コード例 #1
0
	Spectrum Li(const RayDifferential &r, RadianceQueryRecord &rRec) const {
		/* Some aliases and local variables */
		const Scene *scene = rRec.scene;
		Intersection &its = rRec.its, bsdfIts;
		RayDifferential ray(r);
		LuminaireSamplingRecord lRec;
		Spectrum Li(0.0f);
		Point2 sample;

		/* Perform the first ray intersection (or ignore if the 
		   intersection has already been provided). */
		if (!rRec.rayIntersect(ray)) {
			/* If no intersection could be found, possibly return 
			   radiance from a background luminaire */
			if (rRec.type & RadianceQueryRecord::EEmittedRadiance)
				return scene->LeBackground(ray);
			else
				return Spectrum(0.0f);
		}

		/* Possibly include emitted radiance if requested */
		if (its.isLuminaire() && (rRec.type & RadianceQueryRecord::EEmittedRadiance))
			Li += its.Le(-ray.d);

		/* Include radiance from a subsurface integrator if requested */
		if (its.hasSubsurface() && (rRec.type & RadianceQueryRecord::ESubsurfaceRadiance))
			Li += its.LoSub(scene, rRec.sampler, -ray.d, rRec.depth);

		const BSDF *bsdf = its.getBSDF(ray);

		if (EXPECT_NOT_TAKEN(!bsdf)) {
			/* The direct illumination integrator doesn't support
			   surfaces without a BSDF (e.g. medium transitions)
			   -- give up. */
			return Li;
		}

		/* Leave here if direct illumination was not requested */
		if (!(rRec.type & RadianceQueryRecord::EDirectSurfaceRadiance))
			return Li;

		/* ==================================================================== */
		/*                          Luminaire sampling                          */
		/* ==================================================================== */
		bool adaptiveQuery = (rRec.extra & RadianceQueryRecord::EAdaptiveQuery);

		Point2 *sampleArray;
		size_t numLuminaireSamples = m_luminaireSamples,
			   numBSDFSamples = m_bsdfSamples;
		Float fracLum = m_fracLum, fracBSDF = m_fracBSDF,
		      weightLum = m_weightLum, weightBSDF = m_weightBSDF;

		if (rRec.depth > 1 || adaptiveQuery) {
			/* This integrator is used recursively by another integrator.
			   Be less accurate as this sample will not directly be observed. */
			numBSDFSamples = numLuminaireSamples = 1;
			fracLum = fracBSDF = .5f;
			weightLum = weightBSDF = 1.0f;
		}

		if (numLuminaireSamples > 1) {
			sampleArray = rRec.sampler->next2DArray(numLuminaireSamples);
		} else {
			sample = rRec.nextSample2D(); sampleArray = &sample;
		}

		for (size_t i=0; i<numLuminaireSamples; ++i) {
			/* Estimate the direct illumination if this is requested */
			if (scene->sampleLuminaire(its.p, ray.time, lRec, sampleArray[i])) {
				/* Allocate a record for querying the BSDF */
				BSDFQueryRecord bRec(its, its.toLocal(-lRec.d));

				/* Evaluate BSDF * cos(theta) */
				const Spectrum bsdfVal = bsdf->eval(bRec);

				if (!bsdfVal.isZero()) {
					/* Calculate prob. of having sampled that direction
						using BSDF sampling */
					Float bsdfPdf = (lRec.luminaire->isIntersectable() 
							|| lRec.luminaire->isBackgroundLuminaire()) ? 
						bsdf->pdf(bRec) : 0;

					/* Weight using the power heuristic */
					const Float weight = miWeight(lRec.pdf * fracLum, 
							bsdfPdf * fracBSDF) * weightLum;
					Li += lRec.value * bsdfVal * weight;
				}
			}
		}

		/* ==================================================================== */
		/*                            BSDF sampling                             */
		/* ==================================================================== */

		if (numBSDFSamples > 1) {
			sampleArray = rRec.sampler->next2DArray(numBSDFSamples);
		} else {
			sample = rRec.nextSample2D(); sampleArray = &sample;
		}

		for (size_t i=0; i<numBSDFSamples; ++i) {
			/* Sample BSDF * cos(theta) */
			BSDFQueryRecord bRec(its, rRec.sampler, ERadiance);
			Float bsdfPdf;
			Spectrum bsdfVal = bsdf->sample(bRec, bsdfPdf, sampleArray[i]);
			if (bsdfVal.isZero())
				continue;

			/* Trace a ray in this direction */
			Ray bsdfRay(its.p, its.toWorld(bRec.wo), ray.time);
			if (scene->rayIntersect(bsdfRay, bsdfIts)) {
				/* Intersected something - check if it was a luminaire */
				if (bsdfIts.isLuminaire()) {
					lRec = LuminaireSamplingRecord(bsdfIts, -bsdfRay.d);
					lRec.value = bsdfIts.Le(-bsdfRay.d);
				} else {
					continue;
				}
			} else {
				/* No intersection found. Possibly, there is a background
				   luminaire such as an environment map? */
				if (scene->hasBackgroundLuminaire()) {
					lRec.luminaire = scene->getBackgroundLuminaire();
					lRec.d = -bsdfRay.d;
					lRec.value = lRec.luminaire->Le(bsdfRay);
				} else {
					continue;
				}
			}

			const Float lumPdf = (!(bRec.sampledType & BSDF::EDelta)) ? 
				scene->pdfLuminaire(its.p, lRec) : 0;
	
			const Float weight = miWeight(bsdfPdf * fracBSDF, 
				lumPdf * fracLum) * weightBSDF;
			Li += lRec.value * bsdfVal * weight;
		}

		return Li;
	}
コード例 #2
0
ファイル: path.cpp プロジェクト: joewan/mitsuba-renderer
	Spectrum Li(const RayDifferential &r, RadianceQueryRecord &rRec) const {
		/* Some aliases and local variables */
		const Scene *scene = rRec.scene;
		Intersection &its = rRec.its;
		RayDifferential ray(r);
		Spectrum Li(0.0f);

		/* Perform the first ray intersection (or ignore if the 
		   intersection has already been provided). */
		rRec.rayIntersect(ray);
		ray.mint = Epsilon;

		Spectrum pathThroughput(1.0f);

		while (rRec.depth <= m_maxDepth || m_maxDepth < 0) {
			if (!its.isValid()) {
				/* If no intersection could be found, potentially return 
				   radiance from a background luminaire if it exists */
				if (rRec.type & RadianceQueryRecord::EEmittedRadiance)
					Li += pathThroughput * scene->LeBackground(ray);
				break;
			}

			const BSDF *bsdf = its.getBSDF(ray);

			if (EXPECT_NOT_TAKEN(bsdf == NULL)) {
				/* The MI path tracer doesn't support
				   surfaces without a BSDF (e.g. medium transitions)
				   -- give up. */
				break;
			}

			/* Possibly include emitted radiance if requested */
			if (its.isLuminaire() && (rRec.type & RadianceQueryRecord::EEmittedRadiance))
				Li += pathThroughput * its.Le(-ray.d);

			/* Include radiance from a subsurface integrator if requested */
			if (its.hasSubsurface() && (rRec.type & RadianceQueryRecord::ESubsurfaceRadiance))
				Li += pathThroughput * its.LoSub(scene, rRec.sampler, -ray.d, rRec.depth);

			if (m_maxDepth > 0 && rRec.depth >= m_maxDepth)
				break;

			/* ==================================================================== */
			/*                          Luminaire sampling                          */
			/* ==================================================================== */

			/* Prevent light leaks due to the use of shading normals */
			Float wiDotGeoN = -dot(its.geoFrame.n, ray.d),
				  wiDotShN  = Frame::cosTheta(its.wi);
			if (wiDotGeoN * wiDotShN < 0 && m_strictNormals) 
				break;

			/* Estimate the direct illumination if this is requested */
			LuminaireSamplingRecord lRec;
			if (rRec.type & RadianceQueryRecord::EDirectSurfaceRadiance && 
				scene->sampleLuminaire(its.p, ray.time, lRec, rRec.nextSample2D())) {
				/* Allocate a record for querying the BSDF */
				const Vector wo = -lRec.d;
				const BSDFQueryRecord bRec(its, its.toLocal(wo));
	
				/* Evaluate BSDF * cos(theta) */
				const Spectrum bsdfVal = bsdf->fCos(bRec);

				Float woDotGeoN = dot(its.geoFrame.n, wo);

				/* Prevent light leaks due to the use of shading normals */
				if (!bsdfVal.isZero() && (!m_strictNormals
						|| woDotGeoN * Frame::cosTheta(bRec.wo) > 0)) {
					/* Calculate prob. of having sampled that direction
					   using BSDF sampling */
					Float bsdfPdf = (lRec.luminaire->isIntersectable() 
							|| lRec.luminaire->isBackgroundLuminaire()) ? 
						bsdf->pdf(bRec) : 0;

					/* Weight using the power heuristic */
					const Float weight = miWeight(lRec.pdf, bsdfPdf);
					Li += pathThroughput * lRec.value * bsdfVal * weight;
				}
			}

			/* ==================================================================== */
			/*                            BSDF sampling                             */
			/* ==================================================================== */

			/* Sample BSDF * cos(theta) */
			BSDFQueryRecord bRec(its);
			Float bsdfPdf;
			Spectrum bsdfVal = bsdf->sampleCos(bRec, bsdfPdf, rRec.nextSample2D());
			if (bsdfVal.isZero()) 
				break;
			bsdfVal /= bsdfPdf;
	
			/* Prevent light leaks due to the use of shading normals */
			const Vector wo = its.toWorld(bRec.wo);
			Float woDotGeoN = dot(its.geoFrame.n, wo);
			if (woDotGeoN * Frame::cosTheta(bRec.wo) <= 0 && m_strictNormals)
				break;

			/* Trace a ray in this direction */
			ray = Ray(its.p, wo, ray.time);

			bool hitLuminaire = false;
			if (scene->rayIntersect(ray, its)) {
				/* Intersected something - check if it was a luminaire */
				if (its.isLuminaire()) {
					lRec = LuminaireSamplingRecord(its, -ray.d);
					lRec.value = its.Le(-ray.d);
					hitLuminaire = true;
				}
			} else {
				/* No intersection found. Possibly, there is a background
				   luminaire such as an environment map? */
				if (scene->hasBackgroundLuminaire()) {
					lRec.luminaire = scene->getBackgroundLuminaire();
					lRec.value = lRec.luminaire->Le(ray);
					lRec.d = -ray.d;
					hitLuminaire = true;
				} else {
					rRec.depth++;
					break;
				}
			}

			/* If a luminaire was hit, estimate the local illumination and
			   weight using the power heuristic */
			if (hitLuminaire &&  
				(rRec.type & RadianceQueryRecord::EDirectSurfaceRadiance)) {
				/* Prob. of having generated this sample using luminaire sampling */
				const Float lumPdf = (!(bRec.sampledType & BSDF::EDelta)) ?
					scene->pdfLuminaire(ray.o, lRec) : 0;
				const Float weight = miWeight(bsdfPdf, lumPdf);
				Li += pathThroughput * lRec.value * bsdfVal * weight;
			}

			/* ==================================================================== */
			/*                         Indirect illumination                        */
			/* ==================================================================== */

			/* Set the recursive query type */
			/* Stop if no surface was hit by the BSDF sample or if indirect illumination
			   was not requested */
			if (!its.isValid() || !(rRec.type & RadianceQueryRecord::EIndirectSurfaceRadiance)) 
				break;
			rRec.type = RadianceQueryRecord::ERadianceNoEmission;

			/* Russian roulette - Possibly stop the recursion. Don't do this when
			   dealing with a transmission component, since solid angle compression
			   factors cause problems with the heuristic below */
			if (rRec.depth >= m_rrDepth && !(bRec.sampledType & BSDF::ETransmission)) {
				/* Assuming that BSDF importance sampling is perfect,
				   'bsdfVal.max()' should equal the maximum albedo
				   over all spectral samples */
				Float approxAlbedo = std::min((Float) 0.9f, bsdfVal.max());
				if (rRec.nextSample1D() > approxAlbedo) 
					break;
				else
					pathThroughput /= approxAlbedo;
			}

			pathThroughput *= bsdfVal;
			rRec.depth++;
		}

		/* Store statistics */
		avgPathLength.incrementBase();
		avgPathLength += rRec.depth;

		return Li;
	}