F,MC,  STAR> L21_MC_STAR(g);
    DistMatrix<F,STAR,MR  > X1_STAR_MR(g);
    DistMatrix<F,STAR,VR  > X1_STAR_VR(g);

    for( Int k=0; k<m; k+=bsize )
    {
        const Int nbProp = Min(bsize,m-k);
        const bool in2x2 = ( k+nbProp<m && L.Get(k+nbProp-1,k+nbProp) != F(0) );
        const Int nb = ( in2x2 ? nbProp+1 : nbProp );

        const Range<Int> ind1( k,    k+nb ),
                         ind2( k+nb, m    );

        auto L11 = L( ind1, ind1 );
        auto L21 = L( ind2, ind1 );

        auto X1 = X( ind1, ALL );
        auto X2 = X( ind2, ALL );

        // X1[* ,VR] := L11^-1[* ,* ] X1[* ,VR]
        L11_STAR_STAR = L11; 
        X1_STAR_VR    = X1; 
        LocalQuasiTrsm
        ( LEFT, LOWER, NORMAL, F(1), L11_STAR_STAR, X1_STAR_VR,
          checkIfSingular );

        X1_STAR_MR.AlignWith( X2 );
        X1_STAR_MR  = X1_STAR_VR; // X1[* ,MR]  <- X1[* ,VR]
        X1          = X1_STAR_MR; // X1[MC,MR] <- X1[* ,MR]
        L21_MC_STAR.AlignWith( X2 );
        L21_MC_STAR = L21;        // L21[MC,* ] <- L21[MC,MR]
        
        // X2[MC,MR] -= L21[MC,* ] X1[* ,MR]
        LocalGemm( NORMAL, NORMAL, F(-1), L21_MC_STAR, X1_STAR_MR, F(1), X2 );
    }
}
コード例 #6
0
ファイル: NT.hpp プロジェクト: elemental/Elemental
void SUMMA_NTDot
( Orientation orientB,
  T alpha,
  const AbstractDistMatrix<T>& APre,
  const AbstractDistMatrix<T>& BPre,
        AbstractDistMatrix<T>& CPre,
  Int blockSize=2000 )
{
    EL_DEBUG_CSE
    const Int m = CPre.Height();
    const Int n = CPre.Width();
    const Grid& g = APre.Grid();

    DistMatrixReadProxy<T,T,STAR,VC> AProx( APre );
    auto& A = AProx.GetLocked();

    ElementalProxyCtrl BCtrl;
    BCtrl.rowConstrain = true;
    BCtrl.rowAlign = A.RowAlign();
    DistMatrixReadProxy<T,T,STAR,VC> BProx( BPre, BCtrl );
    auto& B = BProx.GetLocked();

    DistMatrixReadWriteProxy<T,T,MC,MR> CProx( CPre );
    auto& C = CProx.Get();

    DistMatrix<T,STAR,STAR> C11_STAR_STAR(g);
    for( Int kOuter=0; kOuter<m; kOuter+=blockSize )
    {
        const Int nbOuter = Min(blockSize,m-kOuter);
        const Range<Int> indOuter( kOuter, kOuter+nbOuter );

        auto A1 = A( indOuter, ALL );

        for( Int kInner=0; kInner<n; kInner+=blockSize )
        {
            const Int nbInner = Min(blockSize,n-kInner);
            const Range<Int> indInner( kInner, kInner+nbInner );

            auto B1  = B( indInner, ALL );
            auto C11 = C( indOuter, indInner );

            LocalGemm( NORMAL, orientB, alpha, A1, B1, C11_STAR_STAR );
            AxpyContract( T(1), C11_STAR_STAR, C11 );
        }
    }
}
コード例 #7
0
ファイル: LT.hpp プロジェクト: elemental/Elemental
void LT_Dot
( T alpha,
  const AbstractDistMatrix<T>& APre,
  AbstractDistMatrix<T>& CPre,
  const bool conjugate,
  Int blockSize=2000 )
{
    EL_DEBUG_CSE
    const Int n = CPre.Height();
    const Grid& g = APre.Grid();

    const Orientation orient = ( conjugate ? ADJOINT : TRANSPOSE );

    DistMatrixReadProxy<T,T,VC,STAR> AProx( APre );
    auto& A = AProx.GetLocked();

    DistMatrixReadWriteProxy<T,T,MC,MR> CProx( CPre );
    auto& C = CProx.Get();

    DistMatrix<T,STAR,STAR> Z( blockSize, blockSize, g );
    Zero( Z );
    for( Int kOuter=0; kOuter<n; kOuter+=blockSize )
    {
        const Int nbOuter = Min(blockSize,n-kOuter);
        const Range<Int> indOuter( kOuter, kOuter+nbOuter );

        auto A1 = A( ALL, indOuter );
        auto C11 = C( indOuter, indOuter );

        Z.Resize( nbOuter, nbOuter );
        Syrk( LOWER, TRANSPOSE, alpha, A1.Matrix(), Z.Matrix(), conjugate );
        AxpyContract( T(1), Z, C11 );

        for( Int kInner=kOuter+nbOuter; kInner<n; kInner+=blockSize )
        {
            const Int nbInner = Min(blockSize,n-kInner);
            const Range<Int> indInner( kInner, kInner+nbInner );

            auto A2 = A( ALL, indInner );
            auto C21 = C( indInner, indOuter );

            LocalGemm( orient, NORMAL, alpha, A1, A2, Z );
            AxpyContract( T(1), Z, C21 );
        }
    }
}
コード例 #8
0
ファイル: NT.hpp プロジェクト: elemental/Elemental
void SUMMA_NTC
( Orientation orientB,
  T alpha,
  const AbstractDistMatrix<T>& APre,
  const AbstractDistMatrix<T>& BPre,
        AbstractDistMatrix<T>& CPre )
{
    EL_DEBUG_CSE
    const Int sumDim = APre.Width();
    const Int bsize = Blocksize();
    const Grid& g = APre.Grid();
    const bool conjugate = ( orientB == ADJOINT );

    DistMatrixReadProxy<T,T,MC,MR> AProx( APre );
    DistMatrixReadProxy<T,T,MC,MR> BProx( BPre );
    DistMatrixReadWriteProxy<T,T,MC,MR> CProx( CPre );
    auto& A = AProx.GetLocked();
    auto& B = BProx.GetLocked();
    auto& C = CProx.Get();

    // Temporary distributions
    DistMatrix<T,MC,STAR> A1_MC_STAR(g);
    DistMatrix<T,VR,STAR> B1_VR_STAR(g);
    DistMatrix<T,STAR,MR> B1Trans_STAR_MR(g);

    A1_MC_STAR.AlignWith( C );
    B1_VR_STAR.AlignWith( C );
    B1Trans_STAR_MR.AlignWith( C );

    for( Int k=0; k<sumDim; k+=bsize )
    {
        const Int nb = Min(bsize,sumDim-k);
        auto A1 = A( ALL, IR(k,k+nb) );
        auto B1 = B( ALL, IR(k,k+nb) );

        A1_MC_STAR = A1;
        B1_VR_STAR = B1;
        Transpose( B1_VR_STAR, B1Trans_STAR_MR, conjugate );

        // C[MC,MR] += alpha A1[MC,*] (B1[MR,*])^T
        LocalGemm
        ( NORMAL, NORMAL, alpha, A1_MC_STAR, B1Trans_STAR_MR, T(1), C );
    }
}
コード例 #9
0
ファイル: NT.hpp プロジェクト: elemental/Elemental
void SUMMA_NTB
( Orientation orientB,
  T alpha,
  const AbstractDistMatrix<T>& APre,
  const AbstractDistMatrix<T>& BPre,
        AbstractDistMatrix<T>& CPre )
{
    EL_DEBUG_CSE
    const Int m = CPre.Height();
    const Int bsize = Blocksize();
    const Grid& g = APre.Grid();

    DistMatrixReadProxy<T,T,MC,MR> AProx( APre );
    DistMatrixReadProxy<T,T,MC,MR> BProx( BPre );
    DistMatrixReadWriteProxy<T,T,MC,MR> CProx( CPre );
    auto& A = AProx.GetLocked();
    auto& B = BProx.GetLocked();
    auto& C = CProx.Get();

    // Temporary distributions
    DistMatrix<T,MR,STAR> A1Trans_MR_STAR(g);
    DistMatrix<T,STAR,MC> D1_STAR_MC(g);
    DistMatrix<T,MR,MC> D1_MR_MC(g);

    A1Trans_MR_STAR.AlignWith( B );
    D1_STAR_MC.AlignWith( B );

    for( Int k=0; k<m; k+=bsize )
    {
        const Int nb = Min(bsize,m-k);
        auto A1 = A( IR(k,k+nb), ALL );
        auto C1 = C( IR(k,k+nb), ALL );

        // D1[*,MC] := alpha A1[*,MR] (B[MC,MR])^T
        //           = alpha (A1^T)[MR,*] (B^T)[MR,MC]
        Transpose( A1, A1Trans_MR_STAR );
        LocalGemm( TRANSPOSE, orientB, alpha, A1Trans_MR_STAR, B, D1_STAR_MC );

        // C1[MC,MR] += scattered & transposed D1[*,MC] summed over grid rows
        Contract( D1_STAR_MC, D1_MR_MC );
        Axpy( T(1), D1_MR_MC, C1 );
    }
}
コード例 #10
0
ファイル: TN.hpp プロジェクト: YingzhouLi/Elemental
void SUMMA_TNA
( Orientation orientA,
  T alpha,
  const AbstractDistMatrix<T>& APre,
  const AbstractDistMatrix<T>& BPre,
        AbstractDistMatrix<T>& CPre )
{
    DEBUG_CSE
    const Int n = CPre.Width();
    const Int bsize = Blocksize();
    const Grid& g = APre.Grid();

    DistMatrixReadProxy<T,T,MC,MR> AProx( APre );
    DistMatrixReadProxy<T,T,MC,MR> BProx( BPre );
    DistMatrixReadWriteProxy<T,T,MC,MR> CProx( CPre );
    auto& A = AProx.GetLocked();
    auto& B = BProx.GetLocked();
    auto& C = CProx.Get();

    // Temporary distributions
    DistMatrix<T,MC,STAR> B1_MC_STAR(g);
    DistMatrix<T,MR,STAR> D1_MR_STAR(g);
    DistMatrix<T,MR,MC  > D1_MR_MC(g);

    B1_MC_STAR.AlignWith( A );
    D1_MR_STAR.AlignWith( A );

    for( Int k=0; k<n; k+=bsize )
    {
        const Int nb = Min(bsize,n-k);
        auto B1 = B( ALL, IR(k,k+nb) );
        auto C1 = C( ALL, IR(k,k+nb) );

        // D1[MR,*] := alpha (A1[MC,MR])^T B1[MC,*]
        //           = alpha (A1^T)[MR,MC] B1[MC,*]
        B1_MC_STAR = B1; 
        LocalGemm( orientA, NORMAL, alpha, A, B1_MC_STAR, D1_MR_STAR );

        // C1[MC,MR] += scattered & transposed D1[MR,*] summed over grid cols
        Contract( D1_MR_STAR, D1_MR_MC );
        Axpy( T(1), D1_MR_MC, C1 );
    }
}
コード例 #11
0
ファイル: NT.hpp プロジェクト: elemental/Elemental
void SUMMA_NTA
( Orientation orientB,
  T alpha,
  const AbstractDistMatrix<T>& APre,
  const AbstractDistMatrix<T>& BPre,
        AbstractDistMatrix<T>& CPre )
{
    EL_DEBUG_CSE
    const Int n = CPre.Width();
    const Int bsize = Blocksize();
    const Grid& g = APre.Grid();
    const bool conjugate = ( orientB == ADJOINT );

    DistMatrixReadProxy<T,T,MC,MR> AProx( APre );
    DistMatrixReadProxy<T,T,MC,MR> BProx( BPre );
    DistMatrixReadWriteProxy<T,T,MC,MR> CProx( CPre );
    auto& A = AProx.GetLocked();
    auto& B = BProx.GetLocked();
    auto& C = CProx.Get();

    // Temporary distributions
    DistMatrix<T,MR,STAR> B1Trans_MR_STAR(g);
    DistMatrix<T,MC,STAR> D1_MC_STAR(g);

    B1Trans_MR_STAR.AlignWith( A );
    D1_MC_STAR.AlignWith( A );

    for( Int k=0; k<n; k+=bsize )
    {
        const Int nb = Min(bsize,n-k);
        auto B1 = B( IR(k,k+nb), ALL        );
        auto C1 = C( ALL,        IR(k,k+nb) );

        // C1[MC,*] := alpha A[MC,MR] (B1^[T/H])[MR,*]
        Transpose( B1, B1Trans_MR_STAR, conjugate );
        LocalGemm( NORMAL, NORMAL, alpha, A, B1Trans_MR_STAR, D1_MC_STAR );

        // C1[MC,MR] += scattered result of D1[MC,*] summed over grid rows
        AxpyContract( T(1), D1_MC_STAR, C1 );
    }
}
コード例 #12
0
ファイル: TN.hpp プロジェクト: YingzhouLi/Elemental
void SUMMA_TNB
( Orientation orientA,
  T alpha,
  const AbstractDistMatrix<T>& APre,
  const AbstractDistMatrix<T>& BPre,
        AbstractDistMatrix<T>& CPre )
{
    DEBUG_CSE
    const Int m = CPre.Height();
    const Int bsize = Blocksize();
    const Grid& g = APre.Grid();
    const bool conjugate = ( orientA == ADJOINT );

    DistMatrixReadProxy<T,T,MC,MR> AProx( APre );
    DistMatrixReadProxy<T,T,MC,MR> BProx( BPre );
    DistMatrixReadWriteProxy<T,T,MC,MR> CProx( CPre );
    auto& A = AProx.GetLocked();
    auto& B = BProx.GetLocked();
    auto& C = CProx.Get();

    // Temporary distributions
    DistMatrix<T,MC,STAR> A1_MC_STAR(g);
    DistMatrix<T,MR,STAR> D1Trans_MR_STAR(g);

    A1_MC_STAR.AlignWith( B );
    D1Trans_MR_STAR.AlignWith( B );

    for( Int k=0; k<m; k+=bsize )
    {
        const Int nb = Min(bsize,m-k);
        auto A1 = A( ALL,        IR(k,k+nb) );
        auto C1 = C( IR(k,k+nb), ALL        );

        // D1[*,MR] := alpha (A1[MC,*])^[T/H] B[MC,MR]
        //           = alpha (A1^[T/H])[*,MC] B[MC,MR]
        A1_MC_STAR = A1; // A1[MC,*] <- A1[MC,MR]
        LocalGemm( orientA, NORMAL, T(1), B, A1_MC_STAR, D1Trans_MR_STAR );
        TransposeAxpyContract( alpha, D1Trans_MR_STAR, C1, conjugate );
    }
}
コード例 #13
0
ファイル: TN.hpp プロジェクト: YingzhouLi/Elemental
void SUMMA_TNC
( Orientation orientA,
  T alpha,
  const AbstractDistMatrix<T>& APre,
  const AbstractDistMatrix<T>& BPre,
        AbstractDistMatrix<T>& CPre )
{
    DEBUG_CSE
    const Int sumDim = BPre.Height();
    const Int bsize = Blocksize();
    const Grid& g = APre.Grid();

    DistMatrixReadProxy<T,T,MC,MR> AProx( APre );
    DistMatrixReadProxy<T,T,MC,MR> BProx( BPre );
    DistMatrixReadWriteProxy<T,T,MC,MR> CProx( CPre );
    auto& A = AProx.GetLocked();
    auto& B = BProx.GetLocked();
    auto& C = CProx.Get();

    // Temporary distributions
    DistMatrix<T,STAR,MC> A1_STAR_MC(g);
    DistMatrix<T,MR,STAR> B1Trans_MR_STAR(g);

    A1_STAR_MC.AlignWith( C );
    B1Trans_MR_STAR.AlignWith( C );

    for( Int k=0; k<sumDim; k+=bsize )
    {
        const Int nb = Min(bsize,sumDim-k);
        auto A1 = A( IR(k,k+nb), ALL );
        auto B1 = B( IR(k,k+nb), ALL );

        // C[MC,MR] += alpha (A1[*,MC])^T B1[*,MR]
        //           = alpha (A1^T)[MC,*] B1[*,MR]
        A1_STAR_MC = A1; 
        Transpose( B1, B1Trans_MR_STAR );
        LocalGemm
        ( orientA, TRANSPOSE, alpha, A1_STAR_MC, B1Trans_MR_STAR, T(1), C );
    }
}
コード例 #14
0
ファイル: FrontBackward.hpp プロジェクト: elemental/Elemental
void BackwardSingle
( const DistMatrix<F,VC,STAR>& L,
        DistMatrix<F,VC,STAR>& X,
  bool conjugate=false )
{
    const Grid& g = L.Grid();
    const Orientation orientation = ( conjugate ? ADJOINT : TRANSPOSE );

    DistMatrix<F,STAR,STAR> D(g), L11_STAR_STAR(g), Z1_STAR_STAR(g);
    FormDiagonalBlocks( L, D, conjugate );

    const Int m = L.Height();
    const Int n = L.Width();
    const Int numRHS = X.Width();
    const Int bsize = Blocksize();

    const Int kLast = LastOffset( n, bsize );
    for( Int k=kLast; k>=0; k-=bsize )
    {
        const Int nb = Min(bsize,n-k);
        const Range<Int> ind1(k,k+nb), ind2(k+nb,m);
   
        auto L11Trans_STAR_STAR = D( IR(0,nb), ind1 );
        auto L21 = L( ind2, ind1 ); 
        auto X1 = X( ind1, IR(0,numRHS) );
        auto X2 = X( ind2, IR(0,numRHS) );

        // X1 -= L21' X2
        LocalGemm( orientation, NORMAL, F(-1), L21, X2, Z1_STAR_STAR );
        axpy::util::UpdateWithLocalData( F(1), X1, Z1_STAR_STAR );
        El::AllReduce( Z1_STAR_STAR, X1.DistComm() );

        // X1 := L11^-1 X1
        LocalTrsm
        ( LEFT, UPPER, NORMAL, UNIT, F(1), L11Trans_STAR_STAR, Z1_STAR_STAR );
        X1 = Z1_STAR_STAR;
    }
}
コード例 #15
0
ファイル: LUVF.hpp プロジェクト: certik/Elemental
inline void
ApplyPackedReflectorsLUVF
( int offset, 
  const DistMatrix<R>& H,
        DistMatrix<R>& A )
{
#ifndef RELEASE
    PushCallStack("internal::ApplyPackedReflectorsLUVF");
    if( H.Grid() != A.Grid() )
        throw std::logic_error("{H,A} must be distributed over the same grid");
    if( offset < 0 || offset > H.Height() )
        throw std::logic_error("Transforms out of bounds");
    if( H.Width() != A.Height() )
        throw std::logic_error
        ("Width of transforms must equal height of target matrix");
#endif
    const Grid& g = H.Grid();

    DistMatrix<R>
        HTL(g), HTR(g),  H00(g), H01(g), H02(g),  HPan(g),
        HBL(g), HBR(g),  H10(g), H11(g), H12(g),
                         H20(g), H21(g), H22(g);
    DistMatrix<R>
        AT(g),  A0(g),  ATop(g),
        AB(g),  A1(g),
                A2(g);

    DistMatrix<R> HPanCopy(g);
    DistMatrix<R,VC,  STAR> HPan_VC_STAR(g);
    DistMatrix<R,MC,  STAR> HPan_MC_STAR(g);
    DistMatrix<R,STAR,STAR> SInv_STAR_STAR(g);
    DistMatrix<R,STAR,MR  > Z_STAR_MR(g);
    DistMatrix<R,STAR,VR  > Z_STAR_VR(g);

    LockedPartitionDownDiagonal
    ( H, HTL, HTR,
         HBL, HBR, 0 );
    PartitionDown
    ( A, AT,
         AB, 0 );
    while( HTL.Height() < H.Height() && HTL.Width() < H.Width() )
    {
        LockedRepartitionDownDiagonal
        ( HTL, /**/ HTR,  H00, /**/ H01, H02,
         /*************/ /******************/
               /**/       H10, /**/ H11, H12,
          HBL, /**/ HBR,  H20, /**/ H21, H22 );

        const int HPanHeight = H01.Height() + H11.Height();
        const int HPanOffset = 
            std::min( H11.Width(), std::max(offset-H00.Width(),0) );
        const int HPanWidth = H11.Width()-HPanOffset;
        HPan.LockedView( H, 0, H00.Width()+HPanOffset, HPanHeight, HPanWidth );

        RepartitionDown
        ( AT,  A0,
         /**/ /**/
               A1,
          AB,  A2 );

        ATop.View2x1( A0, 
                      A1 );

        HPan_MC_STAR.AlignWith( ATop );
        Z_STAR_MR.AlignWith( ATop );
        Z_STAR_VR.AlignWith( ATop );
        Zeros( HPan.Width(), ATop.Width(), Z_STAR_MR );
        Zeros( HPan.Width(), HPan.Width(), SInv_STAR_STAR );
        //--------------------------------------------------------------------//
        HPanCopy = HPan;
        MakeTrapezoidal( RIGHT, UPPER, offset, HPanCopy );
        SetDiagonalToOne( RIGHT, offset, HPanCopy );
        HPan_VC_STAR = HPanCopy;
        Syrk
        ( LOWER, TRANSPOSE, 
          R(1), HPan_VC_STAR.LockedLocalMatrix(),
          R(0), SInv_STAR_STAR.LocalMatrix() ); 
        SInv_STAR_STAR.SumOverGrid();
        HalveMainDiagonal( SInv_STAR_STAR );

        HPan_MC_STAR = HPanCopy;
        LocalGemm
        ( TRANSPOSE, NORMAL, R(1), HPan_MC_STAR, ATop, R(0), Z_STAR_MR );
        Z_STAR_VR.SumScatterFrom( Z_STAR_MR );
        
        LocalTrsm
        ( LEFT, LOWER, NORMAL, NON_UNIT, 
          R(1), SInv_STAR_STAR, Z_STAR_VR );

        Z_STAR_MR = Z_STAR_VR;
        LocalGemm( NORMAL, NORMAL, R(-1), HPan_MC_STAR, Z_STAR_MR, R(1), ATop );
        //--------------------------------------------------------------------//
        HPan_MC_STAR.FreeAlignments();
        Z_STAR_MR.FreeAlignments();
        Z_STAR_VR.FreeAlignments();

        SlideLockedPartitionDownDiagonal
        ( HTL, /**/ HTR,  H00, H01, /**/ H02,
               /**/       H10, H11, /**/ H12,
         /*************/ /******************/
          HBL, /**/ HBR,  H20, H21, /**/ H22 );

        SlidePartitionDown
        ( AT,  A0,
               A1,
         /**/ /**/
          AB,  A2 );
    }
#ifndef RELEASE
    PopCallStack();
#endif
}
コード例 #16
0
ファイル: LLT.hpp プロジェクト: mcg1969/Elemental
inline void
TrsmLLTSmall
( Orientation orientation, UnitOrNonUnit diag,
  F alpha, const DistMatrix<F,STAR,VR>& L, DistMatrix<F,VR,STAR>& X,
  bool checkIfSingular )
{
#ifndef RELEASE
    PushCallStack("internal::TrsmLLTSmall");
    if( L.Grid() != X.Grid() )
        throw std::logic_error
        ("L and X must be distributed over the same grid");
    if( orientation == NORMAL )
        throw std::logic_error("TrsmLLT expects a (Conjugate)Transpose option");
    if( L.Height() != L.Width() || L.Height() != X.Height() )
    {
        std::ostringstream msg;
        msg << "Nonconformal TrsmLLT: \n"
            << "  L ~ " << L.Height() << " x " << L.Width() << "\n"
            << "  X ~ " << X.Height() << " x " << X.Width() << "\n";
        throw std::logic_error( msg.str().c_str() );
    }
    if( L.RowAlignment() != X.ColAlignment() )
        throw std::logic_error("L and X must be aligned");
#endif
    const Grid& g = L.Grid();

    // Matrix views
    DistMatrix<F,STAR,VR> 
        LTL(g), LTR(g),  L00(g), L01(g), L02(g),
        LBL(g), LBR(g),  L10(g), L11(g), L12(g),
                         L20(g), L21(g), L22(g);

    DistMatrix<F,VR,STAR> XT(g),  X0(g),
                          XB(g),  X1(g),
                                  X2(g);

    // Temporary distributions
    DistMatrix<F,STAR,STAR> L11_STAR_STAR(g);
    DistMatrix<F,STAR,STAR> X1_STAR_STAR(g);

    // Start the algorithm
    Scale( alpha, X );
    LockedPartitionUpDiagonal
    ( L, LTL, LTR,
         LBL, LBR, 0 );
    PartitionUp
    ( X, XT,
         XB, 0 );
    while( XT.Height() > 0 )
    {
        LockedRepartitionUpDiagonal
        ( LTL, /**/ LTR,  L00, L01, /**/ L02,
               /**/       L10, L11, /**/ L12,
         /*************/ /******************/
          LBL, /**/ LBR,  L20, L21, /**/ L22 );

        RepartitionUp
        ( XT,  X0,
               X1,
         /**/ /**/
          XB,  X2 ); 

        //--------------------------------------------------------------------//
        L11_STAR_STAR = L11; // L11[* ,* ] <- L11[* ,VR]
        X1_STAR_STAR = X1;   // X1[* ,* ] <- X1[VR,* ]

        // X1[* ,* ] := L11^-[T/H][* ,* ] X1[* ,* ]
        LocalTrsm
        ( LEFT, LOWER, orientation, diag,
          F(1), L11_STAR_STAR, X1_STAR_STAR, checkIfSingular );

        X1 = X1_STAR_STAR;

        // X0[VR,* ] -= L10[* ,VR]^(T/H) X1[* ,* ]
        LocalGemm( orientation, NORMAL, F(-1), L10, X1_STAR_STAR, F(1), X0 );
        //--------------------------------------------------------------------//

        SlideLockedPartitionUpDiagonal
        ( LTL, /**/ LTR,  L00, /**/ L01, L02,
         /*************/ /******************/
               /**/       L10, /**/ L11, L12,
          LBL, /**/ LBR,  L20, /**/ L21, L22 );

        SlidePartitionUp
        ( XT,  X0,
         /**/ /**/
               X1,
          XB,  X2 );
    }
#ifndef RELEASE
    PopCallStack();
#endif
}
コード例 #17
0
ファイル: LVar2.hpp プロジェクト: certik/Elemental
inline void
HPDInverseLVar2( DistMatrix<F>& A )
{
#ifndef RELEASE
    PushCallStack("internal::HPDInverseLVar2");
    if( A.Height() != A.Width() )
        throw std::logic_error("Nonsquare matrices cannot be triangular");
#endif
    const Grid& g = A.Grid();

    // Matrix views
    DistMatrix<F> 
        ATL(g), ATR(g),  A00(g), A01(g), A02(g),
        ABL(g), ABR(g),  A10(g), A11(g), A12(g),
                         A20(g), A21(g), A22(g);

    // Temporary distributions
    DistMatrix<F,STAR,STAR> A11_STAR_STAR(g);
    DistMatrix<F,STAR,VR  > A10_STAR_VR(g);
    DistMatrix<F,VC,  STAR> A21_VC_STAR(g);
    DistMatrix<F,STAR,MC  > A10_STAR_MC(g);
    DistMatrix<F,STAR,MR  > A10_STAR_MR(g);
    DistMatrix<F,STAR,MC  > A21Trans_STAR_MC(g);
    DistMatrix<F,VR,  STAR> A21_VR_STAR(g);
    DistMatrix<F,STAR,MR  > A21Adj_STAR_MR(g);

    // Start the algorithm
    PartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    while( ATL.Height() < A.Height() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ A01, A02,
         /*************/ /******************/
               /**/       A10, /**/ A11, A12,
          ABL, /**/ ABR,  A20, /**/ A21, A22 );

        A10_STAR_VR.AlignWith( A00 );
        A21_VC_STAR.AlignWith( A20 );
        A10_STAR_MC.AlignWith( A00 );
        A10_STAR_MR.AlignWith( A00 );
        A21Trans_STAR_MC.AlignWith( A20 );
        A21_VR_STAR.AlignWith( A22 );
        A21Adj_STAR_MR.AlignWith( A22 );
        //--------------------------------------------------------------------//
        A11_STAR_STAR = A11;
        LocalCholesky( LOWER, A11_STAR_STAR );

        A10_STAR_VR = A10;
        LocalTrsm
        ( LEFT, LOWER, NORMAL, NON_UNIT, F(1), A11_STAR_STAR, A10_STAR_VR );

        A21_VC_STAR = A21;
        LocalTrsm
        ( RIGHT, LOWER, ADJOINT, NON_UNIT, F(1), A11_STAR_STAR, A21_VC_STAR );

        A10_STAR_MC = A10_STAR_VR;
        A10_STAR_MR = A10_STAR_VR;
        LocalTrrk
        ( LOWER, ADJOINT,
          F(1), A10_STAR_MC, A10_STAR_MR, F(1), A00 );

        A21Trans_STAR_MC.TransposeFrom( A21_VC_STAR );
        LocalGemm
        ( TRANSPOSE, NORMAL, F(-1), A21Trans_STAR_MC, A10_STAR_MR, F(1), A20 );

        A21_VR_STAR = A21_VC_STAR;
        A21Adj_STAR_MR.AdjointFrom( A21_VR_STAR );
        LocalTrrk
        ( LOWER, TRANSPOSE,
          F(-1), A21Trans_STAR_MC, A21Adj_STAR_MR, F(1), A22 );

        LocalTrsm
        ( LEFT, LOWER, ADJOINT, NON_UNIT, F(1), A11_STAR_STAR, A10_STAR_VR );

        LocalTrsm
        ( RIGHT, LOWER, NORMAL, NON_UNIT, F(-1), A11_STAR_STAR, A21_VC_STAR );

        LocalTriangularInverse( LOWER, NON_UNIT, A11_STAR_STAR );

        LocalTrtrmm( ADJOINT, LOWER, A11_STAR_STAR );

        A11 = A11_STAR_STAR;
        A10 = A10_STAR_VR;
        A21 = A21_VC_STAR;
        //--------------------------------------------------------------------//
        A10_STAR_VR.FreeAlignments();
        A21_VC_STAR.FreeAlignments();
        A10_STAR_MC.FreeAlignments();
        A10_STAR_MR.FreeAlignments();
        A21Trans_STAR_MC.FreeAlignments();
        A21_VR_STAR.FreeAlignments();
        A21Adj_STAR_MR.FreeAlignments();

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, A01, /**/ A02,
               /**/       A10, A11, /**/ A12,
         /*************/ /******************/
          ABL, /**/ ABR,  A20, A21, /**/ A22 );
    }
#ifndef RELEASE
    PopCallStack();
#endif
}
コード例 #18
0
ファイル: LLN.hpp プロジェクト: ahmadia/Elemental-1
inline void
TrmmLLNC
( UnitOrNonUnit diag,
  T alpha, const DistMatrix<T>& L,
                 DistMatrix<T>& X )
{
#ifndef RELEASE
    CallStackEntry entry("internal::TrmmLLNC");
    if( L.Grid() != X.Grid() )
        throw std::logic_error
        ("L and X must be distributed over the same grid");
    if( L.Height() != L.Width() || L.Width() != X.Height() )
    {
        std::ostringstream msg;
        msg << "Nonconformal TrmmLLNC: \n"
            << "  L ~ " << L.Height() << " x " << L.Width() << "\n"
            << "  X ~ " << X.Height() << " x " << X.Width() << "\n";
        throw std::logic_error( msg.str().c_str() );
    }
#endif
    const Grid& g = L.Grid();

    // Matrix views
    DistMatrix<T> 
        LTL(g), LTR(g),  L00(g), L01(g), L02(g),
        LBL(g), LBR(g),  L10(g), L11(g), L12(g),
                         L20(g), L21(g), L22(g);
    DistMatrix<T> XT(g),  X0(g),
                  XB(g),  X1(g),
                          X2(g);

    // Temporary distributions
    DistMatrix<T,MC,  STAR> L21_MC_STAR(g);
    DistMatrix<T,STAR,STAR> L11_STAR_STAR(g);
    DistMatrix<T,STAR,VR  > X1_STAR_VR(g);
    DistMatrix<T,MR,  STAR> X1Trans_MR_STAR(g);

    // Start the algorithm
    Scale( alpha, X );
    LockedPartitionUpDiagonal
    ( L, LTL, LTR,
         LBL, LBR, 0 );
    PartitionUp
    ( X, XT,
         XB, 0 );
    while( XT.Height() > 0 )
    {
        LockedRepartitionUpDiagonal
        ( LTL, /**/ LTR,  L00, L01, /**/ L02,
               /**/       L10, L11, /**/ L12,
         /*************/ /******************/
          LBL, /**/ LBR,  L20, L21, /**/ L22 );

        RepartitionUp
        ( XT,  X0,
               X1,
         /**/ /**/
          XB,  X2 );

        L21_MC_STAR.AlignWith( X2 );
        X1Trans_MR_STAR.AlignWith( X2 );
        X1_STAR_VR.AlignWith( X1 );
        //--------------------------------------------------------------------//
        L21_MC_STAR = L21;
        X1Trans_MR_STAR.TransposeFrom( X1 );
        LocalGemm
        ( NORMAL, TRANSPOSE, T(1), L21_MC_STAR, X1Trans_MR_STAR, T(1), X2 );

        L11_STAR_STAR = L11;
        X1_STAR_VR.TransposeFrom( X1Trans_MR_STAR );
        LocalTrmm( LEFT, LOWER, NORMAL, diag, T(1), L11_STAR_STAR, X1_STAR_VR );
        X1 = X1_STAR_VR;
        //--------------------------------------------------------------------//
        L21_MC_STAR.FreeAlignments();
        X1Trans_MR_STAR.FreeAlignments();
        X1_STAR_VR.FreeAlignments();

        SlideLockedPartitionUpDiagonal
        ( LTL, /**/ LTR,  L00, /**/ L01, L02,
         /*************/ /******************/
               /**/       L10, /**/ L11, L12, 
          LBL, /**/ LBR,  L20, /**/ L21, L22 );

        SlidePartitionUp
        ( XT,  X0,
         /**/ /**/
               X1,
          XB,  X2 );
    }
}
コード例 #19
0
ファイル: LLT.hpp プロジェクト: mcg1969/Elemental
inline void
TrsmLLTLarge
( Orientation orientation, UnitOrNonUnit diag,
  F alpha, const DistMatrix<F>& L, DistMatrix<F>& X,
  bool checkIfSingular )
{
#ifndef RELEASE
    PushCallStack("internal::TrsmLLTLarge");
    if( orientation == NORMAL )
        throw std::logic_error("TrsmLLT expects a (Conjugate)Transpose option");
#endif
    const Grid& g = L.Grid();

    // Matrix views
    DistMatrix<F> 
        LTL(g), LTR(g),  L00(g), L01(g), L02(g),
        LBL(g), LBR(g),  L10(g), L11(g), L12(g),
                         L20(g), L21(g), L22(g);
    DistMatrix<F> XT(g),  X0(g),
                  XB(g),  X1(g),
                          X2(g);

    // Temporary distributions
    DistMatrix<F,STAR,MC  > L10_STAR_MC(g);
    DistMatrix<F,STAR,STAR> L11_STAR_STAR(g);
    DistMatrix<F,STAR,MR  > X1_STAR_MR(g);
    DistMatrix<F,STAR,VR  > X1_STAR_VR(g);

    // Start the algorithm
    Scale( alpha, X );
    LockedPartitionUpDiagonal
    ( L, LTL, LTR,
         LBL, LBR, 0 );
    PartitionUp
    ( X, XT,
         XB, 0 );
    while( XT.Height() > 0 )
    {
        LockedRepartitionUpDiagonal
        ( LTL, /**/ LTR,  L00, L01, /**/ L02,
               /**/       L10, L11, /**/ L12,
         /*************/ /******************/
          LBL, /**/ LBR,  L20, L21, /**/ L22 );

        RepartitionUp
        ( XT,  X0,
               X1,
         /**/ /**/
          XB,  X2 ); 

        L10_STAR_MC.AlignWith( X0 );
        X1_STAR_MR.AlignWith( X0 );
        //--------------------------------------------------------------------//
        L11_STAR_STAR = L11; // L11[* ,* ] <- L11[MC,MR]
        X1_STAR_VR    = X1;  // X1[* ,VR] <- X1[MC,MR]

        // X1[* ,VR] := L11^-[T/H][* ,* ] X1[* ,VR]
        LocalTrsm
        ( LEFT, LOWER, orientation, diag, F(1), L11_STAR_STAR, X1_STAR_VR,
          checkIfSingular );

        X1_STAR_MR  = X1_STAR_VR; // X1[* ,MR] <- X1[* ,VR]
        X1          = X1_STAR_MR; // X1[MC,MR] <- X1[* ,MR]
        L10_STAR_MC = L10;        // L10[* ,MC] <- L10[MC,MR]

        // X0[MC,MR] -= (L10[* ,MC])^(T/H) X1[* ,MR]
        //            = L10^[T/H][MC,* ] X1[* ,MR]
        LocalGemm
        ( orientation, NORMAL, F(-1), L10_STAR_MC, X1_STAR_MR, F(1), X0 );
        //--------------------------------------------------------------------//
        L10_STAR_MC.FreeAlignments();
        X1_STAR_MR.FreeAlignments();

        SlideLockedPartitionUpDiagonal
        ( LTL, /**/ LTR,  L00, /**/ L01, L02,
         /*************/ /******************/
               /**/       L10, /**/ L11, L12,
          LBL, /**/ LBR,  L20, /**/ L21, L22 );

        SlidePartitionUp
        ( XT,  X0,
         /**/ /**/
               X1,
          XB,  X2 );
    }
#ifndef RELEASE
    PopCallStack();
#endif
}
コード例 #20
0
ファイル: UVar3.hpp プロジェクト: khalid-hasanov/Elemental
inline void
UVar3( UnitOrNonUnit diag, DistMatrix<F>& U )
{
#ifndef RELEASE
    CallStackEntry entry("triangular_inverse::UVar3");
    if( U.Height() != U.Width() )
        LogicError("Nonsquare matrices cannot be triangular");
#endif
    const Grid& g = U.Grid();

    // Matrix views
    DistMatrix<F> 
        UTL(g), UTR(g),  U00(g), U01(g), U02(g),
        UBL(g), UBR(g),  U10(g), U11(g), U12(g),
                         U20(g), U21(g), U22(g);

    // Temporary distributions
    DistMatrix<F,VC,  STAR> U01_VC_STAR(g);
    DistMatrix<F,STAR,STAR> U11_STAR_STAR(g);
    DistMatrix<F,STAR,VR  > U12_STAR_VR(g);
    DistMatrix<F,STAR,MC  > U01Trans_STAR_MC(g);
    DistMatrix<F,MR,  STAR> U12Trans_MR_STAR(g);

    // Start the algorithm
    PartitionUpDiagonal
    ( U, UTL, UTR,
         UBL, UBR, 0 );
    while( UBR.Height() < U.Height() )
    {
        RepartitionUpDiagonal
        ( UTL, /**/ UTR,  U00, U01, /**/ U02,
               /**/       U10, U11, /**/ U12,
         /*************/ /******************/
          UBL, /**/ UBR,  U20, U21, /**/ U22 );

        U01Trans_STAR_MC.AlignWith( U02 );
        U12Trans_MR_STAR.AlignWith( U02 );
        //--------------------------------------------------------------------//
        U01_VC_STAR = U01;
        U11_STAR_STAR = U11;
        LocalTrsm
        ( RIGHT, UPPER, NORMAL, diag, F(-1), U11_STAR_STAR, U01_VC_STAR );

        // We transpose before the communication to avoid cache-thrashing
        // in the unpacking stage.
        U12Trans_MR_STAR.TransposeFrom( U12 );
        U01Trans_STAR_MC.TransposeFrom( U01_VC_STAR );

        LocalGemm
        ( TRANSPOSE, TRANSPOSE, 
          F(1), U01Trans_STAR_MC, U12Trans_MR_STAR, F(1), U02 );
        U01.TransposeFrom( U01Trans_STAR_MC );

        U12_STAR_VR.TransposeFrom( U12Trans_MR_STAR );
        LocalTrsm
        ( LEFT, UPPER, NORMAL, diag, F(1), U11_STAR_STAR, U12_STAR_VR );
        LocalTriangularInverse( UPPER, diag, U11_STAR_STAR );
        U11 = U11_STAR_STAR;
        U12 = U12_STAR_VR;
        //--------------------------------------------------------------------//

        SlidePartitionUpDiagonal
        ( UTL, /**/ UTR,  U00, /**/ U01, U02,
         /*************/ /******************/
               /**/       U10, /**/ U11, U12,
          UBL, /**/ UBR,  U20, /**/ U21, U22 );
    }
}
コード例 #21
0
ファイル: LU.hpp プロジェクト: jimgoo/Elemental
inline void
LocalSymmetricAccumulateLU
( Orientation orientation, T alpha,
  const DistMatrix<T>& A,
  const DistMatrix<T,MC,  STAR>& B_MC_STAR,
  const DistMatrix<T,STAR,MR  >& BAdjOrTrans_STAR_MR,
        DistMatrix<T,MC,  STAR>& Z_MC_STAR,
        DistMatrix<T,MR,  STAR>& Z_MR_STAR )
{
#ifndef RELEASE
    PushCallStack("internal::LocalSymmetricAccumulateLU");
    if( A.Grid() != B_MC_STAR.Grid() ||
        B_MC_STAR.Grid() != BAdjOrTrans_STAR_MR.Grid() ||
        BAdjOrTrans_STAR_MR.Grid() != Z_MC_STAR.Grid() ||
        Z_MC_STAR.Grid() != Z_MR_STAR.Grid() )
        throw std::logic_error
        ("{A,B,Z} must be distributed over the same grid");
    if( A.Height() != A.Width() ||
        A.Height() != B_MC_STAR.Height() ||
        A.Height() != BAdjOrTrans_STAR_MR.Width() ||
        A.Height() != Z_MC_STAR.Height() ||
        A.Height() != Z_MR_STAR.Height() ||
        B_MC_STAR.Width() != BAdjOrTrans_STAR_MR.Height() ||
        BAdjOrTrans_STAR_MR.Height() != Z_MC_STAR.Width() ||
        Z_MC_STAR.Width() != Z_MR_STAR.Width() )
    {
        std::ostringstream msg;
        msg << "Nonconformal LocalSymmetricAccumulateLU: \n"
            << "  A ~ " << A.Height() << " x " << A.Width() << "\n"
            << "  B[MC,* ] ~ " << B_MC_STAR.Height() << " x "
                               << B_MC_STAR.Width() << "\n"
            << "  B^H/T[* ,MR] ~ " << BAdjOrTrans_STAR_MR.Height() << " x "
                                   << BAdjOrTrans_STAR_MR.Width() << "\n"
            << "  Z[MC,* ] ~ " << Z_MC_STAR.Height() << " x "
                               << Z_MC_STAR.Width() << "\n"
            << "  Z[MR,* ] ` " << Z_MR_STAR.Height() << " x "
                               << Z_MR_STAR.Width() << "\n";
        throw std::logic_error( msg.str().c_str() );
    }
    if( B_MC_STAR.ColAlignment() != A.ColAlignment() ||
        BAdjOrTrans_STAR_MR.RowAlignment() != A.RowAlignment() ||
        Z_MC_STAR.ColAlignment() != A.ColAlignment() ||
        Z_MR_STAR.ColAlignment() != A.RowAlignment() )
        throw std::logic_error("Partial matrix distributions are misaligned");
#endif
    const Grid& g = A.Grid();

    DistMatrix<T>
        ATL(g), ATR(g),  A00(g), A01(g), A02(g),
        ABL(g), ABR(g),  A10(g), A11(g), A12(g),
                         A20(g), A21(g), A22(g);

    DistMatrix<T> D11(g);

    DistMatrix<T,MC,STAR>
        BT_MC_STAR(g),  B0_MC_STAR(g),
        BB_MC_STAR(g),  B1_MC_STAR(g),
                        B2_MC_STAR(g);

    DistMatrix<T,STAR,MR>
        BLAdjOrTrans_STAR_MR(g), BRAdjOrTrans_STAR_MR(g),
        B0AdjOrTrans_STAR_MR(g), B1AdjOrTrans_STAR_MR(g), 
        B2AdjOrTrans_STAR_MR(g);

    DistMatrix<T,MC,STAR>
        ZT_MC_STAR(g),  Z0_MC_STAR(g),
        ZB_MC_STAR(g),  Z1_MC_STAR(g),
                        Z2_MC_STAR(g);

    DistMatrix<T,MR,STAR>
        ZT_MR_STAR(g),  Z0_MR_STAR(g),
        ZB_MR_STAR(g),  Z1_MR_STAR(g),
                        Z2_MR_STAR(g);

    const int ratio = std::max( g.Height(), g.Width() );
    PushBlocksizeStack( ratio*Blocksize() );

    LockedPartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    LockedPartitionDown
    ( B_MC_STAR, BT_MC_STAR,
                 BB_MC_STAR, 0 );
    LockedPartitionRight
    ( BAdjOrTrans_STAR_MR, BLAdjOrTrans_STAR_MR, BRAdjOrTrans_STAR_MR, 0 );
    PartitionDown
    ( Z_MC_STAR, ZT_MC_STAR,
                 ZB_MC_STAR, 0 );
    PartitionDown
    ( Z_MR_STAR, ZT_MR_STAR,
                 ZB_MR_STAR, 0 );
    while( ATL.Height() < A.Height() )
    {
        LockedRepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ A01, A02,
          /************/ /******************/
               /**/       A10, /**/ A11, A12,
          ABL, /**/ ABR,  A20, /**/ A21, A22 );

        LockedRepartitionDown
        ( BT_MC_STAR,  B0_MC_STAR,
         /**********/ /**********/
                       B1_MC_STAR,
          BB_MC_STAR,  B2_MC_STAR );

        LockedRepartitionRight
        ( BLAdjOrTrans_STAR_MR, /**/ BRAdjOrTrans_STAR_MR,
          B0AdjOrTrans_STAR_MR, /**/ B1AdjOrTrans_STAR_MR, 
                                     B2AdjOrTrans_STAR_MR );

        RepartitionDown
        ( ZT_MC_STAR,  Z0_MC_STAR,
         /**********/ /**********/
                       Z1_MC_STAR,
          ZB_MC_STAR,  Z2_MC_STAR );

        RepartitionDown
        ( ZT_MR_STAR,  Z0_MR_STAR,
         /**********/ /**********/
                       Z1_MR_STAR,
          ZB_MR_STAR,  Z2_MR_STAR );

        D11.AlignWith( A11 );
        //--------------------------------------------------------------------//
        D11 = A11;
        MakeTrapezoidal( LEFT, UPPER, 0, D11 );
        LocalGemm
        ( NORMAL, orientation, 
          alpha, D11, B1AdjOrTrans_STAR_MR, T(1), Z1_MC_STAR );
        MakeTrapezoidal( LEFT, UPPER, 1, D11 );

        LocalGemm
        ( orientation, NORMAL, alpha, D11, B1_MC_STAR, T(1), Z1_MR_STAR );

        LocalGemm
        ( NORMAL, orientation, 
          alpha, A12, B2AdjOrTrans_STAR_MR, T(1), Z1_MC_STAR );

        LocalGemm
        ( orientation, NORMAL, alpha, A12, B1_MC_STAR, T(1), Z2_MR_STAR );
        //--------------------------------------------------------------------//
        D11.FreeAlignments();

        SlideLockedPartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, A01, /**/ A02,
               /**/       A10, A11, /**/ A12,
         /*************/ /******************/
          ABL, /**/ ABR,  A20, A21, /**/ A22 );

        SlideLockedPartitionDown
        ( BT_MC_STAR,  B0_MC_STAR,
                       B1_MC_STAR,
         /**********/ /**********/
          BB_MC_STAR,  B2_MC_STAR );

        SlideLockedPartitionRight
        ( BLAdjOrTrans_STAR_MR,                       /**/ BRAdjOrTrans_STAR_MR,
          B0AdjOrTrans_STAR_MR, B1AdjOrTrans_STAR_MR, /**/ B2AdjOrTrans_STAR_MR         );

        SlidePartitionDown
        ( ZT_MC_STAR,  Z0_MC_STAR,
                       Z1_MC_STAR,
         /**********/ /**********/
          ZB_MC_STAR,  Z2_MC_STAR );

        SlidePartitionDown
        ( ZT_MR_STAR,  Z0_MR_STAR,
                       Z1_MR_STAR,
         /**********/ /**********/
          ZB_MR_STAR,  Z2_MR_STAR );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
コード例 #22
0
ファイル: RUVF.hpp プロジェクト: khalid-hasanov/Elemental
inline void
RUVF
( Conjugation conjugation, Int offset, 
  const DistMatrix<F>& H, const DistMatrix<F,MD,STAR>& t, DistMatrix<F>& A )
{
#ifndef RELEASE
    CallStackEntry cse("apply_packed_reflectors::RUVF");
    if( H.Grid() != t.Grid() || t.Grid() != A.Grid() )
        LogicError("{H,t,A} must be distributed over the same grid");
    // TODO: Proper dimension checks
    if( t.Height() != H.DiagonalLength(offset) )
        LogicError("t must be the same length as H's offset diag");
    if( !t.AlignedWithDiagonal( H, offset ) )
        LogicError("t must be aligned with H's 'offset' diagonal");
#endif
    const Grid& g = H.Grid();
    DistMatrix<F>
        HTL(g), HTR(g),  H00(g), H01(g), H02(g),  HPan(g), HPanCopy(g),
        HBL(g), HBR(g),  H10(g), H11(g), H12(g),
                         H20(g), H21(g), H22(g);
    DistMatrix<F> ALeft(g);
    DistMatrix<F,MD,STAR>
        tT(g),  t0(g),
        tB(g),  t1(g),
                t2(g);

    DistMatrix<F,VC,  STAR> HPan_VC_STAR(g);
    DistMatrix<F,MR,  STAR> HPan_MR_STAR(g);
    DistMatrix<F,STAR,STAR> t1_STAR_STAR(g);
    DistMatrix<F,STAR,STAR> SInv_STAR_STAR(g);
    DistMatrix<F,STAR,MC  > ZAdj_STAR_MC(g);
    DistMatrix<F,STAR,VC  > ZAdj_STAR_VC(g);

    LockedPartitionDownOffsetDiagonal
    ( offset,
      H, HTL, HTR,
         HBL, HBR, 0 );
    LockedPartitionDown
    ( t, tT,
         tB, 0 );
    while( HTL.Height() < H.Height() && HTL.Width() < H.Width() )
    {
        LockedRepartitionDownDiagonal
        ( HTL, /**/ HTR,  H00, /**/ H01, H02,
         /*************/ /******************/
               /**/       H10, /**/ H11, H12,
          HBL, /**/ HBR,  H20, /**/ H21, H22 );

        LockedRepartitionDown
        ( tT,  t0,
         /**/ /**/
               t1,
          tB,  t2 );

        LockedView2x1( HPan, H01, H11 );
        View( ALeft, A, 0, 0, A.Height(), HPan.Height() );

        HPan_MR_STAR.AlignWith( ALeft );
        ZAdj_STAR_MC.AlignWith( ALeft );
        ZAdj_STAR_VC.AlignWith( ALeft );
        //--------------------------------------------------------------------//
        HPanCopy = HPan;
        MakeTrapezoidal( UPPER, HPanCopy, 0, RIGHT );
        SetDiagonal( HPanCopy, F(1), 0, RIGHT );
 
        HPan_VC_STAR = HPanCopy;
        Zeros( SInv_STAR_STAR, HPan.Width(), HPan.Width() );
        Herk
        ( UPPER, ADJOINT, 
          F(1), HPan_VC_STAR.LockedMatrix(),
          F(0), SInv_STAR_STAR.Matrix() ); 
        SInv_STAR_STAR.SumOverGrid();
        t1_STAR_STAR = t1;
        FixDiagonal( conjugation, t1_STAR_STAR, SInv_STAR_STAR );

        HPan_MR_STAR = HPan_VC_STAR;
        LocalGemm( ADJOINT, ADJOINT, F(1), HPan_MR_STAR, ALeft, ZAdj_STAR_MC );
        ZAdj_STAR_VC.SumScatterFrom( ZAdj_STAR_MC );
        
        LocalTrsm
        ( LEFT, UPPER, ADJOINT, NON_UNIT, 
          F(1), SInv_STAR_STAR, ZAdj_STAR_VC );

        ZAdj_STAR_MC = ZAdj_STAR_VC;
        LocalGemm
        ( ADJOINT, ADJOINT, F(-1), ZAdj_STAR_MC, HPan_MR_STAR, F(1), ALeft );
        //--------------------------------------------------------------------//

        SlideLockedPartitionDownDiagonal
        ( HTL, /**/ HTR,  H00, H01, /**/ H02,
               /**/       H10, H11, /**/ H12,
         /*************/ /******************/
          HBL, /**/ HBR,  H20, H21, /**/ H22 );

        SlideLockedPartitionDown
        ( tT,  t0,
               t1,
         /**/ /**/
          tB,  t2 );
    }
}
コード例 #23
0
ファイル: LUVF.hpp プロジェクト: certik/Elemental
inline void
ApplyPackedReflectorsLUVF
( Conjugation conjugation, int offset, 
  const DistMatrix<Complex<R> >& H,
  const DistMatrix<Complex<R>,MD,STAR>& t,
        DistMatrix<Complex<R> >& A )
{
#ifndef RELEASE
    PushCallStack("internal::ApplyPackedReflectorsLUVF");
    if( H.Grid() != t.Grid() || t.Grid() != A.Grid() )
        throw std::logic_error
        ("{H,t,A} must be distributed over the same grid");
    if( offset < 0 || offset > H.Height() )
        throw std::logic_error("Transforms out of bounds");
    if( H.Width() != A.Height() )
        throw std::logic_error
        ("Width of transforms must equal height of target matrix");
    if( t.Height() != H.DiagonalLength( offset ) )
        throw std::logic_error("t must be the same length as H's offset diag");
    if( !t.AlignedWithDiagonal( H, offset ) )
        throw std::logic_error("t must be aligned with H's 'offset' diagonal");
#endif
    typedef Complex<R> C;
    const Grid& g = H.Grid();

    DistMatrix<C>
        HTL(g), HTR(g),  H00(g), H01(g), H02(g),  HPan(g),
        HBL(g), HBR(g),  H10(g), H11(g), H12(g),
                         H20(g), H21(g), H22(g);
    DistMatrix<C>
        AT(g),  A0(g),  ATop(g),
        AB(g),  A1(g),
                A2(g);
    DistMatrix<C,MD,STAR>
        tT(g),  t0(g),
        tB(g),  t1(g),
                t2(g);

    DistMatrix<C> HPanCopy(g);
    DistMatrix<C,VC,  STAR> HPan_VC_STAR(g);
    DistMatrix<C,MC,  STAR> HPan_MC_STAR(g);
    DistMatrix<C,STAR,STAR> t1_STAR_STAR(g);
    DistMatrix<C,STAR,STAR> SInv_STAR_STAR(g);
    DistMatrix<C,STAR,MR  > Z_STAR_MR(g);
    DistMatrix<C,STAR,VR  > Z_STAR_VR(g);

    LockedPartitionDownDiagonal
    ( H, HTL, HTR,
         HBL, HBR, 0 );
    LockedPartitionDown
    ( t, tT,
         tB, 0 );
    PartitionDown
    ( A, AT,
         AB, 0 );
    while( HTL.Height() < H.Height() && HTL.Width() < H.Width() )
    {
        LockedRepartitionDownDiagonal
        ( HTL, /**/ HTR,  H00, /**/ H01, H02,
         /*************/ /******************/
               /**/       H10, /**/ H11, H12,
          HBL, /**/ HBR,  H20, /**/ H21, H22 );

        const int HPanHeight = H01.Height() + H11.Height();
        const int HPanOffset = 
            std::min( H11.Width(), std::max(offset-H00.Width(),0) );
        const int HPanWidth = H11.Width()-HPanOffset;
        HPan.LockedView( H, 0, H00.Width()+HPanOffset, HPanHeight, HPanWidth );

        LockedRepartitionDown
        ( tT,  t0,
         /**/ /**/
               t1,
          tB,  t2, HPanWidth );

        RepartitionDown
        ( AT,  A0,
         /**/ /**/
               A1,
          AB,  A2 );

        ATop.View2x1( A0,
                      A1 );

        HPan_MC_STAR.AlignWith( ATop );
        Z_STAR_MR.AlignWith( ATop );
        Z_STAR_VR.AlignWith( ATop );
        Zeros( HPan.Width(), ATop.Width(), Z_STAR_MR );
        Zeros( HPan.Width(), HPan.Width(), SInv_STAR_STAR );
        //--------------------------------------------------------------------//
        HPanCopy = HPan;
        MakeTrapezoidal( RIGHT, UPPER, offset, HPanCopy );
        SetDiagonalToOne( RIGHT, offset, HPanCopy );
        HPan_VC_STAR = HPanCopy;
        Herk
        ( LOWER, ADJOINT, 
          C(1), HPan_VC_STAR.LockedLocalMatrix(),
          C(0), SInv_STAR_STAR.LocalMatrix() ); 
        SInv_STAR_STAR.SumOverGrid();
        t1_STAR_STAR = t1;
        FixDiagonal( conjugation, t1_STAR_STAR, SInv_STAR_STAR );

        HPan_MC_STAR = HPanCopy;
        LocalGemm( ADJOINT, NORMAL, C(1), HPan_MC_STAR, ATop, C(0), Z_STAR_MR );
        Z_STAR_VR.SumScatterFrom( Z_STAR_MR );
        
        LocalTrsm
        ( LEFT, LOWER, NORMAL, NON_UNIT, C(1), SInv_STAR_STAR, Z_STAR_VR );

        Z_STAR_MR = Z_STAR_VR;
        LocalGemm( NORMAL, NORMAL, C(-1), HPan_MC_STAR, Z_STAR_MR, C(1), ATop );
        //--------------------------------------------------------------------//
        HPan_MC_STAR.FreeAlignments();
        Z_STAR_MR.FreeAlignments();
        Z_STAR_VR.FreeAlignments();

        SlideLockedPartitionDownDiagonal
        ( HTL, /**/ HTR,  H00, H01, /**/ H02,
               /**/       H10, H11, /**/ H12,
         /*************/ /******************/
          HBL, /**/ HBR,  H20, H21, /**/ H22 );

        SlideLockedPartitionDown
        ( tT,  t0,
               t1,
         /**/ /**/
          tB,  t2 );

        SlidePartitionDown
        ( AT,  A0,
               A1,
         /**/ /**/
          AB,  A2 );
    }
#ifndef RELEASE
    PopCallStack();
#endif
}
コード例 #24
0
ファイル: LLT.hpp プロジェクト: certik/Elemental
inline void
LocalTrmmAccumulateLLT
( Orientation orientation, UnitOrNonUnit diag, T alpha,
  const DistMatrix<T>& L,
  const DistMatrix<T,MC,STAR>& X_MC_STAR,
        DistMatrix<T,MR,STAR>& Z_MR_STAR )
{
#ifndef RELEASE
    PushCallStack("internal::LocalTrmmAccumulateLLT");
    if( L.Grid() != X_MC_STAR.Grid() ||
        X_MC_STAR.Grid() != Z_MR_STAR.Grid() )
        throw std::logic_error
        ("{L,X,Z} must be distributed over the same grid");
    if( L.Height() != L.Width() ||
        L.Height() != X_MC_STAR.Height() ||
        L.Height() != Z_MR_STAR.Height() )
    {
        std::ostringstream msg;
        msg << "Nonconformal LocalTrmmAccumulateLLT: " << "\n"
            << "  L ~ " << L.Height() << " x " << L.Width() << "\n"
            << "  X[MC,* ] ~ " << X_MC_STAR.Height() << " x "
                               << X_MC_STAR.Width() << "\n"
            << "  Z[MR,* ] ` " << Z_MR_STAR.Height() << " x "
                               << Z_MR_STAR.Width() << "\n";
        throw std::logic_error( msg.str().c_str() );
    }
    if( X_MC_STAR.ColAlignment() != L.ColAlignment() ||
        Z_MR_STAR.ColAlignment() != L.RowAlignment() )
        throw std::logic_error("Partial matrix distributions are misaligned");
#endif
    const Grid& g = L.Grid();
    
    // Matrix views
    DistMatrix<T>
        LTL(g), LTR(g),  L00(g), L01(g), L02(g),
        LBL(g), LBR(g),  L10(g), L11(g), L12(g),
                         L20(g), L21(g), L22(g);

    DistMatrix<T> D11(g);

    DistMatrix<T,MC,STAR>
        XT_MC_STAR(g),  X0_MC_STAR(g),
        XB_MC_STAR(g),  X1_MC_STAR(g),
                        X2_MC_STAR(g);

    DistMatrix<T,MR,STAR>
        ZT_MR_STAR(g),  Z0_MR_STAR(g),
        ZB_MR_STAR(g),  Z1_MR_STAR(g),
                        Z2_MR_STAR(g);

    const int ratio = std::max( g.Height(), g.Width() );
    PushBlocksizeStack( ratio*Blocksize() );

    LockedPartitionDownDiagonal
    ( L, LTL, LTR,
         LBL, LBR, 0 );
    LockedPartitionDown
    ( X_MC_STAR, XT_MC_STAR,
                 XB_MC_STAR, 0 );
    PartitionDown
    ( Z_MR_STAR, ZT_MR_STAR,
                 ZB_MR_STAR, 0 );
    while( LTL.Height() < L.Height() )
    {
        LockedRepartitionDownDiagonal
        ( LTL, /**/ LTR,  L00, /**/ L01, L02,
         /*************/ /******************/
               /**/       L10, /**/ L11, L12,
          LBL, /**/ LBR,  L20, /**/ L21, L22 );

        LockedRepartitionDown
        ( XT_MC_STAR,  X0_MC_STAR,
         /**********/ /**********/
                       X1_MC_STAR,
          XB_MC_STAR,  X2_MC_STAR );

        RepartitionDown
        ( ZT_MR_STAR,  Z0_MR_STAR,
         /**********/ /**********/
                       Z1_MR_STAR,
          ZB_MR_STAR,  Z2_MR_STAR );

        D11.AlignWith( L11 );
        //--------------------------------------------------------------------//
        D11 = L11;
        MakeTrapezoidal( LEFT, LOWER, 0, D11 );
        if( diag == UNIT )
            SetDiagonalToOne( D11 );
        LocalGemm
        ( orientation, NORMAL, alpha, D11, X1_MC_STAR, T(1), Z1_MR_STAR );

        LocalGemm
        ( orientation, NORMAL, alpha, L21, X2_MC_STAR, T(1), Z1_MR_STAR );
        //--------------------------------------------------------------------//
        D11.FreeAlignments();

        SlideLockedPartitionDownDiagonal
        ( LTL, /**/ LTR,  L00, L01, /**/ L02,
               /**/       L10, L11, /**/ L12,
         /*************/ /******************/
          LBL, /**/ LBR,  L20, L21, /**/ L22 );

        SlideLockedPartitionDown
        ( XT_MC_STAR,  X0_MC_STAR,
                       X1_MC_STAR,
         /**********/ /**********/
          XB_MC_STAR,  X2_MC_STAR );

        SlidePartitionDown
        ( ZT_MR_STAR,  Z0_MR_STAR,
                       Z1_MR_STAR,
         /**********/ /**********/
          ZB_MR_STAR,  Z2_MR_STAR );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
コード例 #25
0
ファイル: LL.hpp プロジェクト: jimgoo/Elemental
inline void
SymmLLC
( T alpha, const DistMatrix<T>& A, const DistMatrix<T>& B,
  T beta,        DistMatrix<T>& C )
{
#ifndef RELEASE
    PushCallStack("internal::SymmLLC");
    if( A.Grid() != B.Grid() || B.Grid() != C.Grid() )
        throw std::logic_error
        ("{A,B,C} must be distributed over the same grid");
#endif
    const Grid& g = A.Grid();

    // Matrix views
    DistMatrix<T> 
        ATL(g), ATR(g),  A00(g), A01(g), A02(g),  AColPan(g),
        ABL(g), ABR(g),  A10(g), A11(g), A12(g),  ARowPan(g),
                         A20(g), A21(g), A22(g);
    DistMatrix<T> 
        BT(g),  B0(g),
        BB(g),  B1(g),
                B2(g);
    DistMatrix<T> 
        CT(g),  C0(g),  CAbove(g),
        CB(g),  C1(g),  CBelow(g),
                C2(g);

    // Temporary distributions
    DistMatrix<T,MC,  STAR> AColPan_MC_STAR(g);
    DistMatrix<T,STAR,MC  > ARowPan_STAR_MC(g);
    DistMatrix<T,MR,  STAR> B1Trans_MR_STAR(g);

    B1Trans_MR_STAR.AlignWith( C );

    // Start the algorithm
    Scale( beta, C );
    LockedPartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    LockedPartitionDown
    ( B, BT,
         BB, 0 );
    PartitionDown
    ( C, CT,
         CB, 0 );
    while( CB.Height() > 0 )
    {
        LockedRepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ A01, A02,
         /*************/ /******************/
               /**/       A10, /**/ A11, A12,
          ABL, /**/ ABR,  A20, /**/ A21, A22 );

        LockedRepartitionDown
        ( BT,  B0,
         /**/ /**/
               B1,
          BB,  B2 );

        RepartitionDown
        ( CT,  C0,
         /**/ /**/
               C1,
          CB,  C2 );

        LockedView1x2( ARowPan, A10, A11 );
        LockedView2x1
        ( AColPan, A11,
                   A21 );

        View2x1
        ( CAbove, C0,
                  C1 );
        View2x1
        ( CBelow, C1,
                  C2 );

        AColPan_MC_STAR.AlignWith( CBelow );
        ARowPan_STAR_MC.AlignWith( CAbove );
        //--------------------------------------------------------------------//
        AColPan_MC_STAR = AColPan;
        ARowPan_STAR_MC = ARowPan;
        MakeTrapezoidal( LEFT,  LOWER,  0, AColPan_MC_STAR );
        MakeTrapezoidal( RIGHT, LOWER, -1, ARowPan_STAR_MC );

        B1Trans_MR_STAR.TransposeFrom( B1 );

        LocalGemm
        ( NORMAL, TRANSPOSE, 
          alpha, AColPan_MC_STAR, B1Trans_MR_STAR, T(1), CBelow );

        LocalGemm
        ( TRANSPOSE, TRANSPOSE, 
          alpha, ARowPan_STAR_MC, B1Trans_MR_STAR, T(1), CAbove );
        //--------------------------------------------------------------------//
        AColPan_MC_STAR.FreeAlignments();
        ARowPan_STAR_MC.FreeAlignments();

        SlideLockedPartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, A01, /**/ A02,
               /**/       A10, A11, /**/ A12,
         /*************/ /******************/
          ABL, /**/ ABR,  A20, A21, /**/ A22 );

        SlideLockedPartitionDown
        ( BT,  B0,
               B1,
         /**/ /**/
          BB,  B2 );

        SlidePartitionDown
        ( CT,  C0,
               C1,
         /**/ /**/
          CB,  C2 );
    }
#ifndef RELEASE
    PopCallStack();
#endif
}
コード例 #26
0
ファイル: TT.hpp プロジェクト: certik/Elemental
inline void
GemmTTC
( Orientation orientationOfA, 
  Orientation orientationOfB,
  T alpha, const DistMatrix<T>& A,
           const DistMatrix<T>& B,
  T beta,        DistMatrix<T>& C )
{
#ifndef RELEASE
    PushCallStack("internal::GemmTTC");
    if( A.Grid() != B.Grid() || B.Grid() != C.Grid() )
        throw std::logic_error
        ("{A,B,C} must be distributed over the same grid");
    if( orientationOfA == NORMAL || orientationOfB == NORMAL )
        throw std::logic_error
        ("GemmTTC expects A and B to be (Conjugate)Transposed");
    if( A.Width()  != C.Height() ||
        B.Height() != C.Width()  ||
        A.Height() != B.Width()    )
    {
        std::ostringstream msg;
        msg << "Nonconformal GemmTTC: \n"
            << "  A ~ " << A.Height() << " x " << A.Width() << "\n"
            << "  B ~ " << B.Height() << " x " << B.Width() << "\n"
            << "  C ~ " << C.Height() << " x " << C.Width() << "\n";
        throw std::logic_error( msg.str() );
    }
#endif
    const Grid& g = A.Grid();

    // Matrix views
    DistMatrix<T> AT(g),  A0(g),
                  AB(g),  A1(g),
                          A2(g);
    DistMatrix<T> BL(g), BR(g),
                  B0(g), B1(g), B2(g);

    // Temporary distributions
    DistMatrix<T,STAR,MC  > A1_STAR_MC(g);
    DistMatrix<T,VR,  STAR> B1_VR_STAR(g);
    DistMatrix<T,STAR,MR  > B1AdjOrTrans_STAR_MR(g);

    A1_STAR_MC.AlignWith( C );
    B1_VR_STAR.AlignWith( C );
    B1AdjOrTrans_STAR_MR.AlignWith( C );
    
    // Start the algorithm    
    Scale( beta, C );
    LockedPartitionDown
    ( A, AT,
         AB, 0 ); 
    LockedPartitionRight( B, BL, BR, 0 );
    while( AB.Height() > 0 )
    {
        LockedRepartitionDown
        ( AT,  A0,
         /**/ /**/
               A1,
          AB,  A2 );

        LockedRepartitionRight
        ( BL, /**/     BR,
          B0, /**/ B1, B2 );

        //--------------------------------------------------------------------//
        A1_STAR_MC = A1; 
        B1_VR_STAR = B1;
        if( orientationOfB == ADJOINT )
            B1AdjOrTrans_STAR_MR.AdjointFrom( B1_VR_STAR );
        else
            B1AdjOrTrans_STAR_MR.TransposeFrom( B1_VR_STAR );

        // C[MC,MR] += alpha (A1[*,MC])^[T/H] (B1[MR,*])^[T/H]
        //           = alpha (A1^[T/H])[MC,*] (B1^[T/H])[*,MR]
        LocalGemm
        ( orientationOfA, NORMAL, 
          alpha, A1_STAR_MC, B1AdjOrTrans_STAR_MR, T(1), C );
        //--------------------------------------------------------------------//

        SlideLockedPartitionDown
        ( AT,  A0,
               A1,
         /**/ /**/
          AB,  A2 );

        SlideLockedPartitionRight
        ( BL,     /**/ BR,
          B0, B1, /**/ B2 );
    }
#ifndef RELEASE
    PopCallStack();
#endif
}
コード例 #27
0
ファイル: LVar2.hpp プロジェクト: khalid-hasanov/Elemental
inline void
LVar2( DistMatrix<F>& A )
{
#ifndef RELEASE
    CallStackEntry entry("cholesky::LVar2");
    if( A.Height() != A.Width() )
        LogicError("Can only compute Cholesky factor of square matrices");
#endif
    const Grid& g = A.Grid();

    // Matrix views
    DistMatrix<F> 
        ATL(g), ATR(g),   A00(g), A01(g), A02(g),
        ABL(g), ABR(g),   A10(g), A11(g), A12(g),
                          A20(g), A21(g), A22(g);

    // Temporary distributions
    DistMatrix<F,MR,  STAR> A10Adj_MR_STAR(g);
    DistMatrix<F,STAR,STAR> A11_STAR_STAR(g);
    DistMatrix<F,VC,  STAR> A21_VC_STAR(g);
    DistMatrix<F,MC,  STAR> X11_MC_STAR(g);
    DistMatrix<F,MC,  STAR> X21_MC_STAR(g);

    // Start the algorithm
    PartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    while( ATL.Height() < A.Height() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ A01, A02,
         /*************/ /******************/
               /**/       A10, /**/ A11, A12,
          ABL, /**/ ABR,  A20, /**/ A21, A22 );

        A10Adj_MR_STAR.AlignWith( A10 );
        X11_MC_STAR.AlignWith( A10 );
        X21_MC_STAR.AlignWith( A20 );
        //--------------------------------------------------------------------//
        A10Adj_MR_STAR.AdjointFrom( A10 );
        LocalGemm( NORMAL, NORMAL, F(1), A10, A10Adj_MR_STAR, X11_MC_STAR );
        A11.SumScatterUpdate( F(-1), X11_MC_STAR );

        A11_STAR_STAR = A11;
        LocalCholesky( LOWER, A11_STAR_STAR );
        A11 = A11_STAR_STAR;

        LocalGemm( NORMAL, NORMAL, F(1), A20, A10Adj_MR_STAR, X21_MC_STAR );
        A21.SumScatterUpdate( F(-1), X21_MC_STAR );

        A21_VC_STAR = A21;
        LocalTrsm
        ( RIGHT, LOWER, ADJOINT, NON_UNIT, F(1), A11_STAR_STAR, A21_VC_STAR );
        A21 = A21_VC_STAR;
        //--------------------------------------------------------------------//

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, A01, /**/ A02,
               /**/       A10, A11, /**/ A12,
         /*************/ /******************/
          ABL, /**/ ABR,  A20, A21, /**/ A22 );
    }
}
コード例 #28
0
ファイル: RLHF.hpp プロジェクト: mcg1969/Elemental
inline void
RLHF
( int offset, 
  const DistMatrix<R>& H,
        DistMatrix<R>& A )
{
#ifndef RELEASE
    PushCallStack("apply_packed_reflectors::RLHF");
    if( H.Grid() != A.Grid() )
        throw std::logic_error("{H,A} must be distributed over the same grid");
    if( offset > 0 || offset < -H.Width() )
        throw std::logic_error("Transforms out of bounds");
    if( H.Width() != A.Width() )
        throw std::logic_error
        ("Width of transforms must equal width of target matrix");
#endif
    const Grid& g = H.Grid();

    DistMatrix<R>
        HTL(g), HTR(g),  H00(g), H01(g), H02(g),  HPan(g), HPanCopy(g),
        HBL(g), HBR(g),  H10(g), H11(g), H12(g),
                         H20(g), H21(g), H22(g);
    DistMatrix<R> ALeft(g);

    DistMatrix<R,STAR,VR  > HPan_STAR_VR(g);
    DistMatrix<R,STAR,MR  > HPan_STAR_MR(g);
    DistMatrix<R,STAR,STAR> SInv_STAR_STAR(g);
    DistMatrix<R,STAR,MC  > ZTrans_STAR_MC(g);
    DistMatrix<R,STAR,VC  > ZTrans_STAR_VC(g);

    LockedPartitionDownDiagonal
    ( H, HTL, HTR,
         HBL, HBR, 0 );
    while( HTL.Height() < H.Height() && HTL.Width() < H.Width() )
    {
        LockedRepartitionDownDiagonal
        ( HTL, /**/ HTR,  H00, /**/ H01, H02,
         /*************/ /******************/
               /**/       H10, /**/ H11, H12,
          HBL, /**/ HBR,  H20, /**/ H21, H22 );

        const int HPanWidth = H10.Width() + H11.Width();
        const int HPanOffset = 
            std::min( H11.Height(), std::max(-offset-H00.Height(),0) );
        const int HPanHeight = H11.Height()-HPanOffset;
        LockedView
        ( HPan, H, H00.Height()+HPanOffset, 0, HPanHeight, HPanWidth );

        View( ALeft, A, 0, 0, A.Height(), HPanWidth );

        HPan_STAR_MR.AlignWith( ALeft );
        ZTrans_STAR_MC.AlignWith( ALeft );
        ZTrans_STAR_VC.AlignWith( ALeft );
        Zeros( HPan.Height(), ALeft.Height(), ZTrans_STAR_MC );
        Zeros( HPan.Height(), HPan.Height(), SInv_STAR_STAR );
        //--------------------------------------------------------------------//
        HPanCopy = HPan;
        MakeTrapezoidal( RIGHT, LOWER, offset, HPanCopy );
        SetDiagonal( RIGHT, offset, HPanCopy, R(1) );

        HPan_STAR_VR = HPanCopy;
        Syrk
        ( UPPER, NORMAL,
          R(1), HPan_STAR_VR.LockedMatrix(),
          R(0), SInv_STAR_STAR.Matrix() );
        SInv_STAR_STAR.SumOverGrid();
        HalveMainDiagonal( SInv_STAR_STAR );

        HPan_STAR_MR = HPan_STAR_VR;
        LocalGemm
        ( NORMAL, TRANSPOSE,
          R(1), HPan_STAR_MR, ALeft, R(0), ZTrans_STAR_MC );
        ZTrans_STAR_VC.SumScatterFrom( ZTrans_STAR_MC );

        LocalTrsm
        ( LEFT, UPPER, TRANSPOSE, NON_UNIT,
          R(1), SInv_STAR_STAR, ZTrans_STAR_VC );

        ZTrans_STAR_MC = ZTrans_STAR_VC;
        LocalGemm
        ( TRANSPOSE, NORMAL,
          R(-1), ZTrans_STAR_MC, HPan_STAR_MR, R(1), ALeft );
        //--------------------------------------------------------------------//
        HPan_STAR_MR.FreeAlignments();
        ZTrans_STAR_MC.FreeAlignments();
        ZTrans_STAR_VC.FreeAlignments();

        SlideLockedPartitionDownDiagonal
        ( HTL, /**/ HTR,  H00, H01, /**/ H02,
               /**/       H10, H11, /**/ H12,
         /*************/ /******************/
          HBL, /**/ HBR,  H20, H21, /**/ H22 );
    }
#ifndef RELEASE
    PopCallStack();
#endif
}
コード例 #29
0
ファイル: LLT.hpp プロジェクト: certik/Elemental
inline void
TrmmLLTCOld
( Orientation orientation, 
  UnitOrNonUnit diag,
  T alpha, 
  const DistMatrix<T>& L,
        DistMatrix<T>& X )
{
#ifndef RELEASE
    PushCallStack("internal::TrmmLLTCOld");
    if( L.Grid() != X.Grid() )
        throw std::logic_error
        ("L and X must be distributed over the same grid");
    if( orientation == NORMAL )
        throw std::logic_error("TrmmLLT expects a (Conjugate)Transpose option");
    if( L.Height() != L.Width() || L.Height() != X.Height() )
    {
        std::ostringstream msg;
        msg << "Nonconformal TrmmLLTC: \n"
            << "  L ~ " << L.Height() << " x " << L.Width() << "\n"
            << "  X ~ " << X.Height() << " x " << X.Width() << "\n";
        throw std::logic_error( msg.str().c_str() );
    }
#endif
    const Grid& g = L.Grid();

    // Matrix views
    DistMatrix<T> 
        LTL(g), LTR(g),  L00(g), L01(g), L02(g),
        LBL(g), LBR(g),  L10(g), L11(g), L12(g),
                         L20(g), L21(g), L22(g);
    DistMatrix<T> XT(g),  X0(g),
                  XB(g),  X1(g),
                          X2(g);

    // Temporary distributions
    DistMatrix<T,STAR,STAR> L11_STAR_STAR(g);
    DistMatrix<T,MC,  STAR> L21_MC_STAR(g);
    DistMatrix<T,STAR,VR  > X1_STAR_VR(g);
    DistMatrix<T,MR,  STAR> D1AdjOrTrans_MR_STAR(g);
    DistMatrix<T,MR,  MC  > D1AdjOrTrans_MR_MC(g);
    DistMatrix<T,MC,  MR  > D1(g);

    // Start the algorithm
    Scale( alpha, X );
    LockedPartitionDownDiagonal
    ( L, LTL, LTR,
         LBL, LBR, 0 );
    PartitionDown
    ( X, XT,
         XB, 0 );
    while( XB.Height() > 0 )
    {
        LockedRepartitionDownDiagonal
        ( LTL, /**/ LTR,  L00, /**/ L01, L02,
         /*************/ /******************/
               /**/       L10, /**/ L11, L12,
          LBL, /**/ LBR,  L20, /**/ L21, L22 );

        RepartitionDown
        ( XT,  X0,
         /**/ /**/
               X1,
          XB,  X2 ); 

        L21_MC_STAR.AlignWith( X2 );
        D1AdjOrTrans_MR_STAR.AlignWith( X1 );
        D1AdjOrTrans_MR_MC.AlignWith( X1 );
        D1.AlignWith( X1 );
        Zeros( X1.Width(), X1.Height(), D1AdjOrTrans_MR_STAR );
        Zeros( X1.Height(), X1.Width(), D1 );
        //--------------------------------------------------------------------//
        X1_STAR_VR = X1;
        L11_STAR_STAR = L11;
        LocalTrmm
        ( LEFT, LOWER, orientation, diag, T(1), L11_STAR_STAR, X1_STAR_VR );
        X1 = X1_STAR_VR;
 
        L21_MC_STAR = L21;
        LocalGemm
        ( orientation, NORMAL, 
          T(1), X2, L21_MC_STAR, T(0), D1AdjOrTrans_MR_STAR );
        D1AdjOrTrans_MR_MC.SumScatterFrom( D1AdjOrTrans_MR_STAR );
        if( orientation == TRANSPOSE )
            Transpose( D1AdjOrTrans_MR_MC.LocalMatrix(), D1.LocalMatrix() );
        else
            Adjoint( D1AdjOrTrans_MR_MC.LocalMatrix(), D1.LocalMatrix() );
        Axpy( T(1), D1, X1 );
        //--------------------------------------------------------------------//
        D1.FreeAlignments();
        D1AdjOrTrans_MR_MC.FreeAlignments();
        D1AdjOrTrans_MR_STAR.FreeAlignments();
        L21_MC_STAR.FreeAlignments();

        SlideLockedPartitionDownDiagonal
        ( LTL, /**/ LTR,  L00, L01, /**/ L02,
               /**/       L10, L11, /**/ L12,
         /*************/ /******************/
          LBL, /**/ LBR,  L20, L21, /**/ L22 );

        SlidePartitionDown
        ( XT,  X0,
               X1,
         /**/ /**/
          XB,  X2 );
    }
#ifndef RELEASE
    PopCallStack();
#endif
}
コード例 #30
0
ファイル: RLHF.hpp プロジェクト: mcg1969/Elemental
inline void
RLHF
( Conjugation conjugation, int offset, 
  const DistMatrix<Complex<R> >& H,
  const DistMatrix<Complex<R>,MD,STAR>& t,
        DistMatrix<Complex<R> >& A )
{
#ifndef RELEASE
    PushCallStack("apply_packed_reflectors::RLHF");
    if( H.Grid() != t.Grid() || t.Grid() != A.Grid() )
        throw std::logic_error
        ("{H,t,A} must be distributed over the same grid");
    if( offset > 0 || offset < -H.Width() )
        throw std::logic_error("Transforms out of bounds");
    if( H.Width() != A.Width() )
        throw std::logic_error
        ("Width of transforms must equal width of target matrix");
    if( t.Height() != H.DiagonalLength( offset ) )
        throw std::logic_error("t must be the same length as H's offset diag");
    if( !t.AlignedWithDiagonal( H, offset ) )
        throw std::logic_error("t must be aligned with H's 'offset' diagonal");
#endif
    typedef Complex<R> C;
    const Grid& g = H.Grid();

    DistMatrix<C>
        HTL(g), HTR(g),  H00(g), H01(g), H02(g),  HPan(g), HPanCopy(g),
        HBL(g), HBR(g),  H10(g), H11(g), H12(g),
                         H20(g), H21(g), H22(g);
    DistMatrix<C> ALeft(g);
    DistMatrix<C,MD,STAR>
        tT(g),  t0(g),
        tB(g),  t1(g),
                t2(g);

    DistMatrix<C,STAR,VR  > HPan_STAR_VR(g);
    DistMatrix<C,STAR,MR  > HPan_STAR_MR(g);
    DistMatrix<C,STAR,STAR> t1_STAR_STAR(g);
    DistMatrix<C,STAR,STAR> SInv_STAR_STAR(g);
    DistMatrix<C,STAR,MC  > ZAdj_STAR_MC(g);
    DistMatrix<C,STAR,VC  > ZAdj_STAR_VC(g);

    LockedPartitionDownDiagonal
    ( H, HTL, HTR,
         HBL, HBR, 0 );
    LockedPartitionDown
    ( t, tT,
         tB, 0 );
    while( HTL.Height() < H.Height() && HTL.Width() < H.Width() )
    {
        LockedRepartitionDownDiagonal
        ( HTL, /**/ HTR,  H00, /**/ H01, H02,
         /*************/ /******************/
               /**/       H10, /**/ H11, H12,
          HBL, /**/ HBR,  H20, /**/ H21, H22 );

        const int HPanWidth = H10.Width() + H11.Width();
        const int HPanOffset = 
            std::min( H11.Height(), std::max(-offset-H00.Height(),0) );
        const int HPanHeight = H11.Height()-HPanOffset;
        LockedView
        ( HPan, H, H00.Height()+HPanOffset, 0, HPanHeight, HPanWidth );

        LockedRepartitionDown
        ( tT,  t0,
         /**/ /**/
               t1,
          tB,  t2, HPanHeight );

        View( ALeft, A, 0, 0, A.Height(), HPanWidth );

        HPan_STAR_MR.AlignWith( ALeft );
        ZAdj_STAR_MC.AlignWith( ALeft );
        ZAdj_STAR_VC.AlignWith( ALeft );
        Zeros( HPan.Height(), ALeft.Height(), ZAdj_STAR_MC );
        Zeros( HPan.Height(), HPan.Height(), SInv_STAR_STAR );
        //--------------------------------------------------------------------//
        HPanCopy = HPan;
        MakeTrapezoidal( RIGHT, LOWER, offset, HPanCopy );
        SetDiagonal( RIGHT, offset, HPanCopy, C(1) );

        HPan_STAR_VR = HPanCopy;
        Herk
        ( UPPER, NORMAL,
          C(1), HPan_STAR_VR.LockedMatrix(),
          C(0), SInv_STAR_STAR.Matrix() );
        SInv_STAR_STAR.SumOverGrid();
        t1_STAR_STAR = t1;
        FixDiagonal( conjugation, t1_STAR_STAR, SInv_STAR_STAR );

        HPan_STAR_MR = HPan_STAR_VR;
        LocalGemm
        ( NORMAL, ADJOINT,
          C(1), HPan_STAR_MR, ALeft, C(0), ZAdj_STAR_MC );
        ZAdj_STAR_VC.SumScatterFrom( ZAdj_STAR_MC );

        LocalTrsm
        ( LEFT, UPPER, ADJOINT, NON_UNIT,
          C(1), SInv_STAR_STAR, ZAdj_STAR_VC );

        ZAdj_STAR_MC = ZAdj_STAR_VC;
        LocalGemm
        ( ADJOINT, NORMAL,
          C(-1), ZAdj_STAR_MC, HPan_STAR_MR, C(1), ALeft );
        //--------------------------------------------------------------------//
        HPan_STAR_MR.FreeAlignments();
        ZAdj_STAR_MC.FreeAlignments();
        ZAdj_STAR_VC.FreeAlignments();

        SlideLockedPartitionDownDiagonal
        ( HTL, /**/ HTR,  H00, H01, /**/ H02,
               /**/       H10, H11, /**/ H12,
         /*************/ /******************/
          HBL, /**/ HBR,  H20, H21, /**/ H22 );

        SlideLockedPartitionDown
        ( tT,  t0,
               t1,
         /**/ /**/
          tB,  t2 );
    }
#ifndef RELEASE
    PopCallStack();
#endif
}