MVertex_ptr ME_Collapse(MEdge_ptr e, MVertex_ptr vkeep_in, int topoflag, List_ptr *deleted_entities) { MVertex_ptr vdel, vkeep, ev00, ev01, ev10, ev11, vert; MEdge_ptr edge, edge2, oldedges[3], nuedges[2]; MFace_ptr face, face2, rface1, rface2; MRegion_ptr reg, reg2; List_ptr vedges, efaces, eregs, fedges, rfaces, fverts1, fverts2, vfaces; int idx1, idx2, idx3, dir, status, nfe, nrf, allfound, degenerate; int i, j, nfe2, nfv1, nfv2; status = 1; if (vkeep_in == NULL) { vdel = ME_Vertex(e,0); vkeep = ME_Vertex(e,1); } else { vkeep = vkeep_in; vdel = ME_OppVertex(e,vkeep); } int dimkeep, dimdel; dimkeep = MV_GEntDim(vkeep); /* Model entity dim of vertex to keep */ dimdel = MV_GEntDim(vdel); /* Model entity dim of vertex to delete */ if (topoflag == 1) { if (dimkeep == dimdel) { if (MV_GEntID(vkeep) != MV_GEntID(vdel)) status = 0; /* cannot allow since it will cause a dimensional reduction in mesh */ } else if (dimdel < dimkeep) { if (vkeep_in == NULL) { /* If no preference was indicated on which vertex to retain, we can collapse in the other direction */ MVertex_ptr vtemp = vdel; vdel = vkeep; vkeep = vtemp; } else status = 0; /* can't reverse order or vertices and boundary of mesh will get messed up if we go through as is */ } } else if (vkeep_in == NULL) { /* If no preference was indicated for the kept vertex and topological conformity with the underlying geometric model was not requested, we prefer to keep an external boundary vertex over an interior vertex or interior boundary vertex. This is because it is more likely that the external boundary vertex would have a boundary condition applied to it. If a preference was indicated, we just have to respect that. */ int vdel_external = 0; /* Check if any edges connected to vdel have only one connected face */ vedges = MV_Edges(vdel); idx1 = 0; while ((edge = (MEdge_ptr) List_Next_Entry(vedges,&idx1))) { List_ptr efaces = ME_Faces(edge); int nef = List_Num_Entries(efaces); List_Delete(efaces); if (nef < 2) { vdel_external = 1; break; } } List_Delete(vedges); /* check if any face connected to vdel has only one region connected to it */ if (!vdel_external) { vfaces = MV_Faces(vdel); idx1 = 0; while ((face = (MFace_ptr) List_Next_Entry(vfaces,&idx1))) { List_ptr fregs = MF_Regions(face); int nfr = fregs ? List_Num_Entries(fregs) : 0; if (fregs) List_Delete(fregs); if (nfr == 1) { vdel_external = 0; break; } } List_Delete(vfaces); } if (vdel_external) { /* swap the vertices in the hope that vkeep is not also on an external boundary. Since we have to go through with the collapse anyway, there is no use of doing a detailed check for whether vkeep is also on an external boundary */ MVertex_ptr vtemp = vdel; vdel = vkeep; vkeep = vtemp; } } if (status == 0) return NULL; /* Cannot collapse due to constraints of topological conformity with geometric model */ *deleted_entities = List_New(10); /* Need to collect this in advance because the info gets messed up later */ efaces = ME_Faces(e); eregs = ME_Regions(e); /* Replace vdel with vkeep in all edges connected to vdel */ vedges = MV_Edges(vdel); idx1 = 0; while ((edge = List_Next_Entry(vedges,&idx1))) { ME_Replace_Vertex(edge,vdel,vkeep); } List_Delete(vedges); /* Remove edge 'e' from all faces connected to e */ /* This part of the code is using some reliance on the internal implementation of MF_Edges. While unlikely, it _might_ break if the innards of MF_Edges are changed */ idx1 = 0; while ((face = List_Next_Entry(efaces,&idx1))) { fedges = MF_Edges(face,1,0); nfe = List_Num_Entries(fedges); /* Find the edge before and after e in the face */ oldedges[0] = oldedges[2] = NULL; for (i = 0; i < nfe; i++) { edge = List_Entry(fedges,i); if (edge == e) continue; dir = MF_EdgeDir_i(face,i); if (ME_Vertex(edge,dir) == vkeep) oldedges[0] = edge; else if (ME_Vertex(edge,!dir) == vkeep) oldedges[2] = edge; } oldedges[1] = e; nuedges[0] = oldedges[0]; nuedges[1] = oldedges[2]; /* Replace oldedges[0], oldedges[1] (=e), oldedges[2] with oldedges[0], oldedges[2] since e is degenerate */ MF_Replace_Edges(face,3,oldedges,2,nuedges); List_Delete(fedges); } /* Delete topologically degenerate regions */ /* Defined as two faces of the regions having the same vertices */ if (eregs) { idx1 = 0; while ((reg = List_Next_Entry(eregs,&idx1))) { rfaces = MR_Faces(reg); nrf = List_Num_Entries(rfaces); if (nrf == 4) { List_ptr rverts = MR_Vertices(reg); if (List_Num_Entries(rverts) == 4) { MR_Delete(reg,0); /* This is a tet - it will become degenerate */ } List_Delete(rverts); } else { degenerate = 0; for (i = 0; i < nrf; i++) { rface1 = List_Entry(rfaces,i); fverts1 = MF_Vertices(rface1,1,0); nfv1 = List_Num_Entries(fverts1); for (j = i+1; j < nrf; j++) { rface2 = List_Entry(rfaces,j); fverts2 = MF_Vertices(rface2,1,0); nfv2 = List_Num_Entries(fverts2); if (nfv1 != nfv2) { List_Delete(fverts2); continue; /* can't be exactly coincident */ } allfound = 1; idx2 = 0; while ((vert = List_Next_Entry(fverts2,&idx2))) { if (!List_Contains(fverts1,vert)) { allfound = 0; break; } } List_Delete(fverts2); if (allfound) { degenerate = 1; break; } } /* for (j = i+1 ... */ List_Delete(fverts1); if (degenerate) break; } /* for (i = 0; i < nrf;.... */ if (degenerate) { List_Add(*deleted_entities,reg); MR_Delete(reg,0); } } /* if (nrf == 4) .. else ... */ List_Delete(rfaces); } /* while ((reg = ...)) */ } /* Delete topologically degenerate faces */ if (efaces) { idx1 = 0; while ((face = List_Next_Entry(efaces,&idx1))) { fedges = MF_Edges(face,1,0); if (List_Num_Entries(fedges) == 2) { /* Disconnect the regions from the face before deleting */ List_ptr fregs = MF_Regions(face); if (fregs) { idx2 = 0; while ((reg = List_Next_Entry(fregs,&idx2))) MR_Rem_Face(reg,face); List_Delete(fregs); } List_Add(*deleted_entities,face); MF_Delete(face,0); } List_Delete(fedges); } List_Delete(efaces); } /* Now merge edges which have the same end vertices */ /* Prefer to preserve edges on external boundaries over internal edges */ vedges = MV_Edges(vkeep); idx1 = 0; while ((edge = List_Next_Entry(vedges,&idx1))) { if (edge == e) continue; ev00 = ME_Vertex(edge,0); ev01 = ME_Vertex(edge,1); idx2 = 0; while ((edge2 = List_Next_Entry(vedges,&idx2))) { if (edge == e || edge == edge2) continue; ev10 = ME_Vertex(edge2,0); ev11 = ME_Vertex(edge2,1); if ((ev00 == ev10 && ev01 == ev11) || (ev00 == ev11 && ev10 == ev01)) { int external_edge, external_edge2; int edim = 4; external_edge = 0; edim = ME_GEntDim(edge); if (edim == 1 || edim == 2 || edim == 4) { /* check if external edge */ efaces = ME_Faces(edge); int nef = List_Num_Entries(efaces); if (nef == 1) { external_edge = 1; } else { idx3 = 0; while ((face = List_Next_Entry(efaces,&idx2))) { List_ptr fregs = MF_Regions(face); int nfr = fregs ? List_Num_Entries(fregs) : 0; if (fregs) List_Delete(fregs); if (nfr == 1) { external_edge = 1; break; } } } List_Delete(efaces); } external_edge2 = 0; edim = ME_GEntDim(edge2); if (edim == 1 || edim == 2 || edim == 4) { /* check if external edge */ efaces = ME_Faces(edge2); int nef = List_Num_Entries(efaces); if (nef == 1) { external_edge2 = 1; } else { idx3 = 0; while ((face = List_Next_Entry(efaces,&idx2))) { List_ptr fregs = MF_Regions(face); int nfr = fregs ? List_Num_Entries(fregs) : 0; if (fregs) List_Delete(fregs); if (nfr == 1) { external_edge2 = 1; break; } } } List_Delete(efaces); } /* If edge2 is not external or both edges are external, go ahead and merge (edge2 will be deleted subject to topological checks if topoflag is 1) */ if (!external_edge2 || (external_edge && external_edge2)) { MEs_Merge(edge,edge2,topoflag); List_Rem(vedges,edge2); List_Add(*deleted_entities,edge2); break; } } } } List_Delete(vedges); /* Merge faces with the same set of edges */ vfaces = MV_Faces(vkeep); if (vfaces) { idx1 = 0; while ((face = List_Next_Entry(vfaces,&idx1))) { fedges = MF_Edges(face,1,0); nfe = List_Num_Entries(fedges); idx2 = 0; while ((face2 = List_Next_Entry(vfaces,&idx2))) { List_ptr fedges2; if (face2 == face) continue; fedges2 = MF_Edges(face2,1,0); nfe2 = List_Num_Entries(fedges2); if (nfe != nfe2) { List_Delete(fedges2); continue; } allfound = 1; for (i = 0; i < nfe2; i++) { edge = List_Entry(fedges2,i); if (!List_Contains(fedges,edge)) { allfound = 0; break; } } List_Delete(fedges2); if (allfound) { List_ptr fregs = MF_Regions(face); int external_face = fregs ? (List_Num_Entries(fregs) == 1) : 0; if (fregs) List_Delete(fregs); List_ptr fregs2 = MF_Regions(face2); int external_face2 = fregs2 ? (List_Num_Entries(fregs2) == 1) : 0; if (fregs2) List_Delete(fregs2); /* Proceed with merge (which will delete face2) only if face2 is not an external face or both face and face2 are external */ if (!external_face2 || (external_face && external_face2)) { MFs_Merge(face,face2,topoflag); List_Rem(vfaces,face2); List_Add(*deleted_entities,face2); break; } } } /* while (face2 = List_Next_Entry(vfaces,... */ List_Delete(fedges); } /* while (face = List_Next_Entry(vfaces,... */ List_Delete(vfaces); } /* Now actually delete the collapse edge and the to-be-merged vertex */ ME_Delete(e,0); List_Add(*deleted_entities,e); MV_Delete(vdel,0); List_Add(*deleted_entities,vdel); if (eregs) { idx1 = 0; while ((reg = List_Next_Entry(eregs,&idx1))) MR_Update_ElementType(reg); List_Delete(eregs); } return vkeep; }
int MESH_CheckTopo(Mesh_ptr mesh) { int valid = 1; char mesg[256], funcname[32] = "MESH_CheckTopo"; int idx1, idx2, idx3, idx4; MVertex_ptr mv; MEdge_ptr me, ve, fe, re; MFace_ptr mf, vf, ef, rf; MRegion_ptr mr, vr, er, fr; int found, done; int dir; int i, j, k; int nfe; int vid, eid, fid, rid; int gvid, geid, gfid, grid; int gvdim, gedim, gfdim, grdim; int maxiter = 1000; List_ptr vedges, vfaces, vregions; List_ptr efaces; List_ptr fverts, fedges, fregs, fregs1; List_ptr rverts, redges, rfaces; /*****************************************************************/ /* Vertices */ /*****************************************************************/ /* Check that edges connected to vertices reference the vertices */ /* Also check that the classification of the vertex is consistent with respect to the edge */ int first_unknown_classfn = 1; idx1 = 0; while ((mv = MESH_Next_Vertex(mesh,&idx1))) { #ifdef MSTK_HAVE_MPI if (MV_PType(mv) == PGHOST) continue; #endif vid = MV_ID(mv); gvdim = MV_GEntDim(mv); gvid = MV_GEntID(mv); if (gvdim == 4 && first_unknown_classfn) { sprintf(mesg, "Vertex %-d - classification unknown\n", vid); MSTK_Report(funcname, mesg, MSTK_WARN); first_unknown_classfn = 0; } vedges = MV_Edges(mv); if (!vedges) { sprintf(mesg,"Vertex %-d does not have any connected edges\n",vid); MSTK_Report(funcname,mesg,MSTK_WARN); continue; } idx2 = 0; while ((ve = List_Next_Entry(vedges,&idx2))) { eid = ME_ID(ve); if (ME_Vertex(ve,0) != mv && ME_Vertex(ve,1) != mv) { sprintf(mesg,"Vertex %-d connected to edge %-d but edge does not use vertex",vid,eid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } if (gvdim == 1) { /* If vertex is classified on a model edge, then it should be connected to two and only two edges that are classified on the same model edge */ int ne = 0; idx2 = 0; while ((ve = List_Next_Entry(vedges,&idx2))) { gedim = ME_GEntDim(ve); geid = ME_GEntID(ve); if (gedim == 1 && geid == gvid) ne++; } if (ne != 2) { sprintf(mesg,"Vertex %-d classified on model edge %-d but it is not \n connected to two edges classified on this model edge",vid,gvid); MSTK_Report(funcname,mesg,MSTK_WARN); } } List_Delete(vedges); if (gvdim == 2) { MEdge_ptr e0, ecur, enxt; MFace_ptr fcur; int flipped = 0; /* If vertex is classified on a model face, then we should be able to find a ring of faces classified on that model face */ vfaces = MV_Faces(mv); found = 0; idx2 = 0; while ((vf = List_Next_Entry(vfaces,&idx2))) { if (MF_GEntDim(vf) == 2) { found = 1; break; } } List_Delete(vfaces); if (!found) { sprintf(mesg,"Vertex %-d classified on model face %-d but could not \n find connected face classified on this model face",vid,gvid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } fcur = vf; fedges = MF_Edges(fcur,1,mv); nfe = List_Num_Entries(fedges); e0 = List_Entry(fedges,0); ecur = e0; enxt = List_Entry(fedges,nfe-1); List_Delete(fedges); done = 0; i = 0; while (!done) { ecur = enxt; efaces = ME_Faces(ecur); found = 0; idx3 = 0; while ((ef = List_Next_Entry(efaces,&idx3))) { if (ef != fcur && MF_GEntDim(ef) == 2 && MF_GEntID(ef) == gvid) { fcur = ef; found = 1; break; } } List_Delete(efaces); if (!found) { sprintf(mesg,"Could not find next boundary face connected to vertex %-d",vid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; break; } fedges = MF_Edges(fcur,1,mv); nfe = List_Num_Entries(fedges); if (List_Entry(fedges,0) == ecur) enxt = List_Entry(fedges,nfe-1); else if (List_Entry(fedges,nfe-1) == ecur) { enxt = List_Entry(fedges,0); flipped = 1; } else { sprintf(mesg,"Could not find next edge while traversing around vertex %-d on model face %-d",vid,gvid); MSTK_Report(funcname,mesg,MSTK_ERROR); } List_Delete(fedges); if (enxt == e0) done = 1; if (++i > maxiter) break; } if (!done) { sprintf(mesg,"Vertex %-d classified on model face %-d but could not find ring of faces classified on this model face",vid,gvid); MSTK_Report(funcname,mesg,MSTK_WARN); } if (done && flipped) { List_ptr fregs = MF_Regions(fcur); if (List_Num_Entries(fregs) < 2) { sprintf(mesg,"Inconsistent orientations of boundary faces around vertex %-d",vid); MSTK_Report(funcname,mesg,MSTK_WARN); } if (fregs) List_Delete(fregs); } } } /* while ((mv = MESH_Next_Vertex(mesh,&idx1))) */ /*****************************************************************/ /* Edges */ /*****************************************************************/ first_unknown_classfn = 1; idx1 = 0; while ((me = MESH_Next_Edge(mesh,&idx1))) { #ifdef MSTK_HAVE_MPI if (ME_PType(me) == PGHOST) continue; #endif eid = ME_ID(me); gedim = ME_GEntDim(me); geid = ME_GEntID(me); if (gedim == 4 && first_unknown_classfn) { sprintf(mesg, "Edge %-d - unknown classification", eid); MSTK_Report(funcname, mesg, MSTK_WARN); first_unknown_classfn = 0; } if (ME_Vertex(me,0) == ME_Vertex(me,1)) { sprintf(mesg,"Edge %-d has repeated vertices",eid); MSTK_Report(funcname,mesg,MSTK_ERROR); } for (i = 0; i < 2; i++) { MVertex_ptr ev = ME_Vertex(me,i); vid = MV_ID(ev); gvid = MV_GEntID(ev); gvdim = MV_GEntDim(ev); if (gvdim != 4 && gvdim != 4) { /* vertex and edge classifn is known */ if (gedim < gvdim) { sprintf(mesg,"Edge %-d classified on lower dimensional entity than connected vertex %-d",eid,vid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } else if (gedim == gvdim && geid != gvid) { sprintf(mesg,"Edge %-d and its vertex %-d classified on different entities of the same dimension",eid,vid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } } vedges = MV_Edges(ev); if (!List_Contains(vedges,me)) { sprintf(mesg,"Edge %-d sees vertex %-d but not vice versa",eid,vid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } List_Delete(vedges); if (gedim == 2) { MFace_ptr ebf[2], fcur, fnxt; MRegion_ptr rcur; int nf, nfr; List_ptr eregs; /* Edge is classified on model face - it should be connected to two and only two faces also classified on this model face */ ebf[0] = ebf[1] = NULL; nf = 0; efaces = ME_Faces(me); idx2 = 0; while ((ef = List_Next_Entry(efaces,&idx2))) { fid = MF_ID(ef); if (MF_GEntDim(ef) == 2) { nf++; if (gedim == 2 && MF_GEntID(ef) != geid) { sprintf(mesg,"Face %-d connected to edge %-d classified on different model face",fid,eid); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } if (ebf[0] == NULL) ebf[0] = ef; else ebf[1] = ef; } } List_Delete(efaces); if (nf != 2) { sprintf(mesg,"Boundary edge %-d is not connected to exactly two\n faces classified on the boundary",eid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } eregs = ME_Regions(me); if (!eregs) continue; else List_Delete(eregs); /* Can we go from f0 to f1 in one or two dirs? */ fcur = ebf[0]; fnxt = NULL; fregs = MF_Regions(fcur); if (!fregs) { fid = MF_ID(fcur); sprintf(mesg,"Edge %-d connected to regions but face %-d is not",eid,fid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } nfr = List_Num_Entries(fregs); for (i = 0; i < nfr; i++) { rcur = List_Entry(fregs,i); rfaces = MR_Faces(rcur); idx3 = 0; found = 0; while ((rf = List_Next_Entry(rfaces,&idx3))) { if (rf != fcur && MF_UsesEntity(rf,me,1)) { found = 1; fnxt = rf; break; } } List_Delete(rfaces); if (!found) { rid = MR_ID(rcur); sprintf(mesg,"Could not find second face in region %-d using edge %-d",rid,eid); } done = 0; j = 0; while (!done) { fcur = fnxt; fid = MF_ID(fcur); if (fnxt == ebf[1]) { done = 1; break; } fregs1 = MF_Regions(fcur); idx3 = 0; while ((fr = List_Next_Entry(fregs1,&idx3))) { if (fr != rcur) { rcur = fr; found = 1; break; } } List_Delete(fregs1); if (!found) { sprintf(mesg,"Could not find next region around edge %-d",eid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; break; } rfaces = MR_Faces(rcur); idx3 = 0; found = 0; while ((rf = List_Next_Entry(rfaces,&idx3))) { if (rf != fcur && MF_UsesEntity(rf,me,1)) { found = 1; fnxt = rf; break; } } List_Delete(rfaces); if (!found) { rid = MR_ID(rcur); sprintf(mesg,"Could not find second face in region %-d using edge %-d",rid,eid); } if (++j > maxiter) break; } /* while (!done) */ if (!done) { sprintf(mesg,"Could not traverse around edge %-d from face %-d to face %-d",eid,MF_ID(ebf[0]),MF_ID(ebf[1])); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } /* for (i = 0; i < nfr; i++) */ List_Delete(fregs); } /* if (geid == 2) */ } /* for (i = 0; i < 2; i++) */ } /* while ((me = MESH_Next_Edge(mesh,&idx1))) */ /*****************************************************************/ /* Faces */ /*****************************************************************/ first_unknown_classfn = 1; idx1 = 0; while ((mf = MESH_Next_Face(mesh,&idx1))) { #ifdef MSTK_HAVE_MPI if (MF_PType(mf) == PGHOST) continue; #endif fid = MF_ID(mf); gfid = MF_GEntID(mf); gfdim = MF_GEntDim(mf); if (gfdim == 4 && first_unknown_classfn) { sprintf(mesg, "Face %-d - unknown classification", fid); MSTK_Report(funcname, mesg, MSTK_WARN); first_unknown_classfn = 0; } fedges = MF_Edges(mf,1,0); if (List_Num_Entries(fedges) < 3) { sprintf(mesg,"Face %-d has less than 3 edges",fid); MSTK_Report(funcname,mesg,MSTK_ERROR); } idx2 = 0; while ((fe = List_Next_Entry(fedges,&idx2))) { eid = ME_ID(fe); geid = ME_GEntID(fe); gedim = ME_GEntDim(fe); if (gedim != 4 && gfdim != 4) { /* Edge, Face classfn is known */ if (gfdim < gedim) { sprintf(mesg,"Face %-d classified on lower order entity than edge %-d",fid,ME_ID(fe)); MSTK_Report(funcname,mesg,MSTK_WARN); valid = 0; } else if (gedim == gfdim && geid != gfid) { sprintf(mesg,"Face %-d and edge %-d classified on different\n entities of the same dimension",fid,eid); MSTK_Report(funcname,mesg,MSTK_WARN); } } efaces = ME_Faces(fe); if (!List_Contains(efaces,mf)) { sprintf(mesg,"Face %-d refers to edge %-d but not vice versa",fid,ME_ID(fe)); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } List_Delete(efaces); } List_Delete(fedges); fregs = MF_Regions(mf); if (gfdim == 3) { if (!fregs || List_Num_Entries(fregs) != 2) { sprintf(mesg,"Interior face %-d does not have two connected regions",fid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } if (fregs) { if (List_Num_Entries(fregs) == 2) { if (MR_FaceDir(List_Entry(fregs,0),mf) == MR_FaceDir(List_Entry(fregs,1),mf)) { sprintf(mesg,"Both regions using face %-d in the same sense",fid); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } List_Delete(fregs); } } /* while ((mf = MESH_Next_Face(mesh,&idx1))) */ /*****************************************************************/ /* Regions */ /*****************************************************************/ idx1 = 0; while ((mr = MESH_Next_Region(mesh,&idx1))) { #ifdef MSTK_HAVE_MPI if (MR_PType(mr) == PGHOST) continue; #endif rid = MR_ID(mr); grid = MR_GEntID(mr); rfaces = MR_Faces(mr); int nrf = List_Num_Entries(rfaces); if (nrf < 4) { sprintf(mesg,"Region %-d has less than 4 faces",rid); MSTK_Report(funcname,mesg,MSTK_ERROR); } /* Check that face to region and region to face links are consistent with each other */ int *rfdirs = (int *) malloc(nrf*sizeof(int)); i = 0; idx2 = 0; while ((rf = List_Next_Entry(rfaces,&idx2))) { rfdirs[i] = MR_FaceDir_i(mr,i); if (mr != MF_Region(rf,!rfdirs[i])) { sprintf(mesg,"Region %-d to face %-d dir inconsistent with \n face to region dir",rid,MF_ID(rf)); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } i++; } /* Check that faces of a region have consistent orientation in the region with respect to each other */ for (i = 0; i < nrf; i++) { MFace_ptr rf, rf2; rf = List_Entry(rfaces,i); fedges = MF_Edges(rf,1,0); nfe = List_Num_Entries(fedges); for (j = 0; j < nfe; j++) { fe = List_Entry(fedges,j); int fedir = MF_EdgeDir_i(rf,j); /* Find adjacent face in the region */ found = 0; for (k = 0; k < nrf; k++) { rf2 = List_Entry(rfaces,k); if (rf != rf2 && MF_UsesEntity(rf2,fe,MEDGE)) { found = 1; break; } } if (!found) { sprintf(mesg,"Cannot find another face in region %-d sharing edge %-d (ID = %-d) of face with ID = %-d",MR_ID(mr),j,ME_ID(fe),MF_ID(rf)); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } int fedir_adj = MF_EdgeDir(rf2,fe); /* If the two faces use the edge in opposite directions then the region should use the faces in the same direction and vice versa */ if (((fedir_adj == fedir) && (rfdirs[i] == rfdirs[k])) || ((fedir_adj != fedir) && (rfdirs[i] != rfdirs[k]))) { sprintf(mesg,"Region %-d faces are inconsistently oriented",MR_ID(mr)); MSTK_Report(funcname,mesg,MSTK_ERROR); valid = 0; } } List_Delete(fedges); } List_Delete(rfaces); free(rfdirs); } return valid; } /* int MESH_CheckTopo */
int MESH_BuildEdgeClassfn(Mesh_ptr mesh, int use_geometry) { int i, j, k, idx, idx2, fnd, fnd2, geid, geid2, gdim; int ngedges, ngealloc, ngef, max_loc_gfids, *loc_gfids; int max_gedge_id; int nve, nbe, nef, nsub, *geids, **gefaceids; double PI=3.141592, cosang, COSSHARPANG; MVertex_ptr ev[2]; MEdge_ptr edge, subedge, adjedge; MFace_ptr eface; List_ptr efaces, vedges, vbedges, geedges, subedges; double rval; void *pval; COSSHARPANG = cos(5*PI/6); /* 165 degrees */ /* Verify that mesh edges on the boundary have classification information; if not, assign all edges to the same model edge */ ngedges = 0; ngealloc = 10; geids = (int *) malloc(ngealloc*sizeof(int)); /* model edge ids */ /* Number of model faces connected to edge followed by model face ids */ gefaceids = (int **) malloc(ngealloc*sizeof(int *)); /* Take stock of existing model edge information */ max_gedge_id = 0; idx = 0; while ((edge = MESH_Next_Edge(mesh,&idx))) { gdim = ME_GEntDim(edge); if (gdim != 1) continue; geid = ME_GEntID(edge); if (geid) { /* Has this model edge been encountered? If not, add it to list of model edges */ for (i = 0, fnd = 0; i < ngedges; i++) if (geids[i] == geid) { fnd = 1; break; } if (!fnd) { if (geid > max_gedge_id) max_gedge_id = geid; if (ngealloc == ngedges) { ngealloc *= 2; geids = (int *) realloc(geids,ngealloc*sizeof(int)); gefaceids = (int **)realloc(gefaceids,ngealloc*sizeof(int *)); } geids[ngedges] = geid; efaces = ME_Faces(edge); nef = List_Num_Entries(efaces); gefaceids[ngedges] = (int *) malloc((1+nef)*sizeof(int)); ngef = 0; for (i = 0; i < nef; i++) { eface = List_Entry(efaces,i); if (MF_GEntDim(eface) == 2) { gefaceids[ngedges][1+ngef] = MF_GEntID(eface); ngef++; } } gefaceids[ngedges][0] = ngef; ngedges++; List_Delete(efaces); } } } /* Build new model edge information based on adjacent model region info */ /* NOTE: The following cases involve some repetition and can be "cleverly" folded into a shorter piece of code, but then the method by which the individual cases are handled gets a littled obscured. So leave as is */ max_loc_gfids = 10; loc_gfids = (int *) malloc(max_loc_gfids*sizeof(int)); idx = 0; while ((edge = MESH_Next_Edge(mesh,&idx))) { gdim = ME_GEntDim(edge); geid = ME_GEntID(edge); /* Edge has no classification? Assign classification info */ /* Edge classified as face or interior edge? Verify */ efaces = ME_Faces(edge); nef = efaces ? List_Num_Entries(efaces) : 0; if (!nef) { /* Isolated edge (must be on model edge). Did we encounter such an edge before? */ ME_Set_GEntDim(edge,1); for (i = 0, fnd = 0; i < ngedges; i++) { if (gefaceids[i][0] == 0) { fnd = 1; break; } } if (fnd) ME_Set_GEntID(edge,geids[i]); else { max_gedge_id++; ME_Set_GEntID(edge,max_gedge_id); if (ngealloc == ngedges) { ngealloc *= 2; geids = (int *) realloc(geids,ngealloc*sizeof(int)); gefaceids = (int **) realloc(gefaceids,ngealloc*sizeof(int *)); } geids[ngedges] = max_gedge_id; gefaceids[ngedges] = malloc(1*sizeof(int *)); gefaceids[ngedges][0] = 0; } continue; /* nothing else to do */ } if (nef > max_loc_gfids) { loc_gfids = (int *) realloc(loc_gfids,nef*sizeof(int)); max_loc_gfids = nef; } ngef = 0; for (i = 0; i < nef; i++) { eface = List_Entry(efaces,i); if (MF_GEntDim(eface) == 2) { loc_gfids[ngef] = MF_GEntID(eface); ngef++; } } switch (ngef) { case 0: /* Interior edge - we took care of the case of the isolated edge b4 */ ME_Set_GEntDim(edge,3); eface = List_Entry(efaces,0); ME_Set_GEntID(edge,MF_GEntID(eface)); break; case 2: if (loc_gfids[0] == loc_gfids[1]) { if (gdim == 1) { /* Looks like during face classification, this was tagged as being a sharp edge. This means that it is a sharp edge on the interior of a model face (same model face on both sides) */ ME_Set_GEntDim(edge,1); /* Check if such an edge was encountered before */ for (i = 0, fnd = 0; i < ngedges; i++) { if (gefaceids[i][0] != 2) continue; if ((loc_gfids[0] == gefaceids[i][0]) && (gefaceids[i][0] == gefaceids[i][1])) { fnd = 1; break; } } if (fnd) ME_Set_GEntID(edge,geids[i]); else { max_gedge_id++; ME_Set_GEntID(edge,max_gedge_id); if (ngealloc == ngedges) { ngealloc *= 2; geids = (int *) realloc(geids,ngealloc*sizeof(int)); gefaceids = (int **) realloc(gefaceids,ngealloc*sizeof(int *)); } geids[ngedges] = max_gedge_id; gefaceids[ngedges] = malloc((1+ngef)*sizeof(int *)); gefaceids[ngedges][0] = ngef; for (i = 0; i < ngef; i++) gefaceids[ngedges][1+i] = loc_gfids[i]; ngedges++; } } else { /* edge must be on model face */ ME_Set_GEntDim(edge,2); ME_Set_GEntID(edge,loc_gfids[0]); } } else { /* edge is on model edge between two faces */ ME_Set_GEntDim(edge,1); /* Check if such an edge was encountered before */ for (i = 0, fnd = 0; i < ngedges; i++) { if (gefaceids[i][0] != 2) continue; if (((loc_gfids[0] == gefaceids[i][1]) && (loc_gfids[1] == gefaceids[i][2])) || ((loc_gfids[1] == gefaceids[i][1]) && (loc_gfids[0] == gefaceids[i][2]))) { fnd = 1; break; } } if (fnd) ME_Set_GEntID(edge,geids[i]); else { max_gedge_id++; ME_Set_GEntID(edge,max_gedge_id); if (ngealloc == ngedges) { ngealloc *= 2; geids = (int *) realloc(geids,ngealloc*sizeof(int)); gefaceids = (int **) realloc(gefaceids,ngealloc*sizeof(int *)); } geids[ngedges] = max_gedge_id; gefaceids[ngedges] = malloc((1+ngef)*sizeof(int *)); gefaceids[ngedges][0] = ngef; for (i = 0; i < ngef; i++) gefaceids[ngedges][1+i] = loc_gfids[i]; ngedges++; } } break; default: /* if ngef is 1, edge is on model edge of non-manifold model face if ngef is >= 3, edge is on model edge at junction of many model faces */ ME_Set_GEntDim(edge,1); /* Check if a previously encountered model edge has this combination of connected faces */ for (i = 0, fnd = 0; i < ngedges; i++) { if (ngef != gefaceids[i][0]) continue; /* number of connected model faces is different */ /* see if all the model faces of the current edge can be found in the i'th model edge's faces */ fnd2 = 0; for (j = 0; j < ngef; j++) { fnd2 = 0; for (k = 0; k < ngef; k++) { if (loc_gfids[j] == gefaceids[i][1+k]) { fnd2 = 1; break; } } /* Did not find loc_gfid[j] in the list gefaceids[i] */ if (!fnd2) break; } /* if a model face connected to this edge was not found in the model face list of the previously processed, then the two model edges are obviously different */ if (!fnd2) continue; else { fnd = 1; break; } } if (fnd) ME_Set_GEntID(edge,geids[i]); else { max_gedge_id++; ME_Set_GEntID(edge,max_gedge_id); if (ngealloc == ngedges) { ngealloc *= 2; geids = (int *) realloc(geids,ngealloc*sizeof(int)); gefaceids = (int **) realloc(gefaceids,ngealloc*sizeof(int *)); } geids[ngedges] = max_gedge_id; gefaceids[ngedges] = malloc((1+ngef)*sizeof(int *)); gefaceids[ngedges][0] = ngef; for (i = 0; i < ngef; i++) gefaceids[ngedges][1+i] = loc_gfids[i]; ngedges++; } break; } List_Delete(efaces); /* needed efaces in case 0 */ } free(loc_gfids); if (use_geometry == 1) { #ifdef MSTK_USE_MARKERS int processedmk = MSTK_GetMarker(); int submk = MSTK_GetMarker(); #else MAttrib_ptr processedatt = MAttrib_New(mesh, "processed", INT, MEDGE); MAttrib_ptr sublistatt = MAttrib_New(mesh, "sublist", INT, MEDGE); #endif /* Now assign model edge IDs based on whether a sharp set of edges enclose a set of edges */ for (i = 0; i < ngedges; i++) { /* Find all mesh edges with this model edge id */ geedges = List_New(10); idx = 0; while ((edge = MESH_Next_Edge(mesh,&idx))) { if (ME_GEntDim(edge) == 1 && ME_GEntID(edge) == geids[i]) List_Add(geedges,edge); } /* Process edges of this list and subdivide them into subedges */ /* The way we do that is 1) we put an unprocessed edge from the original list in a subedge list 2) we then add its neighboring edges to subedge list if they are of the same color (same model edge id) and do not have a sharp edge separating them from the current edge 3) we then process the next edge in the subedge list 4) we are done if we cannot find any more neighbors of edges in the subedge list to add to the subedge list 5) we then repeat steps 1 through 4 until we are left with no more edges to process from the original list */ nsub = 0; idx = 0; while ((edge = List_Next_Entry(geedges,&idx))) { int emarked; #ifdef MSTK_USE_MARKERS emarked = MEnt_IsMarked(edge,processedmk); #else MEnt_Get_AttVal(edge, processedatt, &emarked, &rval, &pval); #endif if (emarked) continue; /* Found a edge in geedges that has not been processed */ #ifdef MSTK_USE_MARKERS MEnt_Mark(edge,processedmk); #else MEnt_Set_AttVal(edge, processedatt, 1, 0.0, NULL); #endif subedges = List_New(10); List_Add(subedges,edge); #ifdef MSTK_USE_MARKERS MEnt_Mark(edge,submk); #else MEnt_Set_AttVal(edge, sublistatt, 1, 0.0, NULL); #endif idx2 = 0; while ((subedge = List_Next_Entry(subedges,&idx2))) { geid = ME_GEntID(subedge); ev[0] = ME_Vertex(subedge,0); ev[1] = ME_Vertex(subedge,1); for (j = 0; j < 2; j++) { vedges = MV_Edges(ev[j]); nve = List_Num_Entries(vedges); vbedges = List_New(nve); /* list of boundary edges cnctd 2 vert */ for (k = 0; k < nve; k++) { adjedge = List_Entry(vedges,k); if (ME_GEntDim(adjedge) == 1) List_Add(vbedges,adjedge); } nbe = List_Num_Entries(vbedges); if (nbe == 2) { /* we might be on a model vertex or on a model edge */ adjedge = List_Entry(vbedges,0); if (adjedge == subedge) adjedge = List_Entry(vbedges,1); geid2 = ME_GEntID(adjedge); if (geid == geid2) { /* The two edges are of the same ID. If the angle between them is not sharp they can be classified as being on the same subedge */ cosang = MEs_Angle(subedge,adjedge); if (cosang <= COSSHARPANG) { /* Add edge2 to subedge list unless its already there */ int adjemarked; #ifdef MSTK_USE_MARKERS adjemarked = MEnt_IsMarked(adjedge,submk); #else MEnt_Get_AttVal(adjedge, sublistatt, &adjemarked, &rval, &pval); #endif if (!adjemarked) { List_Add(subedges,adjedge); #ifdef MSTK_USE_MARKERS MEnt_Mark(adjedge,submk); #else MEnt_Set_AttVal(adjedge, sublistatt, 1, 0.0, NULL); #endif } } else { /* The two edges make a very sharp angle. We will consider the edge b/w them to be a model vertex */ /* Tag the edge as being on a model vertex (we don't know the model vertex ID as yet) and continue */ MV_Set_GEntDim(ev[j],0); MV_Set_GEntID(ev[j],0); } } else { /* we reached a model vertex */ /* Tag the edge as being on a model vertex (we don't know the model vertex ID as yet) and continue */ MV_Set_GEntDim(ev[j],0); MV_Set_GEntID(ev[j],0); } } else { /* we reached a a model vertex */ /* Tag the edge as being on a model vertex (we don't know the model vertex ID as yet) and continue */ ME_Set_GEntDim(ev[j],0); ME_Set_GEntID(ev[j],0); } List_Delete(vedges); List_Delete(vbedges); } /* Finished processing all neighbors of the edge */ } /* Now we have a list of edges which we believe constitutes a model edge by itself. If this is the first subedge (which means it could also be the entire model edge originally considered), leave the model edge tag as it is. If not, assign the edges in the subedge a new model edge ID */ if (nsub != 0) { max_gedge_id++; idx2 = 0; while ((subedge = List_Next_Entry(subedges,&idx2))) ME_Set_GEntID(subedge,max_gedge_id); } nsub++; /* Done with this subedge */ #ifdef MSTK_USE_MARKERS idx2 = 0; while ((subedge = List_Next_Entry(subedges,&idx2))) { MEnt_Mark(subedge,processedmk); MEnt_Unmark(subedge,submk); } #else idx2 = 0; while ((subedge = List_Next_Entry(subedges,&idx2))) { MEnt_Set_AttVal(subedge, processedatt, 1, 0.0, NULL); MEnt_Set_AttVal(subedge, sublistatt, 0, 0.0, NULL); } #endif List_Delete(subedges); } #ifdef MSTK_USE_MARKERS List_Unmark(geedges,processedmk); #else idx2 = 0; while ((edge = List_Next_Entry(geedges, &idx2))) MEnt_Set_AttVal(edge, processedatt, 1, 0.0, NULL); #endif List_Delete(geedges); } #ifdef MSTK_USE_MARKERS MSTK_FreeMarker(processedmk); MSTK_FreeMarker(submk); #else MAttrib_Delete(processedatt); MAttrib_Delete(sublistatt); #endif } /* if use_geometry == 1 */ free(geids); for (i = 0; i < ngedges; i++) free(gefaceids[i]); free(gefaceids); return 1; }
int MESH_ConcatSubMesh_Face(Mesh_ptr mesh, int num, Mesh_ptr *submeshes) { int nfv, nfe, i, j, k, ival; MVertex_ptr mv, new_mv, sub_mv; MEdge_ptr me, new_me, sub_me; MFace_ptr new_mf, sub_mf; List_ptr mfverts, mfedges; int add_face, idx, global_id, iloc, *loc; double coor[3], rval; void *pval; Mesh_ptr submesh; List_ptr parbndry_verts = List_New(10); List_ptr parbndry_edges = List_New(10); MEdge_ptr *fedges = (MEdge_ptr *) malloc(MAXPV2*sizeof(MEdge_ptr)); int *fedirs = (int *) malloc(MAXPV2*sizeof(int)); MAttrib_ptr parbndryatt = MAttrib_New(mesh, "on_parbndry", INT, MVERTEX); /* collect edges and vertices on the partition boundary */ int num_parbndry_edges = 0; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) if (ME_PType(me) != PINTERIOR) { List_Add(parbndry_edges,me); num_parbndry_edges++; } int num_parbndry_verts = 0; idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) if (MV_PType(mv) != PINTERIOR) { List_Add(parbndry_verts,mv); MEnt_Set_AttVal(mv, parbndryatt, 1, 0.0, NULL); num_parbndry_verts++; } /* sort based on global ID */ List_Sort(parbndry_edges,num_parbndry_edges,sizeof(MEdge_ptr),compareGlobalID); List_Sort(parbndry_verts,num_parbndry_verts,sizeof(MVertex_ptr),compareGlobalID); int *parbndry_vert_gids = (int *) malloc(num_parbndry_verts*sizeof(int)); int *parbndry_edge_gids = (int *) malloc(num_parbndry_edges*sizeof(int)); /* store them in array for binary search */ for (i = 0; i < num_parbndry_edges; i++) { me = List_Entry(parbndry_edges,i); parbndry_edge_gids[i] = ME_GlobalID(me); } for (i = 0; i < num_parbndry_verts; i++) { mv = List_Entry(parbndry_verts,i); parbndry_vert_gids[i] = MV_GlobalID(mv); } /* Make list of new edges and vertices which will be updated with each mesh that is concatenated */ int max_vnew = 0, max_enew = 0; for (i = 0; i < num; i++) { max_vnew += MESH_Num_Vertices(submeshes[i]); max_enew += MESH_Num_Edges(submeshes[i]); } int num_new_verts = 0, num_new_edges = 0; int *new_vert_gids = (int *) malloc(max_vnew*sizeof(int)); int *new_edge_gids = (int *) malloc(max_enew*sizeof(int)); List_ptr new_verts = List_New(max_vnew); List_ptr new_edges = List_New(max_enew); /* Now process each mesh and add a layer of ghost elements from each of them to the main partition */ for (i = 0; i < num; i++) { submesh = submeshes[i]; MAttrib_ptr vidatt = MAttrib_New(submesh, "tempvid", POINTER, MVERTEX); MAttrib_ptr eidatt = MAttrib_New(submesh, "tempeid", POINTER, MEDGE); idx = 0; while ((sub_mf = MESH_Next_Face(submesh, &idx))) { add_face = 0; /* Find matching vertices between the submesh and main mesh */ mfverts = MF_Vertices(sub_mf,1,0); nfv = List_Num_Entries(mfverts); for (j = 0; j < nfv; j++) { sub_mv = List_Entry(mfverts,j); /* Does the vertex have a known counterpart on the partition * boundary of the main mesh? */ MEnt_Get_AttVal(sub_mv, vidatt, &ival, &rval, &mv); if (mv) { int on_parbndry=0; MEnt_Get_AttVal(mv, parbndryatt, &on_parbndry, &rval, &pval); if (on_parbndry) add_face = 1; } else { /* Does the global ID of this vertex of the sub mesh face * match the global ID of a partition boundary vertex in * the main mesh? */ global_id = MV_GlobalID(sub_mv); loc = (int *) bsearch(&global_id, parbndry_vert_gids, num_parbndry_verts, sizeof(int), compareINT); if (loc) { /* found a match */ add_face = 1; iloc = loc - parbndry_vert_gids; mv = List_Entry(parbndry_verts,iloc); /* here set the ghost vertex property, only necessary when the input submeshes are not consistent */ if (MV_PType(mv) == PGHOST && MV_PType(sub_mv) != PGHOST) { MV_Set_GEntDim(mv,MV_GEntDim(sub_mv)); MV_Set_GEntID(mv,MV_GEntID(sub_mv)); } MEnt_Set_AttVal(sub_mv, vidatt, 0, 0.0, mv); } } } List_Delete(mfverts); /* Find matching edges between the submesh and main mesh */ mfedges = MF_Edges(sub_mf,1,0); nfe = List_Num_Entries(mfedges); for (j = 0; j < nfe; j++) { sub_me = List_Entry(mfedges,j); /* Does the edge have a known counterpart on the partition * boundary of the main mesh */ MEnt_Get_AttVal(sub_me, eidatt, &ival, &rval, &me); if (!me) { /* Does the global ID of this edge of the sub mesh face * match the global ID of a partition boundary edge in the * main mesh? */ global_id = ME_GlobalID(sub_me); loc = (int *) bsearch(&global_id, parbndry_edge_gids, num_parbndry_edges, sizeof(int), compareINT); if (loc) { iloc = loc - parbndry_edge_gids; me = List_Entry(parbndry_edges,iloc); /* here set the ghost edge property, only necessary when the input submeshes are not consistent */ if (ME_PType(me) == PGHOST && ME_PType(sub_me) != PGHOST) { ME_Set_GEntDim(me,ME_GEntDim(sub_me)); ME_Set_GEntID(me,ME_GEntID(sub_me)); } MEnt_Set_AttVal(sub_me, eidatt, 0, 0.0, me); } } } if (!add_face) { List_Delete(mfedges); continue; } new_mf = MF_New(mesh); /* add face */ MF_Set_GEntDim(new_mf,MF_GEntDim(sub_mf)); MF_Set_GEntID(new_mf,MF_GEntID(sub_mf)); MF_Set_PType(new_mf,PGHOST); MF_Set_MasterParID(new_mf,MF_MasterParID(sub_mf)); MF_Set_GlobalID(new_mf,MF_GlobalID(sub_mf)); nfe = List_Num_Entries(mfedges); for (j = 0; j < nfe; j++) { sub_me = List_Entry(mfedges,j); global_id = ME_GlobalID(sub_me); fedirs[j] = MF_EdgeDir_i(sub_mf,j) == 1 ? 1 : 0; new_me = NULL; MEnt_Get_AttVal(sub_me, eidatt, &ival, &rval, &new_me); if (!new_me) { /* search in the ghost layer if another edge with * this global ID has been added */ loc = (int *) bsearch(&global_id, new_edge_gids, num_new_edges, sizeof(int), compareINT); if (loc) { iloc = loc - new_edge_gids; new_me = List_Entry(new_edges, iloc); MEnt_Set_AttVal(sub_me, eidatt, 0, 0.0, new_me); } } if (new_me) { if (MV_GlobalID(ME_Vertex(new_me,0)) != MV_GlobalID(ME_Vertex(sub_me,0))) fedirs[j] = 1 - fedirs[j]; /* if the edge dir is not the same, reverse the edge dir */ } else { /* add a new edge to main mesh */ new_me = ME_New(mesh); ME_Set_GEntDim(new_me,ME_GEntDim(sub_me)); ME_Set_GEntID(new_me,ME_GEntID(sub_me)); ME_Set_PType(new_me,PGHOST); ME_Set_MasterParID(new_me,ME_MasterParID(sub_me)); ME_Set_GlobalID(new_me,ME_GlobalID(sub_me)); MEnt_Set_AttVal(sub_me, eidatt, 0, 0.0, new_me); List_Add(new_edges, new_me); for (k = 0; k < 2; k++) { sub_mv = ME_Vertex(sub_me,k); global_id = MV_GlobalID(sub_mv); new_mv = NULL; MEnt_Get_AttVal(sub_mv, vidatt, &ival, &rval, &new_mv); if (!new_mv) { /* search in the ghost layer if another vertex with * this global ID has been added */ loc = (int *) bsearch(&global_id, new_vert_gids, num_new_verts, sizeof(int), compareINT); if (loc) { iloc = loc - new_vert_gids; new_mv = List_Entry(new_verts, iloc); MEnt_Set_AttVal(sub_mv, vidatt, 0, 0.0, new_mv); } } if (!new_mv) { /* add a new vertex to main mesh */ new_mv = MV_New(mesh); MV_Set_GEntDim(new_mv,MV_GEntDim(sub_mv)); MV_Set_GEntID(new_mv,MV_GEntID(sub_mv)); MV_Set_PType(new_mv,PGHOST); MV_Set_MasterParID(new_mv,MV_MasterParID(sub_mv)); MV_Set_GlobalID(new_mv,MV_GlobalID(sub_mv)); MV_Coords(sub_mv,coor); MV_Set_Coords(new_mv,coor); MEnt_Set_AttVal(sub_mv, vidatt, 0, 0.0, new_mv); List_Add(new_verts, new_mv); } ME_Set_Vertex(new_me,k,new_mv); /* set edge-vertex */ } } fedges[j] = new_me; } MF_Set_Edges(new_mf,nfe,fedges,fedirs); /* set face-edge */ List_Delete(mfedges); } idx = 0; while ((sub_mv = MESH_Next_Vertex(submesh, &idx))) MEnt_Rem_AttVal(sub_mv, vidatt); MAttrib_Delete(vidatt); idx = 0; while ((sub_me = MESH_Next_Edge(submesh, &idx))) MEnt_Rem_AttVal(sub_me, eidatt); MAttrib_Delete(eidatt); /* Sort the added entity lists by GlobalID */ num_new_edges = List_Num_Entries(new_edges); List_Sort(new_edges, num_new_edges, sizeof(MEdge_ptr), compareGlobalID); for (j = 0; j < num_new_edges; j++) new_edge_gids[j] = ME_GlobalID(List_Entry(new_edges, j)); num_new_verts = List_Num_Entries(new_verts); List_Sort(new_verts, num_new_verts, sizeof(MVertex_ptr), compareGlobalID); for (j = 0; j < num_new_verts; j++) new_vert_gids[j] = MV_GlobalID(List_Entry(new_verts, j)); } idx = 0; while ((mv = List_Next_Entry(parbndry_verts, &idx))) MEnt_Rem_AttVal(mv, parbndryatt); MAttrib_Delete(parbndryatt); List_Delete(parbndry_edges); List_Delete(parbndry_verts); List_Delete(new_edges); List_Delete(new_verts); free(parbndry_vert_gids); free(parbndry_edge_gids); free(new_vert_gids); free(new_edge_gids); free(fedges); free(fedirs); return 1; }
int MESH_WriteToFile(Mesh_ptr mesh, const char *filename, RepType rtype, MSTK_Comm comm) { FILE *fp; char mesg[80], attname[256]; int i, j, k, idx; int gdim, gid; int mvid, mvid0, mvid1, mvid2, mrid2, meid, mfid, mrid; int nav, nar, nfe, nfv, nrf, nrv, dir=0; int nv, ne, nf, nr; int natt, ncomp, ival, nent; double xyz[3], rval, rdummy, *rval_arr; void *pval, *pdummy; MVertex_ptr mv, mv0, mv1, mv2; MEdge_ptr me; MFace_ptr mf; MRegion_ptr mr, mr2; List_ptr adjverts, mfedges, mfverts, mrfaces, mrverts, adjregs; RepType reptype; MAttrib_ptr attrib, vidatt, eidatt, fidatt, ridatt; MType attentdim; MAttType atttype; char modfilename[256]; strcpy(modfilename, filename); int rank = 0, numprocs = 1; #ifdef MSTK_HAVE_MPI if (comm) { MPI_Comm_size((MPI_Comm)comm, &numprocs); MPI_Comm_rank((MPI_Comm)comm, &rank); } if (numprocs > 1) { int ndigits = 0; int div = 1; while (numprocs/div) {div *= 10; ndigits++;} sprintf(modfilename,"%s.%d.%0*d",filename,numprocs,ndigits,rank); } #endif if (!(fp = fopen(modfilename,"w"))) { sprintf(mesg,"Cannot open file %-s for writing",modfilename); MSTK_Report("MESH_WriteToFile",mesg,MSTK_ERROR); return 0; } if (rtype != UNKNOWN_REP) { reptype = rtype; } else { reptype = MESH_RepType(mesh); } nv = MESH_Num_Vertices(mesh); ne = MESH_Num_Edges(mesh); nf = MESH_Num_Faces(mesh); nr = MESH_Num_Regions(mesh); fprintf(fp,"MSTK %-2.1lf\n",MSTK_FILE_VER); fprintf(fp,"%s %d %d %d %d\n", MESH_rtype_str[reptype], nv, (reptype >= R1 && reptype <= R4)?0:ne, (reptype >= R1 && reptype <= R2 && nr)?0:nf, nr); vidatt = MAttrib_New(mesh,"vidatt",INT,MVERTEX); eidatt = MAttrib_New(mesh,"eidatt",INT,MEDGE); fidatt = MAttrib_New(mesh,"fidatt",INT,MFACE); ridatt = MAttrib_New(mesh,"ridatt",INT,MREGION); idx = 0; i = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) MEnt_Set_AttVal(mv,vidatt,++i,0.0,NULL); idx = 0; i = 0; while ((me = MESH_Next_Edge(mesh,&idx))) MEnt_Set_AttVal(me,eidatt,++i,0.0,NULL); idx = 0; i = 0; while ((mf = MESH_Next_Face(mesh,&idx))) MEnt_Set_AttVal(mf,fidatt,++i,0.0,NULL); idx = 0; i = 0; while ((mr = MESH_Next_Region(mesh,&idx))) MEnt_Set_AttVal(mr,ridatt,++i,0.0,NULL); fprintf(fp,"vertices\n"); idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { MV_Coords(mv,xyz); gdim = MV_GEntDim(mv); gid = MV_GEntID(mv); fprintf(fp,"%24.16lf %24.16lf %24.16lf %d %d\n", xyz[0],xyz[1],xyz[2],gdim,gid); } if (reptype == R2 || reptype == R4) { fprintf(fp,"adjvertices\n"); idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { nav = MV_Num_AdjVertices(mv); fprintf(fp,"%d ",nav); adjverts = MV_AdjVertices(mv); for (j = 0; j < nav; j++) { mv2 = List_Entry(adjverts,j); MEnt_Get_AttVal(mv2,vidatt,&mvid2,&rval,&pval); fprintf(fp,"%d ",mvid2); } fprintf(fp,"\n"); List_Delete(adjverts); } } if (reptype <= F4 && ne) { fprintf(fp,"edges\n"); idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) { mv0 = ME_Vertex(me,0); MEnt_Get_AttVal(mv0,vidatt,&mvid0,&rval,&pval); mv1 = ME_Vertex(me,1); MEnt_Get_AttVal(mv1,vidatt,&mvid1,&rval,&pval); gdim = ME_GEntDim(me); gid = ME_GEntID(me); fprintf(fp,"%d %d \t%d %d\n",mvid0,mvid1,gdim,gid); } } if (reptype <= F4) { /* For full representations, always write out faces in terms of edges */ fprintf(fp,"faces edge\n"); idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { nfe = MF_Num_Edges(mf); fprintf(fp,"%d ",nfe); mfedges = MF_Edges(mf,1,0); for (j = 0; j < nfe; j++) { me = List_Entry(mfedges,j); dir = MF_EdgeDir_i(mf,j); MEnt_Get_AttVal(me,eidatt,&meid,&rval,&pval); if (dir != 1) meid = -meid; fprintf(fp,"%d ",meid); } List_Delete(mfedges); gdim = MF_GEntDim(mf); /* gent = MF_GEntity(mf); gid = gent ? -99 : 0; */ gid = MF_GEntID(mf); fprintf(fp,"\t%d %d\n",gdim,gid); } } else { /* For reduced representations, R3 and R4 always write out faces in terms of vertices. For reduced representations, R1 and R2 write out faces in terms of vertices only when there are no regions (i.e. faces are the highest level mesh entities) */ if ((reptype > R2) || (nr == 0)) { fprintf(fp,"faces vertex\n"); idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { nfv = MF_Num_Edges(mf); fprintf(fp,"%d ",nfv); mfverts = MF_Vertices(mf,1,0); for (j = 0; j < nfv; j++) { mv = List_Entry(mfverts,j); MEnt_Get_AttVal(mv,vidatt,&mvid,&rval,&pval); fprintf(fp,"%d ",mvid); } List_Delete(mfverts); gdim = MF_GEntDim(mf); gid = MF_GEntID(mf); fprintf(fp,"\t%d %d\n",gdim,gid); } } } if (nr) { if (reptype <= F4 || reptype >= R2) { fprintf(fp,"regions face\n"); idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { nrf = MR_Num_Faces(mr); fprintf(fp,"%d ",nrf); mrfaces = MR_Faces(mr); for (j = 0; j < nrf; j++) { mf = List_Entry(mrfaces,j); dir = MR_FaceDir_i(mr,j); MEnt_Get_AttVal(mf,fidatt,&mfid,&rval,&pval); if (dir != 1) mfid = -mfid; fprintf(fp,"%d ",mfid); } List_Delete(mrfaces); gdim = MF_GEntDim(mr); gid = MR_GEntID(mr); fprintf(fp,"\t%d %d\n",gdim,gid); } } else { fprintf(fp,"regions vertex\n"); idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { nrv = MR_Num_Vertices(mr); fprintf(fp,"%d ",nrv); mrverts = MR_Vertices(mr); for (j = 0; j < nrv; j++) { mv = List_Entry(mrverts,j); MEnt_Get_AttVal(mv,vidatt,&mvid,&rval,&pval); fprintf(fp,"%d ",mvid); } List_Delete(mrverts); gdim = MR_GEntDim(mr); gid = MR_GEntID(mr); fprintf(fp,"\t%d %d\n",gdim,gid); } } if (reptype == R2 || reptype == R4) { fprintf(fp,"adjregions\n"); idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { nar = MR_Num_Faces(mr); fprintf(fp,"%d ",nar); adjregs = MR_AdjRegions(mr); for (j = 0; j < nar; j++) { mr2 = List_Entry(adjregs,j); if ((long) mr2 == -1) fprintf(fp,"%d ",0); else { MEnt_Get_AttVal(mr2,ridatt,&mrid2,&rval,&pval); fprintf(fp,"%d ",mrid2); } } fprintf(fp,"\n"); List_Delete(adjregs); } } } /* Write out attributes if there are more than the 4 that we created in this routine */ if ((natt = MESH_Num_Attribs(mesh)) > 4) { fprintf(fp,"attributes\n"); for (i = 0; i < natt; i++) { attrib = MESH_Attrib(mesh,i); /* Don't write out attribs we created for the internal use of this routine */ if (attrib == vidatt || attrib == eidatt || attrib == fidatt || attrib == ridatt) continue; MAttrib_Get_Name(attrib,attname); atttype = MAttrib_Get_Type(attrib); if (atttype == POINTER) continue; /* cannot write it out */ ncomp = MAttrib_Get_NumComps(attrib); attentdim = MAttrib_Get_EntDim(attrib); /* First count how many entities actually have the attribute assigned */ nent = 0; switch(attentdim) { case MVERTEX: idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) if (MEnt_Get_AttVal(mv,attrib,&ival,&rval,&pval)) nent++; break; case MEDGE: idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) if (MEnt_Get_AttVal(me,attrib,&ival,&rval,&pval)) nent++; break; case MFACE: idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) if (MEnt_Get_AttVal(mf,attrib,&ival,&rval,&pval)) nent++; break; case MREGION: idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) if (MEnt_Get_AttVal(mr,attrib,&ival,&rval,&pval)) nent++; break; case MALLTYPE: idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) if (MEnt_Get_AttVal(mv,attrib,&ival,&rval,&pval)) nent++; idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) if (MEnt_Get_AttVal(me,attrib,&ival,&rval,&pval)) nent++; idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) if (MEnt_Get_AttVal(mf,attrib,&ival,&rval,&pval)) nent++; idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) if (MEnt_Get_AttVal(mr,attrib,&ival,&rval,&pval)) nent++; break; default: break; } /* switch (attentdim) */ /* No point in writing out attribute if no entity uses it! Or is there? */ if (!nent) continue; fprintf(fp,"%-s\n",attname); switch(atttype) { case INT: fprintf(fp,"INT\n"); break; case DOUBLE: fprintf(fp,"DOUBLE\n"); break; case VECTOR: fprintf(fp,"VECTOR\n"); break; case TENSOR: fprintf(fp,"TENSOR\n"); break; default: MSTK_Report("MESH_WriteToFile", "Unrecognizable or unprintable attribute type\n",MSTK_WARN); continue; } fprintf(fp,"%-d\n",ncomp); switch(attentdim) { case MVERTEX: fprintf(fp,"MVERTEX\n"); break; case MEDGE: fprintf(fp,"MEDGE\n"); break; case MFACE: fprintf(fp,"MFACE\n"); break; case MREGION: fprintf(fp,"MREGION\n"); break; case MALLTYPE: fprintf(fp,"MALLTYPE\n"); break; default: MSTK_Report("Mesh_WriteToFile","Unrecognized entity type",MSTK_WARN); break; } fprintf(fp,"%-d\n",nent); switch(attentdim) { case MVERTEX: idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { if (MEnt_Get_AttVal(mv,attrib,&ival,&rval,&pval)) { MEnt_Get_AttVal(mv,vidatt,&mvid,&rdummy,&pdummy); fprintf(fp,"0 %-d ",mvid); switch (atttype) { case INT: fprintf(fp," %-d",ival); break; case DOUBLE: fprintf(fp," %-lf ",rval); break; case VECTOR: case TENSOR: rval_arr = (double *) pval; for (k = 0; k < ncomp; k++) fprintf(fp," %-lf ",rval_arr[k]); break; default: break; } fprintf(fp,"\n"); } } break; case MEDGE: idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) { if (MEnt_Get_AttVal(me,attrib,&ival,&rval,&pval)) { MEnt_Get_AttVal(me,eidatt,&meid,&rdummy,&pdummy); fprintf(fp,"1 %-d ",meid); switch (atttype) { case INT: fprintf(fp," %-d",ival); break; case DOUBLE: fprintf(fp," %-lf ",rval); break; case VECTOR: case TENSOR: rval_arr = (double *) pval; for (k = 0; k < ncomp; k++) fprintf(fp," %-lf ",rval_arr[k]); break; default: break; } fprintf(fp,"\n"); } } break; case MFACE: idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { if (MEnt_Get_AttVal(mf,attrib,&ival,&rval,&pval)) { MEnt_Get_AttVal(mf,fidatt,&mfid,&rdummy,&pdummy); fprintf(fp,"2 %-d ",mfid); switch (atttype) { case INT: fprintf(fp," %-d",ival); break; case DOUBLE: fprintf(fp," %-lf ",rval); break; case VECTOR: case TENSOR: rval_arr = (double *) pval; for (k = 0; k < ncomp; k++) fprintf(fp," %-lf ",rval_arr[k]); break; default: break; } fprintf(fp,"\n"); } } break; case MREGION: idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { if (MEnt_Get_AttVal(mr,attrib,&ival,&rval,&pval)) { MEnt_Get_AttVal(mr,ridatt,&mrid,&rdummy,&pdummy); fprintf(fp,"3 %-d ",mrid); switch (atttype) { case INT: fprintf(fp," %-d",ival); break; case DOUBLE: fprintf(fp," %-lf ",rval); break; case VECTOR: case TENSOR: rval_arr = (double *) pval; for (k = 0; k < ncomp; k++) fprintf(fp," %-lf ",rval_arr[k]); break; default: break; } fprintf(fp,"\n"); } } break; case MALLTYPE: idx = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) { if (MEnt_Get_AttVal(mv,attrib,&ival,&rval,&pval)) { MEnt_Get_AttVal(mv,vidatt,&mvid,&rdummy,&pdummy); fprintf(fp,"0 %-d ",mvid); switch (atttype) { case INT: fprintf(fp," %-d",ival); break; case DOUBLE: fprintf(fp," %-lf ",rval); break; case VECTOR: case TENSOR: rval_arr = (double *) pval; for (k = 0; k < ncomp; k++) fprintf(fp," %-lf ",rval_arr[k]); break; default: break; } fprintf(fp,"\n"); } } idx = 0; while ((me = MESH_Next_Edge(mesh,&idx))) { if (MEnt_Get_AttVal(me,attrib,&ival,&rval,&pval)) { MEnt_Get_AttVal(me,eidatt,&meid,&rdummy,&pdummy); fprintf(fp,"1 %-d ",meid); switch (atttype) { case INT: fprintf(fp," %-d",ival); break; case DOUBLE: fprintf(fp," %-lf ",rval); break; case VECTOR: case TENSOR: rval_arr = (double *) pval; for (k = 0; k < ncomp; k++) fprintf(fp," %-lf ",rval_arr[k]); break; default: break; } fprintf(fp,"\n"); } } idx = 0; while ((mf = MESH_Next_Face(mesh,&idx))) { if (MEnt_Get_AttVal(mf,attrib,&ival,&rval,&pval)) { MEnt_Get_AttVal(mf,fidatt,&mfid,&rdummy,&pdummy); fprintf(fp,"2 %-d ",mfid); switch (atttype) { case INT: fprintf(fp," %-d",ival); break; case DOUBLE: fprintf(fp," %-lf ",rval); break; case VECTOR: case TENSOR: rval_arr = (double *) pval; for (k = 0; k < ncomp; k++) fprintf(fp," %-lf ",rval_arr[k]); break; default: break; } fprintf(fp,"\n"); } } idx = 0; while ((mr = MESH_Next_Region(mesh,&idx))) { if (MEnt_Get_AttVal(mr,attrib,&ival,&rval,&pval)) { MEnt_Get_AttVal(mr,ridatt,&mrid,&rdummy,&pdummy); fprintf(fp,"3 %-d ",mrid); switch (atttype) { case INT: fprintf(fp," %-d",ival); break; case DOUBLE: fprintf(fp," %-lf ",rval); break; case VECTOR: case TENSOR: rval_arr = (double *) pval; for (k = 0; k < ncomp; k++) fprintf(fp," %-lf ",rval_arr[k]); break; default: break; } fprintf(fp,"\n"); } } break; default: break; } /* switch (attentdim) */ } /* for (i = 0; i < natt) */ } /* if (Mesh_Num_Attribs(mesh)) */ idx = 0; i = 0; while ((mv = MESH_Next_Vertex(mesh,&idx))) MEnt_Rem_AttVal(mv,vidatt); idx = 0; i = 0; while ((me = MESH_Next_Edge(mesh,&idx))) MEnt_Rem_AttVal(me,eidatt); idx = 0; i = 0; while ((mf = MESH_Next_Face(mesh,&idx))) MEnt_Rem_AttVal(mf,fidatt); idx = 0; i = 0; while ((mr = MESH_Next_Region(mesh,&idx))) MEnt_Rem_AttVal(mr,ridatt); MAttrib_Delete(vidatt); MAttrib_Delete(eidatt); MAttrib_Delete(fidatt); MAttrib_Delete(ridatt); fclose(fp); return 1; }
int MESH_Send_NonVertexEntities_FN(Mesh_ptr mesh, int torank, MSTK_Comm comm, int *numreq, int *maxreq, MPI_Request **requests, int *numptrs2free, int *maxptrs2free, void ***ptrs2free) { int i, j, nv, ne, nf, nr; int nevs, nfes, nrfs, nfe, nrv, nrf, dir; int maxnfe, maxnrf; int *mesh_info; int *list_edge=NULL, *list_face=NULL, *list_region=NULL; MVertex_ptr mv; MEdge_ptr me; MFace_ptr mf; MRegion_ptr mr; List_ptr mfedges, mrfaces, mrverts; RepType rtype; double coor[3]; MPI_Request mpirequest; if (requests == NULL) MSTK_Report("MESH_Surf_SendMesh","MPI requests array is NULL",MSTK_FATAL); if (*maxreq == 0) { *maxreq = 25; *requests = (MPI_Request *) malloc(*maxreq*sizeof(MPI_Request)); *numreq = 0; } else if (*maxreq < (*numreq) + 13) { *maxreq = 2*(*maxreq) + 11; *requests = (MPI_Request *) realloc(*requests,*maxreq*sizeof(MPI_Request)); } ne = MESH_Num_Edges(mesh); nf = MESH_Num_Faces(mesh); nr = MESH_Num_Regions(mesh); /* some other known quantitites - 5 items per edge (2 for verts and 3 for extra data), maxnfe+4 items per face (1 for number of edges, maxnfe for edge indices, anad 3 for extra data), maxnrf+4 items per region (1 for number of faces, maxnrf for face indices and 3 for extra data */ maxnfe = 0; for (i = 0; i < nf; i++) { mf = MESH_Face(mesh,i); nfe = MF_Num_Edges(mf); if (nfe > maxnfe) maxnfe = nfe; } maxnrf = 0; for (i = 0; i < nr; i++) { mr = MESH_Region(mesh,i); nrf = MR_Num_Faces(mr); if (nrf > maxnrf) maxnrf = nrf; } // The amount of extra info we are sending and their meaning is obviously // known on the receiving side too. So nevs, nfes and nrfs can be // calculated without us sending it nevs = (2+3)*ne; nfes = (1 + maxnfe + 3)*nf; nrfs = (1 + maxnrf + 3)*nr; /* Reserve nevs spots for each edge */ list_edge = (int *) malloc(5*ne*sizeof(int)); nevs = 0; /* Store the vertex ids, then the 3 auxilliary data fields */ for(i = 0; i < ne; i++) { me = MESH_Edge(mesh,i); list_edge[nevs] = MV_ID(ME_Vertex(me,0)); list_edge[nevs+1] = MV_ID(ME_Vertex(me,1)); list_edge[nevs+2] = (ME_GEntID(me)<<3) | (ME_GEntDim(me)); list_edge[nevs+3] = (ME_MasterParID(me) <<3) | (ME_OnParBoundary(me)<<2) | (ME_PType(me)); list_edge[nevs+4] = ME_GlobalID(me); nevs += 5; } /* send detailed edge info */ MPI_Isend(list_edge,nevs,MPI_INT,torank,torank,comm,&mpirequest); (*requests)[*numreq] = mpirequest; (*numreq)++; /* Reserve nfes spots for each face */ list_face = (int *) malloc(nfes*sizeof(int)); nfes = 0; /* first store nfe, then the edge ids, then the 3 auxilliary data fields */ for(i = 0; i < nf; i++) { mf = MESH_Face(mesh,i); mfedges = MF_Edges(mf,1,0); nfe = List_Num_Entries(mfedges); list_face[nfes] = nfe; for(j = 0; j < nfe; j++) { dir = MF_EdgeDir_i(mf,j) ? 1 : -1; list_face[nfes+j+1] = dir*ME_ID(List_Entry(mfedges,j)); } list_face[nfes+nfe+1] = (MF_GEntID(mf)<<3) | (MF_GEntDim(mf)); list_face[nfes+nfe+2] = (MF_MasterParID(mf)<<3) | (MF_OnParBoundary(mf)<<2) | (MF_PType(mf)); list_face[nfes+nfe+3] = MF_GlobalID(mf); nfes += (nfe + 4); List_Delete(mfedges); } /* send detailed face info */ MPI_Isend(list_face,nfes,MPI_INT,torank,torank,comm,&mpirequest); (*requests)[*numreq] = mpirequest; (*numreq)++; if (nr) { list_region = (int *) malloc(nrfs*sizeof(int)); nrfs = 0; /* first store nrf, then the face ids, then the 3 auxilliary data fields */ for(i = 0; i < nr; i++) { mr = MESH_Region(mesh,i); mrfaces = MR_Faces(mr); nrf = List_Num_Entries(mrfaces); list_region[nrfs] = nrf; for(j = 0; j < nrf; j++) { dir = MR_FaceDir_i(mr,j) == 1 ? 1 : -1; list_region[nrfs+j+1] = dir*MF_ID(List_Entry(mrfaces,j)); } list_region[nrfs+nrf+1] = (MR_GEntID(mr)<<3) | (MR_GEntDim(mr)); list_region[nrfs+nrf+2] = (MR_MasterParID(mr)<<3) | (MR_PType(mr)); /* MR_PType is 2 bits; 3 bit is 0 */ list_region[nrfs+nrf+3] = MR_GlobalID(mr); nrfs += (nrf + 4); List_Delete(mrfaces); } /* send detailed region info */ MPI_Isend(list_region,nrfs,MPI_INT,torank,torank,comm,&mpirequest); (*requests)[*numreq] = mpirequest; (*numreq)++; } /* collect allocated memory so it can be freed in a higher level routine after MPI_Waitall or MPI_Test has ensured that the send has been completed */ if (ptrs2free == NULL) MSTK_Report("MESH_Surf_SendMesh_FN","ptrs2free array is NULL",MSTK_FATAL); int nptrs = 3; if (*maxptrs2free == 0) { *maxptrs2free = 25; *ptrs2free = (void **) malloc(*maxptrs2free*sizeof(void *)); *numptrs2free = 0; } else if (*maxptrs2free < (*numptrs2free) + nptrs) { *maxptrs2free = 2*(*maxptrs2free) + nptrs; *ptrs2free = (void **) realloc(*ptrs2free,(*maxptrs2free)*sizeof(void *)); } if (ne) (*ptrs2free)[(*numptrs2free)++] = list_edge; if (nf) (*ptrs2free)[(*numptrs2free)++] = list_face; if (nr) (*ptrs2free)[(*numptrs2free)++] = list_region; return 1; }