コード例 #1
0
ファイル: bessel_k.c プロジェクト: csilles/cxxr
/* modified version of bessel_k that accepts a work array instead of
   allocating one. */
double bessel_k_ex(double x, double alpha, double expo, double *bk)
{
    long nb, ncalc, ize;

#ifdef IEEE_754
    /* NaNs propagated correctly */
    if (ISNAN(x) || ISNAN(alpha)) return x + alpha;
#endif
    if (x < 0) {
	ML_ERROR(ME_RANGE, "bessel_k");
	return ML_NAN;
    }
    ize = (long)expo;
    if(alpha < 0)
	alpha = -alpha;
    nb = 1+ (long)floor(alpha);/* nb-1 <= |alpha| < nb */
    alpha -= (double)(nb-1);
    K_bessel(&x, &alpha, &nb, &ize, bk, &ncalc);
    if(ncalc != nb) {/* error input */
      if(ncalc < 0)
	MATHLIB_WARNING4(_("bessel_k(%g): ncalc (=%ld) != nb (=%ld); alpha=%g. Arg. out of range?\n"),
			 x, ncalc, nb, alpha);
      else
	MATHLIB_WARNING2(_("bessel_k(%g,nu=%g): precision lost in result\n"),
			 x, alpha+(double)nb-1);
    }
    x = bk[nb-1];
    return x;
}
コード例 #2
0
ファイル: pbeta.c プロジェクト: Bgods/r-source
attribute_hidden
double pbeta_raw(double x, double a, double b, int lower_tail, int log_p)
{
    // treat limit cases correctly here:
    if(a == 0 || b == 0 || !R_FINITE(a) || !R_FINITE(b)) {
	// NB:  0 < x < 1 :
	if(a == 0 && b == 0) // point mass 1/2 at each of {0,1} :
	    return (log_p ? -M_LN2 : 0.5);
	if (a == 0 || a/b == 0) // point mass 1 at 0 ==> P(X <= x) = 1, all x > 0
	    return R_DT_1;
	if (b == 0 || b/a == 0) // point mass 1 at 1 ==> P(X <= x) = 0, all x < 1
	    return R_DT_0;
	// else, remaining case:  a = b = Inf : point mass 1 at 1/2
	if (x < 0.5) return R_DT_0; else return R_DT_1;
    }
    // Now:  0 < a < Inf;  0 < b < Inf

    double x1 = 0.5 - x + 0.5, w, wc;
    int ierr;
    //====
    bratio(a, b, x, x1, &w, &wc, &ierr, log_p); /* -> ./toms708.c */
    //====
    // ierr in {10,14} <==> bgrat() error code ierr-10 in 1:4; for 1 and 4, warned *there*
    if(ierr && ierr != 11 && ierr != 14)
	MATHLIB_WARNING4(_("pbeta_raw(%g, a=%g, b=%g, ..) -> bratio() gave error code %d"),
			x, a,b, ierr);
    return lower_tail ? w : wc;
} /* pbeta_raw() */
コード例 #3
0
ファイル: bessel_j.c プロジェクト: 6e441f9c/julia
/* modified version of bessel_j that accepts a work array instead of
   allocating one. */
double bessel_j_ex(double x, double alpha, double *bj)
{
    long nb, ncalc;
    double na;

#ifdef IEEE_754
    /* NaNs propagated correctly */
    if (ISNAN(x) || ISNAN(alpha)) return x + alpha;
#endif
    if (x < 0) {
	ML_ERROR(ME_RANGE, "bessel_j");
	return ML_NAN;
    }
    na = floor(alpha);
    if (alpha < 0) {
	/* Using Abramowitz & Stegun  9.1.2
	 * this may not be quite optimal (CPU and accuracy wise) */
	return(bessel_j_ex(x, -alpha, bj) * cos(M_PI * alpha) +
	       ((alpha == na) ? 0 :
		bessel_y_ex(x, -alpha, bj) * sin(M_PI * alpha)));
    }
    nb = 1 + (long)na; /* nb-1 <= alpha < nb */
    alpha -= (nb-1);
    J_bessel(&x, &alpha, &nb, bj, &ncalc);
    if(ncalc != nb) {/* error input */
      if(ncalc < 0)
	MATHLIB_WARNING4(_("bessel_j(%g): ncalc (=%ld) != nb (=%ld); alpha=%g. Arg. out of range?\n"),
			 x, ncalc, nb, alpha);
      else
	MATHLIB_WARNING2(_("bessel_j(%g,nu=%g): precision lost in result\n"),
			 x, alpha+nb-1);
    }
    x = bj[nb-1];
    return x;
}
コード例 #4
0
ファイル: bessel_j.c プロジェクト: bedatadriven/renjin
// unused now from R
double bessel_j(double x, double alpha)
{
    int nb, ncalc;
    double na, *bj;
#ifndef MATHLIB_STANDALONE
    const void *vmax;
#endif

#ifdef IEEE_754
    /* NaNs propagated correctly */
    if (ISNAN(x) || ISNAN(alpha)) return x + alpha;
#endif
    if (x < 0) {
	ML_ERROR(ME_RANGE, "bessel_j");
	return ML_NAN;
    }
    na = floor(alpha);
    if (alpha < 0) {
	/* Using Abramowitz & Stegun  9.1.2
	 * this may not be quite optimal (CPU and accuracy wise) */
	return(((alpha - na == 0.5) ? 0 : bessel_j(x, -alpha) * cospi(alpha)) +
	       ((alpha      == na ) ? 0 : bessel_y(x, -alpha) * sinpi(alpha)));
    }
    else if (alpha > 1e7) {
	MATHLIB_WARNING("besselJ(x, nu): nu=%g too large for bessel_j() algorithm", alpha);
	return ML_NAN;
    }
    nb = 1 + (int)na; /* nb-1 <= alpha < nb */
    alpha -= (double)(nb-1);
#ifdef MATHLIB_STANDALONE
    bj = (double *) calloc(nb, sizeof(double));
#ifndef _RENJIN
    if (!bj) MATHLIB_ERROR("%s", _("bessel_j allocation error"));
#endif
#else
    vmax = vmaxget();
    bj = (double *) R_alloc((size_t) nb, sizeof(double));
#endif
    J_bessel(&x, &alpha, &nb, bj, &ncalc);
    if(ncalc != nb) {/* error input */
      if(ncalc < 0)
	MATHLIB_WARNING4(_("bessel_j(%g): ncalc (=%d) != nb (=%d); alpha=%g. Arg. out of range?\n"),
			 x, ncalc, nb, alpha);
      else
	MATHLIB_WARNING2(_("bessel_j(%g,nu=%g): precision lost in result\n"),
			 x, alpha+(double)nb-1);
    }
    x = bj[nb-1];
#ifdef MATHLIB_STANDALONE
    free(bj);
#else
    vmaxset(vmax);
#endif
    return x;
}
コード例 #5
0
double bessel_y(double x, double alpha)
{
    long nb, ncalc;
    double na, *by;
#ifndef MATHLIB_STANDALONE
    const void *vmax;
#endif

#ifdef IEEE_754
    /* NaNs propagated correctly */
    if (ISNAN(x) || ISNAN(alpha)) return x + alpha;
#endif
    if (x < 0) {
	ML_ERROR(ME_RANGE, "bessel_y");
	return ML_NAN;
    }
    na = floor(alpha);
    if (alpha < 0) {
	/* Using Abramowitz & Stegun  9.1.2
	 * this may not be quite optimal (CPU and accuracy wise) */
	return(bessel_y(x, -alpha) * cos(M_PI * alpha) -
	       ((alpha == na) ? 0 :
		bessel_j(x, -alpha) * sin(M_PI * alpha)));
    }
    nb = 1+ (long)na;/* nb-1 <= alpha < nb */
    alpha -= (nb-1);
#ifdef MATHLIB_STANDALONE
    by = (double *) calloc(nb, sizeof(double));
    if (!by) MATHLIB_ERROR("%s", _("bessel_y allocation error"));
#else
    vmax = vmaxget();
    by = (double *) R_alloc((size_t) nb, sizeof(double));
#endif
    Y_bessel(&x, &alpha, &nb, by, &ncalc);
    if(ncalc != nb) {/* error input */
	if(ncalc == -1)
	    return ML_POSINF;
	else if(ncalc < -1)
	    MATHLIB_WARNING4(_("bessel_y(%g): ncalc (=%ld) != nb (=%ld); alpha=%g. Arg. out of range?\n"),
			     x, ncalc, nb, alpha);
	else /* ncalc >= 0 */
	    MATHLIB_WARNING2(_("bessel_y(%g,nu=%g): precision lost in result\n"),
			     x, alpha+nb-1);
    }
    x = by[nb-1];
#ifdef MATHLIB_STANDALONE
    free(by);
#else
    vmaxset(vmax);
#endif
    return x;
}
コード例 #6
0
ファイル: bessel_k.c プロジェクト: csilles/cxxr
double bessel_k(double x, double alpha, double expo)
{
    long nb, ncalc, ize;
    double *bk;
#ifndef MATHLIB_STANDALONE
    const void *vmax;
#endif

#ifdef IEEE_754
    /* NaNs propagated correctly */
    if (ISNAN(x) || ISNAN(alpha)) return x + alpha;
#endif
    if (x < 0) {
	ML_ERROR(ME_RANGE, "bessel_k");
	return ML_NAN;
    }
    ize = (long)expo;
    if(alpha < 0)
	alpha = -alpha;
    nb = 1+ (long)floor(alpha);/* nb-1 <= |alpha| < nb */
    alpha -= (double)(nb-1);
#ifdef MATHLIB_STANDALONE
    bk = (double *) calloc(nb, sizeof(double));
    if (!bk) MATHLIB_ERROR("%s", _("bessel_k allocation error"));
#else
    vmax = vmaxget();
    bk = (double *) R_alloc((size_t) nb, sizeof(double));
#endif
    K_bessel(&x, &alpha, &nb, &ize, bk, &ncalc);
    if(ncalc != nb) {/* error input */
      if(ncalc < 0)
	MATHLIB_WARNING4(_("bessel_k(%g): ncalc (=%ld) != nb (=%ld); alpha=%g. Arg. out of range?\n"),
			 x, ncalc, nb, alpha);
      else
	MATHLIB_WARNING2(_("bessel_k(%g,nu=%g): precision lost in result\n"),
			 x, alpha+(double)nb-1);
    }
    x = bk[nb-1];
#ifdef MATHLIB_STANDALONE
    free(bk);
#else
    vmaxset(vmax);
#endif
    return x;
}
コード例 #7
0
ファイル: bessel_j.c プロジェクト: bedatadriven/renjin
/* Called from R: modified version of bessel_j(), accepting a work array
 * instead of allocating one. */
double bessel_j_ex(double x, double alpha, double *bj)
{
    int nb, ncalc;
    double na;

#ifdef IEEE_754
    /* NaNs propagated correctly */
    if (ISNAN(x) || ISNAN(alpha)) return x + alpha;
#endif
    if (x < 0) {
	ML_ERROR(ME_RANGE, "bessel_j");
	return ML_NAN;
    }
    na = floor(alpha);
    if (alpha < 0) {
	/* Using Abramowitz & Stegun  9.1.2
	 * this may not be quite optimal (CPU and accuracy wise) */
	return(((alpha - na == 0.5) ? 0 : bessel_j_ex(x, -alpha, bj) * cospi(alpha)) +
	       ((alpha      == na ) ? 0 : bessel_y_ex(x, -alpha, bj) * sinpi(alpha)));
    }
    else if (alpha > 1e7) {
	MATHLIB_WARNING("besselJ(x, nu): nu=%g too large for bessel_j() algorithm", alpha);
	return ML_NAN;
    }
    nb = 1 + (int)na; /* nb-1 <= alpha < nb */
    alpha -= (double)(nb-1); // ==> alpha' in [0, 1)
    J_bessel(&x, &alpha, &nb, bj, &ncalc);
    if(ncalc != nb) {/* error input */
      if(ncalc < 0)
	MATHLIB_WARNING4(_("bessel_j(%g): ncalc (=%d) != nb (=%d); alpha=%g. Arg. out of range?\n"),
			 x, ncalc, nb, alpha);
      else
	MATHLIB_WARNING2(_("bessel_j(%g,nu=%g): precision lost in result\n"),
			 x, alpha+(double)nb-1);
    }
    x = bj[nb-1];
    return x;
}