コード例 #1
0
ファイル: synchrone.c プロジェクト: seaguest/Sensor
interrupt(PORT1_VECTOR) Buttopn(void)
{
	P1IFG &= ~0x04;
	P1OUT ^=  0x03;
	//after press the button , we can send and recieve message 
	BSP_Init();
	MRFI_Init();
	MRFI_SetLogicalChannel(1);
	MRFI_SetRFPwr(0);

	Uart_Init();

	MRFI_WakeUp();
	MRFI_RxOn(); 

	Scan_Init(&etat);			//open timer B for scan
	Start_Timer_Surveille();		//open timer for surveille

	print("\n\r");
	print("command: \n\r");
	print("o  : who is on line \n\r");
	print("v  : voisin \n\r");
	print("r  : router table \n\r");
	print("i  : sysinfo \n\r");
	print("ESC: help \n\r");
}
コード例 #2
0
ファイル: mrfi_radio.c プロジェクト: flburg/eZ430-RF2500
/**************************************************************************************************
 * @fn          MRFI_Init
 *
 * @brief       Initialize MRFI.
 *
 * @param       none
 *
 * @return      none
 **************************************************************************************************
 */
void MRFI_Init(void)
{
  /* ------------------------------------------------------------------
   *    Run-time integrity checks
   *   ---------------------------
   */
  memset(&mrfiIncomingPacket, 0x0, sizeof(mrfiIncomingPacket));

  /* verify the correct radio is installed */
  MRFI_ASSERT( CHIPID == MRFI_RADIO_PARTNUM );      /* wrong radio */
  MRFI_ASSERT( CHVER  >= MRFI_RADIO_MIN_VERSION );  /* obsolete radio version */

  /* ------------------------------------------------------------------
   *    Configure IO ports
   *   ---------------------------
   */

#if defined(MRFI_PA_LNA_ENABLED) && defined(BSP_BOARD_SRF04EB)
  MRFI_BOARD_PA_LNA_CONFIG_PORTS();
  MRFI_BOARD_PA_LNA_HGM();
#endif


  /* ------------------------------------------------------------------
   *    Configure clock to use XOSC
   *   -----------------------------
   */
  SLEEPCMD &= ~OSC_PD;                       /* turn on 16MHz RC and 32MHz XOSC */
  while (!(SLEEPSTA & XOSC_STB));            /* wait for 32MHz XOSC stable */
  asm("NOP");                             /* chip bug workaround */
  {
    uint16_t i;

    /* Require 63us delay for all revs */
    for (i=0; i<504; i++)
    {
      asm("NOP");
    }
  }
  CLKCONCMD = (0x00 | OSC_32KHZ);            /* 32MHz XOSC */
  while (CLKCONSTA != (0x00 | OSC_32KHZ));
  SLEEPCMD |= OSC_PD;                        /* turn off 16MHz RC */


  /* Configure radio registers that should be different from reset values. */
  Mrfi_RadioRegConfig();

  /* ------------------------------------------------------------------
   *    Variable Initialization
   *   -------------------------
   */

#ifdef MRFI_ASSERTS_ARE_ON
  PAN_ID0 = 0xFF;
  PAN_ID1 = 0xFF;
#endif



  /* ------------------------------------------------------------------
   *    Initialize Random Seed Value
   *   -------------------------------
   */


  /*
   *  Set radio for infinite reception.  Once radio reaches this state,
   *  it will stay in receive mode regardless RF activity.
   */
  FRMCTRL0 = (FRMCTRL0 & ~RX_MODE_MASK) | RX_MODE_INFINITE_RX;

  /* turn on the receiver */
  RFST = ISRXON;

  /* Wait for RSSI to be valid. Once valid, radio is stable and random bits
   * can be read.
   */
  MRFI_RSSI_VALID_WAIT();

  /* put 16 random bits into the seed value */
  {
    uint16_t rndSeed;
    uint8_t  i;

    rndSeed = 0;

    for(i=0; i<16; i++)
    {
      /* read random bit to populate the random seed */
      rndSeed = (rndSeed << 1) | (RFRND & 0x01);
    }

    /*
     *  The seed value must not be zero.  If it is, the pseudo random sequence will be always be zero.
     *  There is an extremely small chance this seed could randomly be zero (more likely some type of
     *  hardware problem would cause this).  To solve this, a single bit is forced to be one.  This
     *  slightly reduces the randomness but guarantees a good seed value.
     */
    rndSeed |= 0x0080;

    /*
     *  Two writes to RNDL will set the random seed.  A write to RNDL copies current contents
     *  of RNDL to RNDH before writing new the value to RNDL.
     */
    RNDL = rndSeed & 0xFF;
    RNDL = rndSeed >> 8;
  }

  /* turn off the receiver, flush RX FIFO just in case something got in there */
  RFST = ISRFOFF;

  /* flush the rx buffer */
  MRFI_RADIO_FLUSH_RX_BUFFER();

  /* take receiver out of infinite reception mode; set back to normal operation */
  FRMCTRL0 = (FRMCTRL0 & ~RX_MODE_MASK) | RX_MODE_NORMAL;


  /* Initial radio state is OFF state */
  mrfiRadioState = MRFI_RADIO_STATE_OFF;

  /* ------------------------------------------------------------------
   *    Configure Radio Registers
   *   ---------------------------
   */

  /* disable address filtering */
  FRMFILT0 &= ~FRAME_FILTER_EN;

  /* reject beacon/ack/cmd frames and accept only data frames,
   * when filtering is enabled.
   */
  FRMFILT1 &= ~(ACCEPT_BEACON | ACCEPT_ACK | ACCEPT_CMD);

  /* don't enable rx after tx is done. */
  FRMCTRL1 &= ~RX_ENABLE_ON_TX;

  /* set FIFOP threshold to maximum */
  FIFOPCTRL = 127;

  /* set default channel */
  MRFI_SetLogicalChannel( 0 );

  /* set default output power level */
  MRFI_SetRFPwr(MRFI_NUM_POWER_SETTINGS - 1);

  /* enable general RF interrupts */
  IEN2 |= RFIE;


  /* ------------------------------------------------------------------
   *    Final Initialization
   *   -----------------------
   */


  /**********************************************************************************
   *                            Compute reply delay scalar
   *
   * The IEEE radio has a fixed data rate of 250 Kbps. Data rate inference
   * from radio regsiters is not necessary for this radio.
   *
   * The maximum delay needed depends on the MAX_APP_PAYLOAD parameter. Figure
   * out how many bits that will be when overhead is included. Bits/bits-per-second
   * is seconds to transmit (or receive) the maximum frame. We multiply this number
   * by 1000 to find the time in milliseconds. We then additionally multiply by
   * 10 so we can add 5 and divide by 10 later, thus rounding up to the number of
   * milliseconds. This last won't matter for slow transmissions but for faster ones
   * we want to err on the side of being conservative and making sure the radio is on
   * to receive the reply. The semaphore monitor will shut it down. The delay adds in
   * a platform fudge factor that includes processing time on peer plus lags in Rx and
   * processing time on receiver's side. Also includes round trip delays from CCA
   * retries. This portion is included in PLATFORM_FACTOR_CONSTANT defined in mrfi.h.
   *
   * **********************************************************************************
   */

#define   PHY_PREAMBLE_SYNC_BYTES    8

  {
    uint32_t bits, dataRate = 250000;

    bits = ((uint32_t)((PHY_PREAMBLE_SYNC_BYTES + MRFI_MAX_FRAME_SIZE)*8))*10000;

    /* processing on the peer + the Tx/Rx time plus more */
    sReplyDelayScalar = PLATFORM_FACTOR_CONSTANT + (((bits/dataRate)+5)/10);
  }

  /*
   *  Random delay - This prevents devices on the same power source from repeated
   *  transmit collisions on power up.
   */
  Mrfi_RandomBackoffDelay();

  /* enable global interrupts */
  BSP_ENABLE_INTERRUPTS();
}
コード例 #3
0
smplStatus_t nwk_radioControl(ioctlAction_t action, void *val)
{
    smplStatus_t rc = SMPL_SUCCESS;

    if (IOCTL_ACT_RADIO_SLEEP == action)
    {
        /* go to sleep mode. */
        MRFI_RxIdle();
        MRFI_Sleep();
    }
    else if (IOCTL_ACT_RADIO_AWAKE == action)
    {
        MRFI_WakeUp();

#if !defined(END_DEVICE)
        MRFI_RxOn();
#endif

    }
    else if (IOCTL_ACT_RADIO_SIGINFO == action)
    {
        ioctlRadioSiginfo_t *pSigInfo = (ioctlRadioSiginfo_t *)val;
        connInfo_t          *pCInfo   = nwk_getConnInfo(pSigInfo->lid);

        if (!pCInfo)
        {
            return SMPL_BAD_PARAM;
        }
        memcpy(&pSigInfo->sigInfo, &pCInfo->sigInfo, sizeof(pCInfo->sigInfo));
    }
    else if (IOCTL_ACT_RADIO_RSSI == action)
    {
        *((rssi_t *)val) = MRFI_Rssi();
    }
    else if (IOCTL_ACT_RADIO_RXON == action)
    {
        MRFI_RxOn();
    }
    else if (IOCTL_ACT_RADIO_RXIDLE == action)
    {
        MRFI_RxIdle();
    }
#ifdef EXTENDED_API
    else if (IOCTL_ACT_RADIO_SETPWR == action)
    {
        uint8_t idx;

        switch (*(ioctlLevel_t *)val)
        {
            case IOCTL_LEVEL_2:
                idx = 2;
                break;

            case IOCTL_LEVEL_1:
                idx = 1;
                break;

            case IOCTL_LEVEL_0:
                idx = 0;
                break;

            default:
                return SMPL_BAD_PARAM;
        }
        MRFI_SetRFPwr(idx);
        return SMPL_SUCCESS;
    }
#endif  /* EXTENDED_API */
    else
    {
        rc = SMPL_BAD_PARAM;
    }
    return rc;
}
コード例 #4
0
ファイル: mrfi_radio.c プロジェクト: flburg/eZ430-RF2500
/**************************************************************************************************
 * @fn          MRFI_Init
 *
 * @brief       Initialize MRFI.
 *
 * @param       none
 *
 * @return      none
 **************************************************************************************************
 */
void MRFI_Init(void)
{
  memset(&mrfiIncomingPacket, 0x0, sizeof(mrfiIncomingPacket));
  /* Configure Output lines */
  MRFI_CONFIG_RESETN_PIN_AS_OUTPUT();
  MRFI_CONFIG_VREG_EN_PIN_AS_OUTPUT();

  /* Configure Input lines */
  MRFI_CONFIG_TX_FRAME_DONE_AS_INPUT();
  MRFI_CONFIG_FIFO_AS_INPUT();
  MRFI_CONFIG_FIFOP_AS_INPUT();

  /* Initialize SPI */
  mrfiSpiInit();

  /* Power up the radio chip */
  Mrfi_TurnOnRadioPower();

  /* Confirm that we are talking to the right hardware */
  MRFI_ASSERT(mrfiSpiReadReg(CHIPID) == MRFI_RADIO_PARTNUM);

  /* Random Number Generator:
   * The seed value for the randon number generator logic
   * is derived from the radio.
   */

  /* Set radio in rx mode, but with symbol search disabled. Used for RSSI
   * measurments or when we don't care about the received frames.
   */
  mrfiSpiWriteReg(FRMCTRL0, FRMCTRL0_RESET_VALUE | RX_MODE_RSSI_ONLY);

  /* Turn on the receiver */
  mrfiSpiCmdStrobe(SRXON);

  /*
   *  Wait for RSSI to be valid. RANDOM command strobe can be used
   *  to generate random number only after this.
   */
  MRFI_RSSI_VALID_WAIT();


  /* Get random byte from the radio */
  mrfiRndSeed = mrfiSpiRandomByte();

 /*
  *  The seed value must not be zero.  If it is, the pseudo random sequence
  *  will be always be zero. There is an extremely small chance this seed could
  *  randomly be zero (more likely some type of hardware problem would cause
  *  this). If it is zero, initialize it to something.
  */
  if(mrfiRndSeed == 0)
  {
      mrfiRndSeed = 0x80;
  }

  /* Random number initialization is done. Turn the radio off */
  Mrfi_TurnOffRadioPower();

  /* Initial radio state is - OFF state */
  mrfiRadioState = MRFI_RADIO_STATE_OFF;

  /**********************************************************************************
   *                            Compute reply delay scalar
   *
   * The IEEE radio has a fixed data rate of 250 Kbps. Data rate inference
   * from radio regsiters is not necessary for this radio.
   *
   * The maximum delay needed depends on the MAX_APP_PAYLOAD parameter. Figure
   * out how many bits that will be when overhead is included. Bits/bits-per-second
   * is seconds to transmit (or receive) the maximum frame. We multiply this number
   * by 1000 to find the time in milliseconds. We then additionally multiply by
   * 10 so we can add 5 and divide by 10 later, thus rounding up to the number of
   * milliseconds. This last won't matter for slow transmissions but for faster ones
   * we want to err on the side of being conservative and making sure the radio is on
   * to receive the reply. The semaphore monitor will shut it down. The delay adds in
   * a platform fudge factor that includes processing time on peer plus lags in Rx and
   * processing time on receiver's side. Also includes round trip delays from CCA
   * retries. This portion is included in PLATFORM_FACTOR_CONSTANT defined in mrfi.h.
   *
   * **********************************************************************************
   */

#define   PHY_PREAMBLE_SYNC_BYTES     8

  {
    uint32_t bits, dataRate = 250000;

    bits = ((uint32_t)((PHY_PREAMBLE_SYNC_BYTES + MRFI_MAX_FRAME_SIZE)*8))*10000;

    /* processing on the peer + the Tx/Rx time plus more */
    sReplyDelayScalar = PLATFORM_FACTOR_CONSTANT + (((bits/dataRate)+5)/10);
  }

    /* set default channel */
  MRFI_SetLogicalChannel( mrfiCurrentLogicalChannel );

  /* set default power */
  MRFI_SetRFPwr(mrfiCurrentPowerLevel);

  /* Random delay: This prevents devices on the same power source from repeated
   *  transmit collisions on power up.
   */
  Mrfi_RandomBackoffDelay();

  /* Clean out buffer to protect against spurious frames */
  memset(mrfiIncomingPacket.frame, 0x00, sizeof(mrfiIncomingPacket.frame));
  memset(mrfiIncomingPacket.rxMetrics, 0x00, sizeof(mrfiIncomingPacket.rxMetrics));

  BSP_ENABLE_INTERRUPTS();
}