static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable ){ mlt_frame b_frame = mlt_frame_pop_frame( a_frame ); mlt_transition transition = mlt_frame_pop_service( a_frame ); mlt_properties properties = MLT_TRANSITION_PROPERTIES( transition ); mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame ); mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame ); int invert = mlt_properties_get_int( properties, "invert" ); uint8_t *images[]={NULL,NULL,NULL}; *format = mlt_image_rgb24a; mlt_frame_get_image( a_frame, &images[0], format, width, height, 0 ); mlt_frame_get_image( b_frame, &images[1], format, width, height, 0 ); double position = mlt_transition_get_position( transition, a_frame ); mlt_profile profile = mlt_service_profile( MLT_TRANSITION_SERVICE( transition ) ); double time = position / mlt_profile_fps( profile ); process_frei0r_item( MLT_TRANSITION_SERVICE(transition), position, time, properties, !invert ? a_frame : b_frame, images, width, height ); *width = mlt_properties_get_int( !invert ? a_props : b_props, "width" ); *height = mlt_properties_get_int( !invert ? a_props : b_props, "height" ); *image = mlt_properties_get_data( !invert ? a_props : b_props , "image", NULL ); return 0; }
static mlt_frame process( mlt_transition transition, mlt_frame a_frame, mlt_frame b_frame ) { mlt_service service = MLT_TRANSITION_SERVICE(transition); if ( !GlslManager::init_chain( service ) ) { // Create the Movit effect chain EffectChain* chain = GlslManager::get_chain( service ); mlt_profile profile = mlt_service_profile( service ); Input* b_input = new MltInput( profile->width, profile->height ); ImageFormat output_format; output_format.color_space = COLORSPACE_sRGB; output_format.gamma_curve = GAMMA_sRGB; chain->add_input( b_input ); chain->add_output( output_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED ); chain->set_dither_bits( 8 ); Effect* effect = chain->add_effect( new OverlayEffect(), GlslManager::get_input( service ), b_input ); // Save these new input on properties for get_image mlt_properties_set_data( MLT_TRANSITION_PROPERTIES(transition), "movit input B", b_input, 0, NULL, NULL ); } // Push the transition on to the frame mlt_frame_push_service( a_frame, transition ); // Push the b_frame on to the stack mlt_frame_push_frame( a_frame, b_frame ); // Push the transition method mlt_frame_push_get_image( a_frame, get_image ); return a_frame; }
static int get_image_b( mlt_frame b_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable ) { mlt_transition self = mlt_frame_pop_service( b_frame ); mlt_frame a_frame = mlt_frame_pop_frame( b_frame ); mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame ); mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame ); // Set scaling from A frame if not already provided. if ( !mlt_properties_get( b_props, "rescale.interp" ) ) { const char *rescale = mlt_properties_get( a_props, "rescale.interp" ); if ( !rescale || !strcmp( rescale, "none" ) ) rescale = "nearest"; mlt_properties_set( b_props, "rescale.interp", rescale ); } // Ensure sane aspect ratio if ( mlt_frame_get_aspect_ratio( b_frame ) == 0.0 ) mlt_frame_set_aspect_ratio( b_frame, mlt_profile_sar( mlt_service_profile( MLT_TRANSITION_SERVICE(self) ) ) ); mlt_properties_pass_list( b_props, a_props, "consumer_deinterlace, deinterlace_method, consumer_tff" ); return mlt_frame_get_image( b_frame, image, format, width, height, writable ); }
mlt_service MLTWebVfx::createTransition() { mlt_transition self = mlt_transition_new(); if (self) { self->process = transitionProcess; // Video only transition mlt_properties_set_int(MLT_TRANSITION_PROPERTIES(self), "_transition_type", 1); return MLT_TRANSITION_SERVICE(self); } return 0; }
static int get_image(mlt_frame frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable) { mlt_transition transition = mlt_frame_pop_service(frame); *format = mlt_frame_pop_service_int(frame); int error = mlt_frame_get_image(frame, image, format, width, height, writable); if (!error) { mlt_properties properties = MLT_FRAME_PROPERTIES(frame); mlt_frame clone = mlt_properties_get_data(properties, "mask frame", NULL); if (clone) { mlt_frame_push_get_image(frame, dummy_get_image); mlt_service_lock(MLT_TRANSITION_SERVICE(transition)); mlt_transition_process(transition, clone, frame); mlt_service_unlock(MLT_TRANSITION_SERVICE(transition)); error = mlt_frame_get_image(clone, image, format, width, height, writable); if (!error) { int size = mlt_image_format_size(*format, *width, *height, NULL); mlt_frame_set_image(frame, *image, size, NULL); } } } return error; }
static int get_image_a( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable ) { mlt_transition self = mlt_frame_pop_service( a_frame ); mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame ); // All transitions get scaling const char *rescale = mlt_properties_get( a_props, "rescale.interp" ); if ( !rescale || !strcmp( rescale, "none" ) ) mlt_properties_set( a_props, "rescale.interp", "nearest" ); // Ensure sane aspect ratio if ( mlt_frame_get_aspect_ratio( a_frame ) == 0.0 ) mlt_frame_set_aspect_ratio( a_frame, mlt_profile_sar( mlt_service_profile( MLT_TRANSITION_SERVICE(self) ) ) ); return mlt_frame_get_image( a_frame, image, format, width, height, writable ); }
int mlt_field_plant_transition( mlt_field self, mlt_transition that, int a_track, int b_track ) { // Connect the transition to the last producer int result = mlt_transition_connect( that, self->producer, a_track, b_track ); // If successful, then we'll use self for connecting in the future if ( result == 0 ) { // This is now the new producer self->producer = MLT_TRANSITION_SERVICE( that ); // Reconnect tractor to new producer mlt_tractor_connect( self->tractor, self->producer ); // Fire an event mlt_events_fire( mlt_field_properties( self ), "service-changed", NULL ); } return result; }
mlt_transition transition_vqm_init( mlt_profile profile, mlt_service_type type, const char *id, void *arg ) { mlt_transition transition = mlt_transition_new(); if ( transition ) { mlt_properties properties = MLT_TRANSITION_PROPERTIES( transition ); if ( !createQApplicationIfNeeded( MLT_TRANSITION_SERVICE(transition) ) ) { mlt_transition_close( transition ); return NULL; } transition->process = process; mlt_properties_set_int( properties, "_transition_type", 1 ); // video only mlt_properties_set_int( properties, "window_size", 8 ); printf( "frame psnr[Y] psnr[Cb] psnr[Cr] ssim[Y] ssim[Cb] ssim[Cr]\n" ); } return transition; }
static int transitionGetImage(mlt_frame aFrame, uint8_t **image, mlt_image_format *format, int *width, int *height, int /*writable*/) { int error = 0; mlt_frame bFrame = mlt_frame_pop_frame(aFrame); mlt_transition transition = (mlt_transition)mlt_frame_pop_service(aFrame); mlt_position position = mlt_transition_get_position(transition, aFrame); mlt_position length = mlt_transition_get_length(transition); // Get the aFrame image, we will write our output to it *format = mlt_image_rgb24; if ((error = mlt_frame_get_image(aFrame, image, format, width, height, 1)) != 0) return error; // Get the bFrame image, we won't write to it uint8_t *bImage = NULL; int bWidth = 0, bHeight = 0; if ((error = mlt_frame_get_image(bFrame, &bImage, format, &bWidth, &bHeight, 0)) != 0) return error; { // Scope the lock MLTWebVfx::ServiceLocker locker(MLT_TRANSITION_SERVICE(transition)); if (!locker.initialize(*width, *height)) return 1; MLTWebVfx::ServiceManager* manager = locker.getManager(); WebVfx::Image renderedImage(*image, *width, *height, *width * *height * WebVfx::Image::BytesPerPixel); manager->setImageForName(manager->getSourceImageName(), &renderedImage); WebVfx::Image targetImage(bImage, bWidth, bHeight, bWidth * bHeight * WebVfx::Image::BytesPerPixel); manager->setImageForName(manager->getTargetImageName(), &targetImage); manager->render(&renderedImage, position, length); } return error; }
static int transition_get_audio( mlt_frame frame_a, void **buffer, mlt_audio_format *format, int *frequency, int *channels, int *samples ) { int error = 0; // Get the b frame from the stack mlt_frame frame_b = mlt_frame_pop_audio( frame_a ); // Get the effect mlt_transition transition = mlt_frame_pop_audio( frame_a ); // Get the properties of the b frame mlt_properties b_props = MLT_FRAME_PROPERTIES( frame_b ); transition_mix self = transition->child; int16_t *buffer_b, *buffer_a; int frequency_b = *frequency, frequency_a = *frequency; int channels_b = *channels, channels_a = *channels; int samples_b = *samples, samples_a = *samples; // We can only mix s16 *format = mlt_audio_s16; mlt_frame_get_audio( frame_b, (void**) &buffer_b, format, &frequency_b, &channels_b, &samples_b ); mlt_frame_get_audio( frame_a, (void**) &buffer_a, format, &frequency_a, &channels_a, &samples_a ); if ( buffer_b == buffer_a ) { *samples = samples_b; *channels = channels_b; *buffer = buffer_b; *frequency = frequency_b; return error; } int silent = mlt_properties_get_int( MLT_FRAME_PROPERTIES( frame_a ), "silent_audio" ); mlt_properties_set_int( MLT_FRAME_PROPERTIES( frame_a ), "silent_audio", 0 ); if ( silent ) memset( buffer_a, 0, samples_a * channels_a * sizeof( int16_t ) ); silent = mlt_properties_get_int( b_props, "silent_audio" ); mlt_properties_set_int( b_props, "silent_audio", 0 ); if ( silent ) memset( buffer_b, 0, samples_b * channels_b * sizeof( int16_t ) ); // determine number of samples to process *samples = MIN( self->src_buffer_count + samples_b, self->dest_buffer_count + samples_a ); *channels = MIN( MIN( channels_b, channels_a ), MAX_CHANNELS ); *frequency = frequency_a; // Prevent src buffer overflow by discarding oldest samples. samples_b = MIN( samples_b, MAX_SAMPLES * MAX_CHANNELS / channels_b ); size_t bytes = PCM16_BYTES( samples_b, channels_b ); if ( PCM16_BYTES( self->src_buffer_count + samples_b, channels_b ) > MAX_BYTES ) { mlt_log_verbose( MLT_TRANSITION_SERVICE(transition), "buffer overflow: src_buffer_count %d\n", self->src_buffer_count ); self->src_buffer_count = MAX_SAMPLES * MAX_CHANNELS / channels_b - samples_b; memmove( self->src_buffer, &self->src_buffer[MAX_SAMPLES * MAX_CHANNELS - samples_b * channels_b], PCM16_BYTES( samples_b, channels_b ) ); } // Buffer new src samples. memcpy( &self->src_buffer[self->src_buffer_count * channels_b], buffer_b, bytes ); self->src_buffer_count += samples_b; buffer_b = self->src_buffer; // Prevent dest buffer overflow by discarding oldest samples. samples_a = MIN( samples_a, MAX_SAMPLES * MAX_CHANNELS / channels_a ); bytes = PCM16_BYTES( samples_a, channels_a ); if ( PCM16_BYTES( self->dest_buffer_count + samples_a, channels_a ) > MAX_BYTES ) { mlt_log_verbose( MLT_TRANSITION_SERVICE(transition), "buffer overflow: dest_buffer_count %d\n", self->dest_buffer_count ); self->dest_buffer_count = MAX_SAMPLES * MAX_CHANNELS / channels_a - samples_a; memmove( self->dest_buffer, &self->dest_buffer[MAX_SAMPLES * MAX_CHANNELS - samples_a * channels_a], PCM16_BYTES( samples_a, channels_a ) ); } // Buffer the new dest samples. memcpy( &self->dest_buffer[self->dest_buffer_count * channels_a], buffer_a, bytes ); self->dest_buffer_count += samples_a; buffer_a = self->dest_buffer; // Do the mixing. if ( mlt_properties_get_int( MLT_TRANSITION_PROPERTIES(transition), "combine" ) ) { double weight = 1.0; if ( mlt_properties_get_int( MLT_FRAME_PROPERTIES( frame_a ), "meta.mixdown" ) ) weight = 1.0 - mlt_properties_get_double( MLT_FRAME_PROPERTIES( frame_a ), "meta.volume" ); combine_audio( weight, buffer_a, buffer_b, channels_a, channels_b, *channels, *samples ); } else { double mix_start = 0.5, mix_end = 0.5; if ( mlt_properties_get( b_props, "audio.previous_mix" ) ) mix_start = mlt_properties_get_double( b_props, "audio.previous_mix" ); if ( mlt_properties_get( b_props, "audio.mix" ) ) mix_end = mlt_properties_get_double( b_props, "audio.mix" ); if ( mlt_properties_get_int( b_props, "audio.reverse" ) ) { mix_start = 1.0 - mix_start; mix_end = 1.0 - mix_end; } mix_audio( mix_start, mix_end, buffer_a, buffer_b, channels_a, channels_b, *channels, *samples ); } // Copy the audio into the frame. bytes = PCM16_BYTES( *samples, *channels ); *buffer = mlt_pool_alloc( bytes ); memcpy( *buffer, buffer_a, bytes ); mlt_frame_set_audio( frame_a, *buffer, *format, bytes, mlt_pool_release ); if ( mlt_properties_get_int( b_props, "_speed" ) == 0 ) { // Flush the buffer when paused and scrubbing. samples_b = self->src_buffer_count; samples_a = self->dest_buffer_count; } else { // Determine the maximum amount of latency permitted in the buffer. int max_latency = CLAMP( *frequency / 1000, 0, MAX_SAMPLES ); // samples in 1ms // samples_b becomes the new target src buffer count. samples_b = CLAMP( self->src_buffer_count - *samples, 0, max_latency ); // samples_b becomes the number of samples to consume: difference between actual and the target. samples_b = self->src_buffer_count - samples_b; // samples_a becomes the new target dest buffer count. samples_a = CLAMP( self->dest_buffer_count - *samples, 0, max_latency ); // samples_a becomes the number of samples to consume: difference between actual and the target. samples_a = self->dest_buffer_count - samples_a; } // Consume the src buffer. self->src_buffer_count -= samples_b; if ( self->src_buffer_count ) { memmove( self->src_buffer, &self->src_buffer[samples_b * channels_b], PCM16_BYTES( self->src_buffer_count, channels_b )); } // Consume the dest buffer. self->dest_buffer_count -= samples_a; if ( self->dest_buffer_count ) { memmove( self->dest_buffer, &self->dest_buffer[samples_a * channels_a], PCM16_BYTES( self->dest_buffer_count, channels_a )); } return error; }
static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable ) { // Get the b frame from the stack mlt_frame b_frame = mlt_frame_pop_frame( a_frame ); // Get the transition object mlt_transition transition = mlt_frame_pop_service( a_frame ); // Get the properties of the transition mlt_properties properties = MLT_TRANSITION_PROPERTIES( transition ); // Get the properties of the a frame mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame ); // Get the properties of the b frame mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame ); // Image, format, width, height and image for the b frame uint8_t *b_image = NULL; mlt_image_format b_format = mlt_image_rgb24a; int b_width = mlt_properties_get_int( b_props, "meta.media.width" ); int b_height = mlt_properties_get_int( b_props, "meta.media.height" ); double b_ar = mlt_frame_get_aspect_ratio( b_frame ); double b_dar = b_ar * b_width / b_height; // Assign the current position mlt_position position = mlt_transition_get_position( transition, a_frame ); int mirror = mlt_properties_get_position( properties, "mirror" ); int length = mlt_transition_get_length( transition ); if ( mlt_properties_get_int( properties, "always_active" ) ) { mlt_properties props = mlt_properties_get_data( b_props, "_producer", NULL ); mlt_position in = mlt_properties_get_int( props, "in" ); mlt_position out = mlt_properties_get_int( props, "out" ); length = out - in + 1; } // Obtain the normalised width and height from the a_frame mlt_profile profile = mlt_service_profile( MLT_TRANSITION_SERVICE( transition ) ); int normalised_width = profile->width; int normalised_height = profile->height; double consumer_ar = mlt_profile_sar( profile ); if ( mirror && position > length / 2 ) position = abs( position - length ); // Fetch the a frame image *format = mlt_image_rgb24a; int error = mlt_frame_get_image( a_frame, image, format, width, height, 1 ); if (error || !image) return error; // Calculate the region now mlt_rect result = {0, 0, normalised_width, normalised_height, 1.0}; mlt_service_lock( MLT_TRANSITION_SERVICE( transition ) ); if (mlt_properties_get(properties, "geometry")) { // Structures for geometry struct mlt_geometry_item_s geometry; composite_calculate( transition, &geometry, normalised_width, normalised_height, ( double )position ); result.x = geometry.x; result.y = geometry.y; result.w = geometry.w; result.h = geometry.h; result.o = geometry.mix / 100.0f; } else if (mlt_properties_get(properties, "rect")) { // Determine length and obtain cycle double cycle = mlt_properties_get_double( properties, "cycle" ); // Allow a repeat cycle if ( cycle >= 1 ) length = cycle; else if ( cycle > 0 ) length *= cycle; mlt_position anim_pos = repeat_position(properties, "rect", position, length); result = mlt_properties_anim_get_rect(properties, "rect", anim_pos, length); if (mlt_properties_get(properties, "rect") && strchr(mlt_properties_get(properties, "rect"), '%')) { result.x *= normalised_width; result.y *= normalised_height; result.w *= normalised_width; result.h *= normalised_height; } result.o = (result.o == DBL_MIN)? 1.0 : MIN(result.o, 1.0); } mlt_service_unlock( MLT_TRANSITION_SERVICE( transition ) ); double geometry_w = result.w; double geometry_h = result.h; if ( !mlt_properties_get_int( properties, "fill" ) ) { double geometry_dar = result.w * consumer_ar / result.h; if ( b_dar > geometry_dar ) { result.w = MIN( result.w, b_width * b_ar / consumer_ar ); result.h = result.w * consumer_ar / b_dar; } else { result.h = MIN( result.h, b_height ); result.w = result.h * b_dar / consumer_ar; } } // Fetch the b frame image result.w = ( result.w * *width / normalised_width ); result.h = ( result.h * *height / normalised_height ); result.x = ( result.x * *width / normalised_width ); result.y = ( result.y * *height / normalised_height ); if (mlt_properties_get_int(properties, "b_scaled")) { // Request b frame image size just what is needed. b_width = result.w; b_height = result.h; // Set the rescale interpolation to match the frame mlt_properties_set( b_props, "rescale.interp", mlt_properties_get( a_props, "rescale.interp" ) ); } else { // Request full resolution of b frame image. mlt_properties_set_int( b_props, "rescale_width", b_width ); mlt_properties_set_int( b_props, "rescale_height", b_height ); // Suppress padding and aspect normalization. mlt_properties_set( b_props, "rescale.interp", "none" ); } // This is not a field-aware transform. mlt_properties_set_int( b_props, "consumer_deinterlace", 1 ); error = mlt_frame_get_image( b_frame, &b_image, &b_format, &b_width, &b_height, 0 ); if (error || !b_image) { // Remove potentially large image on the B frame. mlt_frame_set_image( b_frame, NULL, 0, NULL ); return error; } // Check that both images are of the correct format and process if ( *format == mlt_image_rgb24a && b_format == mlt_image_rgb24a ) { double sw, sh; // Get values from the transition double scale_x = mlt_properties_anim_get_double( properties, "scale_x", position, length ); double scale_y = mlt_properties_anim_get_double( properties, "scale_y", position, length ); int scale = mlt_properties_get_int( properties, "scale" ); double geom_scale_x = (double) b_width / result.w; double geom_scale_y = (double) b_height / result.h; struct sliced_desc desc = { .a_image = *image, .b_image = b_image, .interp = interpBL_b32, .a_width = *width, .a_height = *height, .b_width = b_width, .b_height = b_height, .lower_x = -(result.x + result.w / 2.0), // center .lower_y = -(result.y + result.h / 2.0), // middle .mix = result.o, .x_offset = (double) b_width / 2.0, .y_offset = (double) b_height / 2.0, .b_alpha = mlt_properties_get_int( properties, "b_alpha" ), // Affine boundaries .minima = 0, .xmax = b_width - 1, .ymax = b_height - 1 }; // Recalculate vars if alignment supplied. if ( mlt_properties_get( properties, "halign" ) || mlt_properties_get( properties, "valign" ) ) { double halign = alignment_parse( mlt_properties_get( properties, "halign" ) ); double valign = alignment_parse( mlt_properties_get( properties, "valign" ) ); desc.x_offset = halign * b_width / 2.0; desc.y_offset = valign * b_height / 2.0; desc.lower_x = -(result.x + geometry_w * halign / 2.0f); desc.lower_y = -(result.y + geometry_h * valign / 2.0f); } affine_init( desc.affine.matrix ); // Compute the affine transform get_affine( &desc.affine, transition, ( double )position, length ); desc.dz = MapZ( desc.affine.matrix, 0, 0 ); if ( (int) fabs( desc.dz * 1000 ) < 25 ) return 0; // Factor scaling into the transformation based on output resolution. if ( mlt_properties_get_int( properties, "distort" ) ) { scale_x = geom_scale_x * ( scale_x == 0 ? 1 : scale_x ); scale_y = geom_scale_y * ( scale_y == 0 ? 1 : scale_y ); } else { // Determine scale with respect to aspect ratio. double consumer_dar = consumer_ar * normalised_width / normalised_height; if ( b_dar > consumer_dar ) { scale_x = geom_scale_x * ( scale_x == 0 ? 1 : scale_x ); scale_y = geom_scale_x * ( scale_y == 0 ? 1 : scale_y ); scale_y *= b_ar / consumer_ar; } else { scale_x = geom_scale_y * ( scale_x == 0 ? 1 : scale_x ); scale_y = geom_scale_y * ( scale_y == 0 ? 1 : scale_y ); scale_x *= consumer_ar / b_ar; } } if ( scale ) { affine_max_output( desc.affine.matrix, &sw, &sh, desc.dz, *width, *height ); affine_scale( desc.affine.matrix, sw * MIN( geom_scale_x, geom_scale_y ), sh * MIN( geom_scale_x, geom_scale_y ) ); } else if ( scale_x != 0 && scale_y != 0 ) { affine_scale( desc.affine.matrix, scale_x, scale_y ); } char *interps = mlt_properties_get( a_props, "rescale.interp" ); // Copy in case string is changed. if ( interps ) interps = strdup( interps ); // Set the interpolation function if ( interps == NULL || strcmp( interps, "nearest" ) == 0 || strcmp( interps, "neighbor" ) == 0 || strcmp( interps, "tiles" ) == 0 || strcmp( interps, "fast_bilinear" ) == 0 ) { desc.interp = interpNN_b32; // uses lrintf. Values should be >= -0.5 and < max + 0.5 desc.minima -= 0.5; desc.xmax += 0.49; desc.ymax += 0.49; } else if ( strcmp( interps, "bilinear" ) == 0 ) { desc.interp = interpBL_b32; // uses floorf. } else if ( strcmp( interps, "bicubic" ) == 0 || strcmp( interps, "hyper" ) == 0 || strcmp( interps, "sinc" ) == 0 || strcmp( interps, "lanczos" ) == 0 || strcmp( interps, "spline" ) == 0 ) { // TODO: lanczos 8x8 // TODO: spline 4x4 or 6x6 desc.interp = interpBC_b32; // uses ceilf. Values should be > -1 and <= max. desc.minima -= 1; } free( interps ); // Do the transform with interpolation int threads = mlt_properties_get_int(properties, "threads"); threads = CLAMP(threads, 0, mlt_slices_count_normal()); if (threads == 1) sliced_proc(0, 0, 1, &desc); else mlt_slices_run_normal(threads, sliced_proc, &desc); // Remove potentially large image on the B frame. mlt_frame_set_image( b_frame, NULL, 0, NULL ); } return 0; }
static int create_instance( mlt_transition transition, char *name, char *value, int count ) { // Return from this function int error = 0; // Duplicate the value char *type = strdup( value ); // Pointer to filter argument char *arg = type == NULL ? NULL : strchr( type, ':' ); // New filter being created mlt_filter filter = NULL; // Cleanup type and arg if ( arg != NULL ) *arg ++ = '\0'; // Create the filter mlt_profile profile = mlt_service_profile( MLT_TRANSITION_SERVICE( transition ) ); if ( type ) filter = mlt_factory_filter( profile, type, arg ); // If we have a filter, then initialise and store it if ( filter != NULL ) { // Properties of transition mlt_properties properties = MLT_TRANSITION_PROPERTIES( transition ); // String to hold the property name char id[ 256 ]; // String to hold the passdown key char key[ 256 ]; // Construct id sprintf( id, "_filter_%d", count ); // Counstruct key sprintf( key, "%s.", name ); // Just in case, let's assume that the filter here has a composite //mlt_properties_set( MLT_FILTER_PROPERTIES( filter ), "composite.geometry", "0%/0%:100%x100%" ); //mlt_properties_set_int( MLT_FILTER_PROPERTIES( filter ), "composite.fill", 1 ); // Pass all the key properties on the filter down mlt_properties_pass( MLT_FILTER_PROPERTIES( filter ), properties, key ); mlt_properties_pass_list( MLT_FILTER_PROPERTIES( filter ), properties, "in, out, length" ); // Ensure that filter is assigned mlt_properties_set_data( properties, id, filter, 0, ( mlt_destructor )mlt_filter_close, NULL ); } else { // Indicate that an error has occurred error = 1; } // Cleanup free( type ); // Return error condition return error; }
static int transition_get_image( mlt_frame frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable ) { // Error we will return int error = 0; // We will get the 'b frame' from the frame stack mlt_frame b_frame = mlt_frame_pop_frame( frame ); // Get the watermark transition object mlt_transition transition = mlt_frame_pop_service( frame ); // Get the properties of the transitionfin mlt_properties properties = MLT_TRANSITION_PROPERTIES( transition ); // Get the properties of the a frame mlt_properties a_props = MLT_FRAME_PROPERTIES( frame ); mlt_service_lock( MLT_TRANSITION_SERVICE( transition ) ); // Get the composite from the transition mlt_transition composite = mlt_properties_get_data( properties, "composite", NULL ); // Look for the first filter mlt_filter filter = mlt_properties_get_data( properties, "_filter_0", NULL ); // Get the position mlt_position position = mlt_transition_get_position( transition, frame ); // Create a composite if we don't have one if ( composite == NULL ) { // Create composite via the factory mlt_profile profile = mlt_service_profile( MLT_TRANSITION_SERVICE( transition ) ); composite = mlt_factory_transition( profile, "composite", NULL ); // If we have one if ( composite != NULL ) { // Get the properties mlt_properties composite_properties = MLT_TRANSITION_PROPERTIES( composite ); // We want to ensure that we don't get a wobble... //mlt_properties_set_int( composite_properties, "distort", 1 ); mlt_properties_set_int( composite_properties, "progressive", 1 ); // Pass all the composite. properties on the transition down mlt_properties_pass( composite_properties, properties, "composite." ); // Register the composite for reuse/destruction mlt_properties_set_data( properties, "composite", composite, 0, ( mlt_destructor )mlt_transition_close, NULL ); } } else { // Pass all current properties down mlt_properties composite_properties = MLT_TRANSITION_PROPERTIES( composite ); mlt_properties_pass( composite_properties, properties, "composite." ); } // Create filters if ( filter == NULL ) { // Loop Variable int i = 0; // Number of filters created int count = 0; // Loop for all properties for ( i = 0; i < mlt_properties_count( properties ); i ++ ) { // Get the name of this property char *name = mlt_properties_get_name( properties, i ); // If the name does not contain a . and matches filter if ( strchr( name, '.' ) == NULL && !strncmp( name, "filter", 6 ) ) { // Get the filter constructor char *value = mlt_properties_get_value( properties, i ); // Create an instance if ( create_instance( transition, name, value, count ) == 0 ) count ++; } } // Look for the first filter again filter = mlt_properties_get_data( properties, "_filter_0", NULL ); } else { // Pass all properties down mlt_filter temp = NULL; // Loop Variable int i = 0; // Number of filters found int count = 0; // Loop for all properties for ( i = 0; i < mlt_properties_count( properties ); i ++ ) { // Get the name of this property char *name = mlt_properties_get_name( properties, i ); // If the name does not contain a . and matches filter if ( strchr( name, '.' ) == NULL && !strncmp( name, "filter", 6 ) ) { // Strings to hold the id and pass down key char id[ 256 ]; char key[ 256 ]; // Construct id and key sprintf( id, "_filter_%d", count ); sprintf( key, "%s.", name ); // Get the filter temp = mlt_properties_get_data( properties, id, NULL ); if ( temp != NULL ) { mlt_properties_pass( MLT_FILTER_PROPERTIES( temp ), properties, key ); count ++; } } } } mlt_properties_set_int( a_props, "width", *width ); mlt_properties_set_int( a_props, "height", *height ); // Only continue if we have both filter and composite if ( composite != NULL ) { // Get the resource of this filter (could be a shape [rectangle/circle] or an alpha provider of choice const char *resource = mlt_properties_get( properties, "resource" ); // Get the old resource in case it's changed char *old_resource = mlt_properties_get( properties, "_old_resource" ); // String to hold the filter to query on char id[ 256 ]; // Index to hold the count int i = 0; // We will get the 'b frame' from the composite only if it's NULL (region filter) if ( b_frame == NULL ) { // Copy the region b_frame = composite_copy_region( composite, frame, position ); // Ensure a destructor char *name = mlt_properties_get( properties, "_unique_id" ); mlt_properties_set_data( a_props, name, b_frame, 0, ( mlt_destructor )mlt_frame_close, NULL ); } // Properties of the B framr mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame ); // filter_only prevents copying the alpha channel of the shape to the output frame // by compositing filtered frame over itself if ( mlt_properties_get_int( properties, "filter_only" ) ) { char *name = mlt_properties_get( properties, "_unique_id" ); frame = composite_copy_region( composite, b_frame, position ); mlt_properties_set_data( b_props, name, frame, 0, ( mlt_destructor )mlt_frame_close, NULL ); } // Make sure the filter is in the correct position while ( filter != NULL ) { // Stack this filter if ( mlt_properties_get_int( MLT_FILTER_PROPERTIES( filter ), "off" ) == 0 ) mlt_filter_process( filter, b_frame ); // Generate the key for the next sprintf( id, "_filter_%d", ++ i ); // Get the next filter filter = mlt_properties_get_data( properties, id, NULL ); } // Allow filters to be attached to a region filter filter = mlt_properties_get_data( properties, "_region_filter", NULL ); if ( filter != NULL ) mlt_service_apply_filters( MLT_FILTER_SERVICE( filter ), b_frame, 0 ); // Hmm - this is probably going to go wrong.... mlt_frame_set_position( frame, position ); // Get the b frame and process with composite if successful mlt_transition_process( composite, frame, b_frame ); // If we have a shape producer copy the alpha mask from the shape frame to the b_frame if ( strcmp( resource, "rectangle" ) != 0 ) { // Get the producer from the transition mlt_producer producer = mlt_properties_get_data( properties, "producer", NULL ); // If We have no producer then create one if ( producer == NULL || ( old_resource != NULL && strcmp( resource, old_resource ) ) ) { // Get the factory producer service char *factory = mlt_properties_get( properties, "factory" ); // Store the old resource mlt_properties_set( properties, "_old_resource", resource ); // Special case circle resource if ( strcmp( resource, "circle" ) == 0 ) resource = "pixbuf:<svg width='100' height='100'><circle cx='50' cy='50' r='50' fill='black'/></svg>"; // Create the producer mlt_profile profile = mlt_service_profile( MLT_TRANSITION_SERVICE( transition ) ); producer = mlt_factory_producer( profile, factory, resource ); // If we have one if ( producer != NULL ) { // Get the producer properties mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer ); // Ensure that we loop mlt_properties_set( producer_properties, "eof", "loop" ); // Now pass all producer. properties on the transition down mlt_properties_pass( producer_properties, properties, "producer." ); // Register the producer for reuse/destruction mlt_properties_set_data( properties, "producer", producer, 0, ( mlt_destructor )mlt_producer_close, NULL ); } } // Now use the shape producer if ( producer != NULL ) { // We will get the alpha frame from the producer mlt_frame shape_frame = NULL; // Make sure the producer is in the correct position mlt_producer_seek( producer, position ); // Get the shape frame if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &shape_frame, 0 ) == 0 ) { // Ensure that the shape frame will be closed mlt_properties_set_data( b_props, "shape_frame", shape_frame, 0, ( mlt_destructor )mlt_frame_close, NULL ); if ( mlt_properties_get_int(properties, "holecolor") ) { mlt_properties_set_int(b_props, "holecolor", mlt_properties_get_int(properties,"holecolor")); } // Specify the callback for evaluation b_frame->get_alpha_mask = filter_get_alpha_mask; } } } // Get the image error = mlt_frame_get_image( frame, image, format, width, height, 0 ); } mlt_service_unlock( MLT_TRANSITION_SERVICE( transition ) ); return error; }
static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable ) { // Get the b frame from the stack mlt_frame b_frame = mlt_frame_pop_frame( a_frame ); // Get the transition object mlt_transition transition = mlt_frame_pop_service( a_frame ); // Get the properties of the transition mlt_properties properties = MLT_TRANSITION_PROPERTIES( transition ); // Get the properties of the a frame mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame ); // Get the properties of the b frame mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame ); // Image, format, width, height and image for the b frame uint8_t *b_image = NULL; mlt_image_format b_format = mlt_image_rgb24a; int b_width; int b_height; // Assign the current position mlt_position position = mlt_transition_get_position( transition, a_frame ); int mirror = mlt_properties_get_position( properties, "mirror" ); int length = mlt_transition_get_length( transition ); if ( mlt_properties_get_int( properties, "always_active" ) ) { mlt_properties props = mlt_properties_get_data( b_props, "_producer", NULL ); mlt_position in = mlt_properties_get_int( props, "in" ); mlt_position out = mlt_properties_get_int( props, "out" ); length = out - in + 1; } // Obtain the normalised width and height from the a_frame mlt_profile profile = mlt_service_profile( MLT_TRANSITION_SERVICE( transition ) ); int normalised_width = profile->width; int normalised_height = profile->height; double consumer_ar = mlt_profile_sar( mlt_service_profile( MLT_TRANSITION_SERVICE(transition) ) ); // Structures for geometry struct mlt_geometry_item_s result; if ( mirror && position > length / 2 ) position = abs( position - length ); // Fetch the a frame image *format = mlt_image_rgb24a; mlt_frame_get_image( a_frame, image, format, width, height, 1 ); // Calculate the region now mlt_service_lock( MLT_TRANSITION_SERVICE( transition ) ); composite_calculate( transition, &result, normalised_width, normalised_height, ( float )position ); mlt_service_unlock( MLT_TRANSITION_SERVICE( transition ) ); // Fetch the b frame image result.w = ( result.w * *width / normalised_width ); result.h = ( result.h * *height / normalised_height ); result.x = ( result.x * *width / normalised_width ); result.y = ( result.y * *height / normalised_height ); // Request full resolution of b frame image. b_width = mlt_properties_get_int( b_props, "meta.media.width" ); b_height = mlt_properties_get_int( b_props, "meta.media.height" ); mlt_properties_set_int( b_props, "rescale_width", b_width ); mlt_properties_set_int( b_props, "rescale_height", b_height ); // Suppress padding and aspect normalization. char *interps = mlt_properties_get( a_props, "rescale.interp" ); if ( interps ) interps = strdup( interps ); mlt_properties_set( b_props, "rescale.interp", "none" ); // This is not a field-aware transform. mlt_properties_set_int( b_props, "consumer_deinterlace", 1 ); mlt_frame_get_image( b_frame, &b_image, &b_format, &b_width, &b_height, 0 ); // Check that both images are of the correct format and process if ( *format == mlt_image_rgb24a && b_format == mlt_image_rgb24a ) { float x, y; float dx, dy; float dz; float sw, sh; uint8_t *p = *image; // Get values from the transition float scale_x = mlt_properties_get_double( properties, "scale_x" ); float scale_y = mlt_properties_get_double( properties, "scale_y" ); int scale = mlt_properties_get_int( properties, "scale" ); int b_alpha = mlt_properties_get_int( properties, "b_alpha" ); float geom_scale_x = (float) b_width / result.w; float geom_scale_y = (float) b_height / result.h; float cx = result.x + result.w / 2.0; float cy = result.y + result.h / 2.0; float lower_x = - cx; float lower_y = - cy; float x_offset = (float) b_width / 2.0; float y_offset = (float) b_height / 2.0; affine_t affine; interpp interp = interpBL_b32; int i, j; // loop counters affine_init( affine.matrix ); // Compute the affine transform get_affine( &affine, transition, ( float )position ); dz = MapZ( affine.matrix, 0, 0 ); if ( ( int )abs( dz * 1000 ) < 25 ) { if ( interps ) free( interps ); return 0; } // Factor scaling into the transformation based on output resolution. if ( mlt_properties_get_int( properties, "distort" ) ) { scale_x = geom_scale_x * ( scale_x == 0 ? 1 : scale_x ); scale_y = geom_scale_y * ( scale_y == 0 ? 1 : scale_y ); } else { // Determine scale with respect to aspect ratio. double consumer_dar = consumer_ar * normalised_width / normalised_height; double b_ar = mlt_properties_get_double( b_props, "aspect_ratio" ); double b_dar = b_ar * b_width / b_height; if ( b_dar > consumer_dar ) { scale_x = geom_scale_x * ( scale_x == 0 ? 1 : scale_x ); scale_y = geom_scale_x * ( scale_y == 0 ? 1 : scale_y ); } else { scale_x = geom_scale_y * ( scale_x == 0 ? 1 : scale_x ); scale_y = geom_scale_y * ( scale_y == 0 ? 1 : scale_y ); } scale_x *= consumer_ar / b_ar; } if ( scale ) { affine_max_output( affine.matrix, &sw, &sh, dz, *width, *height ); affine_scale( affine.matrix, sw * MIN( geom_scale_x, geom_scale_y ), sh * MIN( geom_scale_x, geom_scale_y ) ); } else if ( scale_x != 0 && scale_y != 0 ) { affine_scale( affine.matrix, scale_x, scale_y ); } // Set the interpolation function if ( interps == NULL || strcmp( interps, "nearest" ) == 0 || strcmp( interps, "neighbor" ) == 0 ) interp = interpNN_b32; else if ( strcmp( interps, "tiles" ) == 0 || strcmp( interps, "fast_bilinear" ) == 0 ) interp = interpNN_b32; else if ( strcmp( interps, "bilinear" ) == 0 ) interp = interpBL_b32; else if ( strcmp( interps, "bicubic" ) == 0 ) interp = interpBC_b32; // TODO: lanczos 8x8 else if ( strcmp( interps, "hyper" ) == 0 || strcmp( interps, "sinc" ) == 0 || strcmp( interps, "lanczos" ) == 0 ) interp = interpBC_b32; else if ( strcmp( interps, "spline" ) == 0 ) // TODO: spline 4x4 or 6x6 interp = interpBC_b32; // Do the transform with interpolation for ( i = 0, y = lower_y; i < *height; i++, y++ ) { for ( j = 0, x = lower_x; j < *width; j++, x++ ) { dx = MapX( affine.matrix, x, y ) / dz + x_offset; dy = MapY( affine.matrix, x, y ) / dz + y_offset; if ( dx >= 0 && dx < (b_width - 1) && dy >=0 && dy < (b_height - 1) ) interp( b_image, b_width, b_height, dx, dy, result.mix/100.0, p, b_alpha ); p += 4; } } } if ( interps ) free( interps ); return 0; }
static int get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable ) { int error = 0; // Get the b frame from the stack mlt_frame b_frame = (mlt_frame) mlt_frame_pop_frame( a_frame ); // Get the transition object mlt_transition transition = (mlt_transition) mlt_frame_pop_service( a_frame ); // Get the properties of the transition mlt_properties properties = MLT_TRANSITION_PROPERTIES( transition ); // Get the properties of the a frame mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame ); // Get the movit objects mlt_service service = MLT_TRANSITION_SERVICE( transition ); mlt_service_lock( service ); EffectChain* chain = GlslManager::get_chain( service ); MltInput* a_input = GlslManager::get_input( service ); MltInput* b_input = (MltInput*) mlt_properties_get_data( properties, "movit input B", NULL ); mlt_image_format output_format = *format; if ( !chain || !a_input ) { mlt_service_unlock( service ); return 2; } // Get the frames' textures GLuint* texture_id[2] = {0, 0}; *format = mlt_image_glsl_texture; mlt_frame_get_image( a_frame, (uint8_t**) &texture_id[0], format, width, height, 0 ); a_input->useFBOInput( chain, *texture_id[0] ); *format = mlt_image_glsl_texture; mlt_frame_get_image( b_frame, (uint8_t**) &texture_id[1], format, width, height, 0 ); b_input->useFBOInput( chain, *texture_id[1] ); // Set resolution to that of the a_frame *width = mlt_properties_get_int( a_props, "width" ); *height = mlt_properties_get_int( a_props, "height" ); // Setup rendering to an FBO GlslManager* glsl = GlslManager::get_instance(); glsl_fbo fbo = glsl->get_fbo( *width, *height ); if ( output_format == mlt_image_glsl_texture ) { glsl_texture texture = glsl->get_texture( *width, *height, GL_RGBA ); glBindFramebuffer( GL_FRAMEBUFFER, fbo->fbo ); check_error(); glFramebufferTexture2D( GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture->texture, 0 ); check_error(); glBindFramebuffer( GL_FRAMEBUFFER, 0 ); check_error(); GlslManager::render( service, chain, fbo->fbo, *width, *height ); glFinish(); check_error(); glBindFramebuffer( GL_FRAMEBUFFER, 0 ); check_error(); *image = (uint8_t*) &texture->texture; mlt_frame_set_image( a_frame, *image, 0, NULL ); mlt_properties_set_data( properties, "movit.convert", texture, 0, (mlt_destructor) GlslManager::release_texture, NULL ); *format = output_format; } else { // Use a PBO to hold the data we read back with glReadPixels() // (Intel/DRI goes into a slow path if we don't read to PBO) GLenum gl_format = ( output_format == mlt_image_rgb24a || output_format == mlt_image_opengl )? GL_RGBA : GL_RGB; int img_size = *width * *height * ( gl_format == GL_RGB? 3 : 4 ); glsl_pbo pbo = glsl->get_pbo( img_size ); glsl_texture texture = glsl->get_texture( *width, *height, gl_format ); if ( fbo && pbo && texture ) { // Set the FBO glBindFramebuffer( GL_FRAMEBUFFER, fbo->fbo ); check_error(); glFramebufferTexture2D( GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture->texture, 0 ); check_error(); glBindFramebuffer( GL_FRAMEBUFFER, 0 ); check_error(); GlslManager::render( service, chain, fbo->fbo, *width, *height ); // Read FBO into PBO glBindBuffer( GL_PIXEL_PACK_BUFFER_ARB, pbo->pbo ); check_error(); glBufferData( GL_PIXEL_PACK_BUFFER_ARB, img_size, NULL, GL_STREAM_READ ); check_error(); glReadPixels( 0, 0, *width, *height, gl_format, GL_UNSIGNED_BYTE, BUFFER_OFFSET(0) ); check_error(); // Copy from PBO uint8_t* buf = (uint8_t*) glMapBuffer( GL_PIXEL_PACK_BUFFER_ARB, GL_READ_ONLY ); check_error(); *format = gl_format == GL_RGBA ? mlt_image_rgb24a : mlt_image_rgb24; *image = (uint8_t*) mlt_pool_alloc( img_size ); mlt_frame_set_image( a_frame, *image, img_size, mlt_pool_release ); memcpy( *image, buf, img_size ); // Release PBO and FBO glUnmapBuffer( GL_PIXEL_PACK_BUFFER_ARB ); check_error(); glBindBuffer( GL_PIXEL_PACK_BUFFER_ARB, 0 ); check_error(); glBindFramebuffer( GL_FRAMEBUFFER, 0 ); check_error(); glBindTexture( GL_TEXTURE_2D, 0 ); check_error(); GlslManager::release_texture( texture ); } else { error = 1; } } if ( fbo ) GlslManager::release_fbo( fbo ); mlt_service_lock( service ); return error; }