static int mrisFindMiddleOfGray(MRI_SURFACE *mris) { int vno ; VERTEX *v ; float nx, ny, nz, thickness ; MRISaverageCurvatures(mris, 3) ; MRISsaveVertexPositions(mris, TMP_VERTICES) ; MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ; MRIScomputeMetricProperties(mris); /* compute orig surface normals */ for (vno = 0 ; vno < mris->nvertices ; vno++) { v = &mris->vertices[vno] ; if (v->ripflag) continue ; nx = v->nx ; ny = v->ny ; nz = v->nz ; thickness = 0.5 * v->curv ; v->origx = v->origx + thickness * nx ; v->origy = v->origy + thickness * ny ; v->origz = v->origz + thickness * nz ; } MRISrestoreVertexPositions(mris, TMP_VERTICES) ; MRIScomputeMetricProperties(mris); return(NO_ERROR) ; }
int main(int argc, char *argv[]) { char **av, *in_fname,fname[STRLEN],hemi[10], path[STRLEN], name[STRLEN],*cp ; int ac, nargs, nhandles ; MRI_SURFACE *mris ; double ici, fi, var ; /* rkt: check for and handle version tag */ nargs = handle_version_option (argc, argv, "$Id: mris_curvature.c,v 1.31 2011/03/02 00:04:30 nicks Exp $", "$Name: stable5 $"); if (nargs && argc - nargs == 1) { exit (0); } argc -= nargs; Progname = argv[0] ; ErrorInit(NULL, NULL, NULL) ; DiagInit(NULL, NULL, NULL) ; ac = argc ; av = argv ; for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) { nargs = get_option(argc, argv) ; argc -= nargs ; argv += nargs ; } if (argc < 2) { usage_exit() ; } in_fname = argv[1] ; FileNamePath(in_fname, path) ; FileNameOnly(in_fname, name) ; cp = strchr(name, '.') ; if (!cp) ErrorExit(ERROR_BADPARM, "%s: could not scan hemisphere from '%s'", Progname, fname) ; strncpy(hemi, cp-2, 2) ; hemi[2] = 0 ; if (patch_flag) /* read the orig surface, then the patch file */ { sprintf(fname, "%s/%s.orig", path, hemi) ; mris = MRISfastRead(fname) ; if (!mris) ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s", Progname, in_fname) ; if (Gdiag & DIAG_SHOW) { fprintf(stderr, "reading patch file %s...\n", in_fname) ; } if (MRISreadPatch(mris, in_fname) != NO_ERROR) ErrorExit(ERROR_NOFILE, "%s: could not read patch file %s", Progname, in_fname) ; } else /* just read the surface normally */ { mris = MRISread(in_fname) ; if (!mris) ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s", Progname, in_fname) ; } MRISsetNeighborhoodSize(mris, nbrs) ; if (nbhd_size > 0) { MRISsampleAtEachDistance(mris, nbhd_size, nbrs_per_distance) ; } if (max_mm > 0) { float ratio ; MRISstoreMetricProperties(mris) ; if (MRISreadCanonicalCoordinates(mris, "sphere") != NO_ERROR) { ErrorExit(ERROR_NOFILE, "%s: could not read canonical coordinates from ?h.sphere", Progname); } MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ; MRISrestoreVertexPositions(mris, CANONICAL_VERTICES) ; MRIScomputeMetricProperties(mris) ; ratio = mris->orig_area / M_PI * mris->radius * mris->radius * 4.0 ; ratio = mris->orig_area / mris->total_area ; MRISscaleBrain(mris, mris, sqrt(ratio)) ; MRISsaveVertexPositions(mris, CANONICAL_VERTICES) ; MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ; MRIScomputeMetricProperties(mris) ; MRIScomputeNeighbors(mris, max_mm) ; } if (param_file) { MRI_SP *mrisp ; mrisp = MRISPread(param_file) ; if (normalize_param) { MRISnormalizeFromParameterization(mrisp, mris, param_no) ; } else { MRISfromParameterization(mrisp, mris, param_no) ; } MRISPfree(&mrisp) ; if (normalize) { MRISnormalizeCurvature(mris,which_norm) ; } sprintf(fname, "%s/%s%s.param", path,name,suffix) ; fprintf(stderr, "writing parameterized curvature to %s...", fname) ; MRISwriteCurvature(mris, fname) ; fprintf(stderr, "done.\n") ; } else { MRIScomputeSecondFundamentalFormThresholded(mris, cthresh) ; nhandles = nint(1.0 - mris->Ktotal / (4.0*M_PI)) ; fprintf(stderr, "total integrated curvature = %2.3f*4pi (%2.3f) --> " "%d handles\n", (float)(mris->Ktotal/(4.0f*M_PI)), (float)mris->Ktotal, nhandles) ; #if 0 fprintf(stderr, "0: k1 = %2.3f, k2 = %2.3f, H = %2.3f, K = %2.3f\n", mris->vertices[0].k1, mris->vertices[0].k2, mris->vertices[0].H, mris->vertices[0].K) ; fprintf(stderr, "0: vnum = %d, v2num = %d, total=%d, area=%2.3f\n", mris->vertices[0].vnum, mris->vertices[0].v2num, mris->vertices[0].vtotal,mris->vertices[0].area) ; #endif MRIScomputeCurvatureIndices(mris, &ici, &fi); var = MRIStotalVariation(mris) ; fprintf(stderr,"ICI = %2.1f, FI = %2.1f, variation=%2.3f\n", ici, fi, var); if (diff_flag) { MRISuseCurvatureDifference(mris) ; MRISaverageCurvatures(mris, navgs) ; sprintf(fname, "%s/%s%s.diff", path,name,suffix) ; fprintf(stderr, "writing curvature difference to %s...", fname) ; MRISwriteCurvature(mris, fname) ; fprintf(stderr, "done.\n") ; } if (ratio_flag) { MRISuseCurvatureRatio(mris) ; MRISaverageCurvatures(mris, navgs) ; if (normalize) { MRISnormalizeCurvature(mris,which_norm) ; } sprintf(fname, "%s/%s%s.ratio", path,name,suffix) ; fprintf(stderr, "writing curvature ratio to %s...", fname) ; MRISwriteCurvature(mris, fname) ; fprintf(stderr, "done.\n") ; } if (contrast_flag) { MRISuseCurvatureContrast(mris) ; MRISaverageCurvatures(mris, navgs) ; if (normalize) { MRISnormalizeCurvature(mris,which_norm) ; } sprintf(fname, "%s/%s%s.contrast", path,name,suffix) ; fprintf(stderr, "writing curvature contrast to %s...", fname) ; MRISwriteCurvature(mris, fname) ; fprintf(stderr, "done.\n") ; } if (neg_flag) { int neg ; if (mris->patch) { mris->status = MRIS_PLANE ; } MRIScomputeMetricProperties(mris) ; neg = MRIScountNegativeTriangles(mris) ; MRISuseNegCurvature(mris) ; MRISaverageCurvatures(mris, navgs) ; sprintf(fname, "%s/%s%s.neg", path,name,suffix) ; fprintf(stderr, "writing negative vertex curvature to %s...", fname) ; MRISwriteCurvature(mris, fname) ; fprintf(stderr, "%d negative triangles\n", neg) ; fprintf(stderr, "done.\n") ; { int vno, fno ; VERTEX *v ; FACE *f ; for (vno = 0 ; vno < mris->nvertices ; vno++) { v = &mris->vertices[vno] ; if (v->ripflag) { continue ; } neg = 0 ; for (fno = 0 ; fno < v->num ; fno++) { f = &mris->faces[v->f[fno]] ; if (f->area < 0.0f) { neg = 1 ; } } if (neg) { fprintf(stdout, "%d\n", vno) ; } } } } if (max_flag) { MRISuseCurvatureMax(mris) ; MRISaverageCurvatures(mris, navgs) ; if (normalize) { MRISnormalizeCurvature(mris,which_norm) ; } sprintf(fname, "%s/%s%s.max", path,name,suffix) ; fprintf(stderr, "writing curvature maxima to %s...", fname) ; MRISwriteCurvature(mris, fname) ; fprintf(stderr, "done.\n") ; } if (min_flag) { MRISuseCurvatureMin(mris) ; MRISaverageCurvatures(mris, navgs) ; if (normalize) { MRISnormalizeCurvature(mris,which_norm) ; } sprintf(fname, "%s/%s%s.min", path,name,suffix) ; fprintf(stderr, "writing curvature minima to %s...", fname) ; MRISwriteCurvature(mris, fname) ; fprintf(stderr, "done.\n") ; } if (stretch_flag) { MRISreadOriginalProperties(mris, NULL) ; MRISuseCurvatureStretch(mris) ; MRISaverageCurvatures(mris, navgs) ; if (normalize) { MRISnormalizeCurvature(mris,which_norm) ; } sprintf(fname, "%s/%s%s.stretch", path,name,suffix) ; fprintf(stderr, "writing curvature stretch to %s...", fname) ; MRISwriteCurvature(mris, fname) ; fprintf(stderr, "done.\n") ; } if (write_flag) { MRISuseGaussianCurvature(mris) ; if (cthresh > 0) { MRIShistoThresholdCurvature(mris, cthresh) ; } MRISaverageCurvatures(mris, navgs) ; sprintf(fname, "%s/%s%s.K", path,name, suffix) ; fprintf(stderr, "writing Gaussian curvature to %s...", fname) ; if (normalize) { MRISnormalizeCurvature(mris,which_norm) ; } MRISwriteCurvature(mris, fname) ; MRISuseMeanCurvature(mris) ; if (cthresh > 0) { MRIShistoThresholdCurvature(mris, cthresh) ; } MRISaverageCurvatures(mris, navgs) ; if (normalize) { MRISnormalizeCurvature(mris,which_norm) ; } sprintf(fname, "%s/%s%s.H", path,name, suffix) ; fprintf(stderr, "done.\nwriting mean curvature to %s...", fname) ; MRISwriteCurvature(mris, fname) ; fprintf(stderr, "done.\n") ; } } exit(0) ; return(0) ; /* for ansi */ }
int main(int argc, char *argv[]) { char **av, *output_fname ; int ac, nargs, msec, mode=-1 ; LABEL *area = NULL ; MRI_SURFACE *mris ; struct timeb then ; MRI *mri_dist ; /* rkt: check for and handle version tag */ nargs = handle_version_option (argc, argv, "$Id: mris_distance_transform.c,v 1.5 2013/04/12 20:59:17 fischl Exp $", "$Name: $"); if (nargs && argc - nargs == 1) exit (0); argc -= nargs; Gdiag |= DIAG_SHOW ; Progname = argv[0] ; ErrorInit(NULL, NULL, NULL) ; DiagInit(NULL, NULL, NULL) ; ac = argc ; av = argv ; for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) { nargs = get_option(argc, argv) ; argc -= nargs ; argv += nargs ; } if (argc < 4) usage_exit() ; TimerStart(&then) ; mris = MRISread(argv[1]) ; if (mris == NULL) ErrorExit(ERROR_NOFILE, "%s: could not read surface %s", Progname, argv[1]) ; if (vol) { /* mri_template = MRIread(argv[2]) ; if (!mri_template) ErrorExit(ERROR_NOFILE, "%s: could not read MRI volume from %s\n", Progname, argv[2]) ; */ } else { area = LabelRead(NULL, argv[2]) ; if (area == NULL) ErrorExit(ERROR_NOFILE, "%s: could not read label %s", Progname, argv[2]) ; if (anterior_dist > 0) LabelCropAnterior(area, anterior_dist) ; if (posterior_dist > 0) LabelCropPosterior(area, posterior_dist) ; } if (stricmp(argv[3], "signed") == 0) mode = DTRANS_MODE_SIGNED ; else if (stricmp(argv[3], "unsigned") == 0) mode = DTRANS_MODE_UNSIGNED ; else if (stricmp(argv[3], "outside") == 0) mode = DTRANS_MODE_OUTSIDE ; else { print_usage() ; ErrorExit(ERROR_BADPARM, "unrecognized mode choice %s\n", argv[3]) ; } output_fname = argv[4] ; MRIScomputeMetricProperties(mris) ; if (vol) { mri_dist = MRIScomputeDistanceToSurface(mris, NULL, 0.25) ; MRIwrite(mri_dist, argv[4]) ; } else { MRIScomputeSecondFundamentalForm(mris) ; if (normalize > 0) { normalize = sqrt(mris->total_area) ; printf("normalizing surface distances by sqrt(%2.1f) = %2.1f\n", mris->total_area,normalize) ; } if (divide > 1) { int i ; char fname[STRLEN], ext[STRLEN], base_name[STRLEN] ; LABEL *area_division ; FileNameExtension(output_fname, ext) ; FileNameRemoveExtension(output_fname, base_name) ; LabelMark(area, mris) ; MRIScopyMarksToAnnotation(mris) ; MRISsaveVertexPositions(mris, TMP_VERTICES) ; if (MRISreadVertexPositions(mris, divide_surf_name) != NO_ERROR) ErrorExit(ERROR_BADPARM, "%s: could not read vertex coords from %s", Progname, divide_surf_name) ; MRIScomputeSecondFundamentalForm(mris) ; MRISdivideAnnotationUnit(mris, 1, divide) ; MRISrestoreVertexPositions(mris, TMP_VERTICES) ; MRIScomputeSecondFundamentalForm(mris) ; // MRISdivideAnnotationUnit sets the marked to be in [0,divide-1], make it [1,divide] // make sure they are oriented along original a/p direction #define MAX_UNITS 100 { double cx[MAX_UNITS], cy[MAX_UNITS], cz[MAX_UNITS], min_a ; int index, num[MAX_UNITS], new_index[MAX_UNITS], j, min_i ; VERTEX *v ; memset(num, 0, sizeof(num[0])*divide) ; memset(cx, 0, sizeof(cx[0])*divide) ; memset(cy, 0, sizeof(cy[0])*divide) ; memset(cz, 0, sizeof(cz[0])*divide) ; for (i = 0 ; i < area->n_points ; i++) { if (area->lv[i].vno < 0 || area->lv[i].deleted > 0) continue ; v = &mris->vertices[area->lv[i].vno] ; v->marked++ ; index = v->marked ; cx[index] += v->x ; cy[index] += v->y ; cz[index] += v->z ; num[index]++ ; } memset(new_index, 0, sizeof(new_index[0])*divide) ; for (i = 1 ; i <= divide ; i++) cy[i] /= num[i] ; // order them from posterior to anterior for (j = 1 ; j <= divide ; j++) { min_a = 1e10 ; min_i = 0 ; for (i = 1 ; i <= divide ; i++) { if (cy[i] < min_a) { min_a = cy[i] ; min_i = i ; } } cy[min_i] = 1e10 ; // make it biggest so it won't be considered again new_index[j] = min_i ; } for (i = 0 ; i < area->n_points ; i++) { if (area->lv[i].vno < 0 || area->lv[i].deleted > 0) continue ; v = &mris->vertices[area->lv[i].vno] ; v->marked = new_index[v->marked] ; } } for (i = 1 ; i <= divide ; i++) { area_division = LabelFromMarkValue(mris, i) ; printf("performing distance transform on division %d with %d vertices\n", i, area_division->n_points) ; if (output_label) { sprintf(fname, "%s%d.label", base_name, i) ; printf("writing %dth subdivision to %s\n", i, fname) ; LabelWrite(area_division, fname); } MRISdistanceTransform(mris, area_division, mode) ; sprintf(fname, "%s%d.%s", base_name, i, ext) ; if (normalize > 0) MRISmulVal(mris, 1.0/normalize) ; MRISwriteValues(mris, fname) ; } } else { MRISdistanceTransform(mris, area, mode) ; if (normalize > 0) MRISmulVal(mris, 1.0/normalize) ; MRISwriteValues(mris, output_fname) ; } } msec = TimerStop(&then) ; fprintf(stderr,"distance transform took %2.1f minutes\n", (float)msec/(60*1000.0f)); exit(0) ; return(0) ; /* for ansi */ }
int main(int argc, char *argv[]) { char **av, *in_surf_fname, *out_fname, fname[STRLEN], *cp ; int ac, nargs, msec, err ; MRI_SURFACE *mris ; struct timeb then ; float max_dim ; char cmdline[CMD_LINE_LEN] ; make_cmd_version_string (argc, argv, "$Id: mris_sphere.c,v 1.57 2011/03/02 00:04:34 nicks Exp $", "$Name: stable5 $", cmdline); /* rkt: check for and handle version tag */ nargs = handle_version_option (argc, argv, "$Id: mris_sphere.c,v 1.57 2011/03/02 00:04:34 nicks Exp $", "$Name: stable5 $"); if (nargs && argc - nargs == 1) { exit (0); } argc -= nargs; #ifdef FS_CUDA /* print GPU device info */ MRISCdeviceInfo(); #endif // FS_CUDA TimerStart(&then) ; Progname = argv[0] ; ErrorInit(NULL, NULL, NULL) ; DiagInit(NULL, NULL, NULL) ; memset(&parms, 0, sizeof(parms)) ; parms.dt = .05 ; parms.projection = PROJECT_ELLIPSOID ; parms.tol = .5 /*1e-1*/ ; parms.n_averages = 1024 ; parms.min_averages = 0 ; parms.l_angle = 0.0 /* L_ANGLE */ ; parms.l_area = 0.0 /* L_AREA */ ; parms.l_neg = 0.0 ; parms.l_dist = 1.0 ; parms.l_spring = 0.0 ; parms.l_area = 1.0 ; parms.l_boundary = 0.0 ; parms.l_curv = 0.0 ; parms.niterations = 25 ; parms.write_iterations = 1000 ; parms.a = parms.b = parms.c = 0.0f ; /* ellipsoid parameters */ parms.dt_increase = 1.01 /* DT_INCREASE */; parms.dt_decrease = 0.99 /* DT_DECREASE*/ ; parms.error_ratio = 1.03 /*ERROR_RATIO */; parms.integration_type = INTEGRATE_LINE_MINIMIZE ; parms.momentum = 0.9 ; parms.desired_rms_height = -1.0 ; parms.base_name[0] = 0 ; parms.Hdesired = 0.0 ; /* a flat surface */ parms.nbhd_size = 7 ; parms.max_nbrs = 8 ; ac = argc ; av = argv ; for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) { nargs = get_option(argc, argv) ; argc -= nargs ; argv += nargs ; } parms.scale = scale ; if (argc != 3) // catches args beyond the expected two { usage_exit() ; } parms.base_dt = base_dt_scale * parms.dt ; in_surf_fname = argv[1] ; out_fname = argv[2] ; printf("%s\n",vcid); printf(" %s\n",MRISurfSrcVersion()); fflush(stdout); if (parms.base_name[0] == 0) { FileNameOnly(out_fname, fname) ; cp = strchr(fname, '.') ; if (cp) { strcpy(parms.base_name, cp+1) ; } else { strcpy(parms.base_name, "sphere") ; } } mris = MRISread(in_surf_fname) ; if (!mris) ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s", Progname, in_surf_fname) ; MRISaddCommandLine(mris, cmdline) ; fprintf(stderr, "reading original vertex positions...\n") ; if (!FZERO(disturb)) { mrisDisturbVertices(mris, disturb) ; } if (quick == 0) { // don't need original properties unless preserving metric err = MRISreadOriginalProperties(mris, orig_name) ; if(err) { exit(1); } } if (smooth_avgs > 0) { MRISsaveVertexPositions(mris, TMP_VERTICES) ; MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ; MRISaverageVertexPositions(mris, smooth_avgs) ; MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ; MRISrestoreVertexPositions(mris, TMP_VERTICES) ; } if (!FZERO(ralpha) || !FZERO(rbeta) || !FZERO(rgamma)) { MRISrotate(mris,mris,RADIANS(ralpha),RADIANS(rbeta),RADIANS(rgamma)) ; // if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON) MRISwrite(mris, "rot") ; } fprintf(stderr, "unfolding cortex into spherical form...\n"); if (talairach) { MRIStalairachTransform(mris, mris) ; MRISwrite(mris, "tal") ; } if (xform_fname) { LTA *lta ; MRI *mri ; TRANSFORM transform ; lta = LTAread(xform_fname) ; if (lta == NULL) { ErrorExit(ERROR_NOFILE, "%s: could not load %s", xform_fname) ; } mri = MRIread(vol_fname) ; if (mri == NULL) { ErrorExit(ERROR_NOFILE, "%s: could not load %s", vol_fname) ; } transform.type = lta->type ; transform.xform = (void *)lta ; MRIStransform(mris, mri, &transform, mri) ; MRIfree(&mri) ; LTAfree(<a) ; MRISwrite(mris, "xfm") ; } #if 0 max_dim = MAX(abs(mris->xlo), abs(mris->xhi)) ; max_dim = MAX(abs(max_dim), abs(mris->ylo)) ; max_dim = MAX(abs(max_dim), abs(mris->yhi)) ; max_dim = MAX(abs(max_dim), abs(mris->zlo)) ; max_dim = MAX(abs(max_dim), abs(mris->zhi)) ; #else max_dim = MAX(abs(mris->xhi-mris->xlo), abs(mris->yhi-mris->ylo)) ; max_dim = MAX(max_dim,abs(mris->zhi-mris->zlo)) ; #endif if (max_dim > .75*DEFAULT_RADIUS) { float ratio = .75*DEFAULT_RADIUS / (max_dim) ; printf("scaling brain by %2.3f...\n", ratio) ; MRISscaleBrain(mris, mris, ratio) ; } if (target_radius < 0) { target_radius = sqrt(mris->total_area / (4*M_PI)) ; printf("setting target radius to be %2.3f to match surface areas\n", target_radius) ; } // MRISsampleAtEachDistance(mris, parms.nbhd_size, parms.max_nbrs) ; if (!load && inflate) { INTEGRATION_PARMS inflation_parms ; MRIScenter(mris, mris) ; memset(&inflation_parms, 0, sizeof(INTEGRATION_PARMS)) ; strcpy(inflation_parms.base_name, parms.base_name) ; inflation_parms.write_iterations = parms.write_iterations ; inflation_parms.niterations = inflate_iterations ; inflation_parms.l_spring_norm = l_spring_norm ; inflation_parms.l_spring = inflate_spring ; inflation_parms.l_nlarea = inflate_nlarea ; inflation_parms.l_area = inflate_area ; inflation_parms.n_averages = inflate_avgs ; inflation_parms.l_expand = l_expand ; inflation_parms.l_tspring = inflate_tspring ; inflation_parms.l_sphere = l_sphere ; inflation_parms.l_convex = l_convex ; #define SCALE_UP 2 inflation_parms.a = SCALE_UP*DEFAULT_RADIUS ; inflation_parms.tol = inflate_tol ; inflation_parms.integration_type = INTEGRATE_MOMENTUM ; inflation_parms.momentum = 0.9 ; inflation_parms.dt = inflate_dt ; /* store the inflated positions in the v->c? field so that they can be used in the repulsive term. */ /* inflation_parms.l_repulse_ratio = .1 ;*/ MRISsaveVertexPositions(mris, CANONICAL_VERTICES) ; if (l_expand > 0) { MRISexpandSurface(mris, target_radius/2, &inflation_parms, 0, 1) ; l_expand = parms.l_expand = 0 ; } MRIScenter(mris, mris) ; mris->x0 = mris->xctr ; mris->y0 = mris->yctr ; mris->z0 = mris->zctr ; MRISinflateToSphere(mris, &inflation_parms) ; if (inflation_parms.l_expand > 0) { inflation_parms.l_expand = 0 ; inflation_parms.niterations += (inflate_iterations*.1) ; MRISinflateToSphere(mris, &inflation_parms) ; } MRISscaleBrain(mris, mris, target_radius/(DEFAULT_RADIUS*SCALE_UP)) ; parms.start_t = inflation_parms.start_t ; MRISresetNeighborhoodSize(mris, nbrs) ; } if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON) { MRISwrite(mris, "before") ; } MRISprojectOntoSphere(mris, mris, target_radius) ; if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON) { MRISwrite(mris, "after") ; } fprintf(stderr,"surface projected - minimizing metric distortion...\n"); MRISsetNeighborhoodSize(mris, nbrs) ; if (quick) { if (!load) { #if 0 parms.n_averages = 32 ; parms.tol = .1 ; parms.l_parea = parms.l_dist = 0.0 ; parms.l_nlarea = 1 ; #endif MRISprintTessellationStats(mris, stderr) ; MRISquickSphere(mris, &parms, max_passes) ; } } else { MRISunfold(mris, &parms, max_passes) ; } if (remove_negative) { parms.niterations = 1000 ; MRISremoveOverlapWithSmoothing(mris,&parms) ; } if (!load) { fprintf(stderr, "writing spherical brain to %s\n", out_fname) ; MRISwrite(mris, out_fname) ; } msec = TimerStop(&then) ; fprintf(stderr, "spherical transformation took %2.2f hours\n", (float)msec/(1000.0f*60.0f*60.0f)); exit(0) ; return(0) ; /* for ansi */ }
int main(int argc, char *argv[]) { char **av, surf_fname[100], *template_fname, *out_fname, *surf_dir, *hemi, *sphere_name ; int ac, nargs ; MRI_SURFACE *mris ; MRI_SP *mrisp, *mrisp_template ; /* rkt: check for and handle version tag */ nargs = handle_version_option (argc, argv, "$Id: mris_add_template.c,v 1.8 2011/03/02 00:04:26 nicks Exp $", "$Name: $"); if (nargs && argc - nargs == 1) exit (0); argc -= nargs; Progname = argv[0] ; ErrorInit(NULL, NULL, NULL) ; DiagInit(NULL, NULL, NULL) ; ac = argc ; av = argv ; for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) { nargs = get_option(argc, argv) ; argc -= nargs ; argv += nargs ; } if (argc < 5) usage_exit() ; surf_dir = argv[1] ; hemi = argv[2] ; sphere_name = argv[3] ; out_fname = template_fname = argv[4] ; if (argc > 5) out_fname = argv[5] ; sprintf(surf_fname, "%s/%s.%s", surf_dir, hemi, sphere_name) ; fprintf(stderr, "reading new surface %s...\n", surf_fname) ; mris = MRISread(surf_fname) ; if (!mris) ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s", Progname, surf_fname) ; MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ; if (!FileExists(template_fname)) /* first time - create it */ { fprintf(stderr, "creating new parameterization...\n") ; mrisp_template = MRISPalloc(scale, PARAM_IMAGES); } else { fprintf(stderr, "reading template parameterization from %s...\n", template_fname) ; mrisp_template = MRISPread(template_fname) ; if (!mrisp_template) ErrorExit(ERROR_NOFILE, "%s: could not open template file %s", Progname, template_fname) ; } /* first read in inflated surface and use it to build the first template set. */ sprintf(surf_fname, "%s/%s.%s", surf_dir, hemi, INFLATED_NAME) ; if (MRISreadVertexPositions(mris, surf_fname) != NO_ERROR) ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s", Progname, surf_fname) ; MRISsetNeighborhoodSize(mris, nbrs) ; MRIScomputeMetricProperties(mris) ; MRIScomputeSecondFundamentalForm(mris) ; MRISuseMeanCurvature(mris) ; MRISaverageCurvatures(mris, navgs) ; MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ; MRISnormalizeCurvature(mris, which_norm) ; fprintf(stderr, "computing parameterization for surface %s...\n",surf_fname); mrisp = MRIStoParameterization(mris, NULL, scale, 0) ; MRISPcombine(mrisp, mrisp_template, 0) ; MRISPfree(&mrisp) ; /* now do the same thing with the smoothwm curvatures. */ sprintf(surf_fname, "%s/%s.%s", surf_dir, hemi, SMOOTH_NAME) ; if (MRISreadVertexPositions(mris, surf_fname) != NO_ERROR) ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s", Progname, surf_fname) ; MRIScomputeMetricProperties(mris) ; if (curvature_fname[0]) MRISreadCurvatureFile(mris, curvature_fname) ; else { MRIScomputeSecondFundamentalForm(mris) ; MRISuseMeanCurvature(mris) ; } MRISaverageCurvatures(mris, navgs) ; MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ; if (curvature_fname[0]) fprintf(stderr, "computing parameterization for surface %s (%s)...\n", surf_fname, curvature_fname); else fprintf(stderr, "computing parameterization for surface %s...\n", surf_fname); MRISnormalizeCurvature(mris, which_norm) ; mrisp = MRIStoParameterization(mris, NULL, scale, 0) ; MRISPcombine(mrisp, mrisp_template, 3) ; fprintf(stderr, "writing updated template to %s...\n", out_fname) ; MRISPwrite(mrisp_template, out_fname) ; MRISPfree(&mrisp) ; MRISPfree(&mrisp_template) ; MRISfree(&mris) ; exit(0) ; return(0) ; /* for ansi */ }
int main(int argc, char *argv[]) { char **av, *avg_surf_name, *canon_surf_name, fname[STRLEN], *mdir, ico_fname[STRLEN], *hemi, *out_sname ; int ac, nargs, i, vno, n ; VERTEX *v ; MRI_SURFACE *mris_ico ; MRI_SP *mrisp_total ; LTA *lta ; VOL_GEOM vg; float average_surface_area = 0.0 ; MATRIX *XFM=NULL; GCA_MORPH *gcam=NULL; memset((void *) &vg, 0, sizeof (VOL_GEOM)); /* rkt: check for and handle version tag */ nargs = handle_version_option (argc, argv, "$Id: mris_make_average_surface.c,v 1.29 2011/03/02 00:04:33 nicks Exp $", "$Name: stable5 $"); if (nargs && argc - nargs == 1) exit (0); argc -= nargs; Progname = argv[0] ; ErrorInit(NULL, NULL, NULL) ; DiagInit(NULL, NULL, NULL) ; mdir = getenv("FREESURFER_HOME") ; if (!mdir) ErrorExit(ERROR_BADPARM, "%s: no FREESURFER_HOME in environment.\n",Progname); ac = argc ; av = argv ; for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) { nargs = get_option(argc, argv) ; argc -= nargs ; argv += nargs ; } if (sdir == NULL) { sdir = getenv("SUBJECTS_DIR"); if (!sdir) ErrorExit(ERROR_BADPARM, "%s: no SUBJECTS_DIR in environment.\n",Progname); } if (sdirout == NULL) sdirout = sdir; if (argc < 6) usage_exit() ; hemi = argv[1] ; avg_surf_name = argv[2] ; canon_surf_name = argv[3] ; out_sname = argv[4] ; printf("---------------------------------------------------\n"); printf("hemi = %s\n",hemi); printf("avg_surf_name = %s\n",avg_surf_name); printf("canon_surf_name = %s\n",canon_surf_name); printf("out_sname = %s\n",out_sname); printf("xform = %s\n",xform_name); printf("---------------------------------------------------\n"); printf("\n\n"); fflush(stdout); #define SCALE 1 mrisp_total = MRISPalloc(SCALE, 3) ; for (n = 0, i = 5 ; i < argc ; i++) { MRI *mri; MRI_SURFACE *mris; MRI_SP *mrisp; printf("\n---------------------------------------------------\n"); printf("#@# processing subject %d/%d %s...\n", i-4,argc-5,argv[i]) ; fflush(stdout); // read sphere.reg sprintf(fname, "%s/%s/surf/%s.%s", sdir, argv[i], hemi, canon_surf_name) ; printf(" Reading %s\n",fname); fflush(stdout); mris = MRISread(fname) ; if (!mris) { ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s", Progname, fname) ; exit(1); } // get "pial" surface vertex into ->origx, origy, origz if (MRISreadOriginalProperties(mris, orig_name) != NO_ERROR) ErrorExit(ERROR_BADFILE,"%s: could not read orig file for %s.\n", Progname, argv[1]); // read transform if (0) { sprintf(fname, "%s/%s/mri/transforms/%s", sdir, argv[i], xform_name) ; lta = LTAreadEx(fname) ; if (!lta) ErrorExit(ERROR_BADPARM, "%s: could not read transform from %s", Progname, fname) ; } // read T1 volume sprintf(fname, "%s/%s/mri/T1.mgz", sdir, argv[i]) ; if (fio_FileExistsReadable(fname)) mri = MRIreadHeader(fname,MRI_MGH_FILE); else { sprintf(fname, "%s/%s/mri/T1", sdir, argv[i]) ; mri = MRIreadHeader(fname, MRI_UCHAR); // MRI_CORONAL_SLICE_DIRECTORY) ; } printf(" Read %s\n",fname); fflush(stdout); if (!mri) ErrorExit(ERROR_BADPARM, "%s: could not read reference MRI volume from %s", Progname, fname) ; // save current vertex position into ->cx MRISsaveVertexPositions(mris, CANONICAL_VERTICES) ; // get the vertex position from ->origx, ... // (get the "pial" vertex position) MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ; MRIScomputeMetricProperties(mris) ; printf(" Surface area: %2.1f cm^2\n", mris->total_area/100) ; fflush(stdout); average_surface_area += mris->total_area ; // this means that we transform "pial" surface if (xform_name) { if (!strcmp(xform_name,"talairach.xfm")) { printf(" Applying linear transform\n"); fflush(stdout); XFM = DevolveXFMWithSubjectsDir(argv[i], NULL, "talairach.xfm", sdir); if (XFM == NULL) exit(1); MRISmatrixMultiply(mris, XFM); MatrixFree(&XFM); } else if (!strcmp(xform_name,"talairach.m3z")) { printf(" Applying GCA Morph\n"); fflush(stdout); sprintf(fname, "%s/%s/mri/transforms/talairach.m3z", sdir, argv[i]) ; gcam = GCAMreadAndInvert(fname); if (gcam == NULL) exit(1); GCAMmorphSurf(mris, gcam); GCAMfree(&gcam); } else { printf("ERROR: don't know what to do with %s\n",xform_name); exit(1); } } // save transformed position in ->orig // (store "pial" vertices position in orig) MRIScomputeMetricProperties(mris) ; MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ; // get the vertex position from ->cx // (note that this is not transformed) sphere.reg vertices MRISrestoreVertexPositions(mris, CANONICAL_VERTICES) ; // mris contains sphere.reg in vertex and pial vertices in orig // map to a theta-phi space and accumulate values mrisp = MRIScoordsToParameterization(mris, NULL, SCALE, ORIGINAL_VERTICES) ; MRISPaccumulate(mrisp, mrisp_total, 0) ; MRISPaccumulate(mrisp, mrisp_total, 1) ; MRISPaccumulate(mrisp, mrisp_total, 2) ; MRISPfree(&mrisp) ; MRISfree(&mris) ; MRIfree(&mri) ; //LTAfree(<a) ; fflush(stdout); n++ ; } printf("Finished loading all data\n"); average_surface_area /= (float)n ; printf("Avg surf area = %g cm\n",average_surface_area/100.0); fflush(stdout); // mrisp_total lost info on the modified surface sprintf(ico_fname, "%s/lib/bem/ic%d.tri", mdir, ico_no) ; printf("Reading icosahedron from %s...\n", ico_fname) ; mris_ico = ICOread(ico_fname) ; if (!mris_ico) ErrorExit(ERROR_NOFILE, "%s: could not read icosahedron file %s\n", Progname,ico_fname) ; MRISscaleBrain(mris_ico, mris_ico, DEFAULT_RADIUS/MRISaverageRadius(mris_ico)) ; // save current ico position to ->cx, cy, cz MRISsaveVertexPositions(mris_ico, CANONICAL_VERTICES) ; // using mrisp_total to calculate position into ->origx, origy, origz // (orig is the "pial" vertices) MRIScoordsFromParameterization(mrisp_total, mris_ico, ORIGINAL_VERTICES) ; // copy geometry info memcpy((void *) &mris_ico->vg, (void *) &vg, sizeof (VOL_GEOM)); if (Gdiag_no >= 0 && Gdiag_no < mris_ico->nvertices) { int n ; VERTEX *vn ; v = &mris_ico->vertices[Gdiag_no] ; printf( "v %d: x = (%2.2f, %2.2f, %2.2f)\n", Gdiag_no, v->origx, v->origy, v->origz) ; for (n = 0 ; n < v->vnum ; n++) { vn = &mris_ico->vertices[v->v[n]] ; printf( "v %d: x = (%2.2f, %2.2f, %2.2f)\n", v->v[n], vn->origx, vn->origy, vn->origz) ; } } // write *h.sphere.reg sprintf(fname, "%s/%s/surf/%s.%s", sdirout, out_sname, hemi, canon_surf_name) ; if (Gdiag & DIAG_SHOW) printf("writing average canonical surface to %s\n", fname); MRISwrite(mris_ico, fname) ; // get "pial vertices" from orig MRISrestoreVertexPositions(mris_ico, ORIG_VERTICES); for (vno = 0 ; vno < mris_ico->nvertices ; vno++) { v = &mris_ico->vertices[vno] ; // n = number of subjects v->x /= (float)n ; v->y /= (float)n ; v->z /= (float)n ; } if (normalize_area) { MRIScomputeMetricProperties(mris_ico) ; printf("setting group surface area to be %2.1f cm^2 (scale=%2.2f)\n", average_surface_area/100.0, sqrt(average_surface_area/mris_ico->total_area)) ; #if 0 MRISscaleBrain(mris_ico, mris_ico, sqrt(average_surface_area/mris_ico->total_area)) ; #else mris_ico->group_avg_surface_area = average_surface_area ; #endif MRIScomputeMetricProperties(mris_ico) ; } sprintf(fname, "%s/%s/surf/%s.%s", sdirout,out_sname, hemi, avg_surf_name) ; printf("writing average %s surface to %s\n", avg_surf_name, fname); MRISwrite(mris_ico, fname) ; if (0) { char path[STRLEN] ; LTA *lta ; FileNamePath(fname, path) ; lta = LTAalloc(1, NULL) ; // write to a different location sprintf(fname, "%s/../mri/transforms/%s", path,xform_name) ; LTAwriteEx(lta, fname) ; LTAfree(<a) ; } MRISfree(&mris_ico) ; MRISPfree(&mrisp_total) ; printf("mris_make_average_surface done\n"); exit(0) ; return(0) ; /* for ansi */ }
int main(int argc, char *argv[]) { int nargs, msec, order, i, number, vno, nnum, m, k, b1, b2, cno, flag=0, fno; struct timeb then ; MRIS *mris_in, *mris_out, *mris_high; MRI_SP *mrisp ; VERTEX *vm_out, *vm_high, *v; float s_jkm, area; Progname = argv[0] ; DiagInit(NULL, NULL, NULL) ; ErrorInit(NULL, NULL, NULL) ; for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) { nargs = get_option(argc, argv) ; argc -= nargs ; argv += nargs ; } if (argc < 4) ErrorExit(ERROR_BADPARM, "usage: %s <input surface> <orig surface> <finest order> <output surface>", Progname); TimerStart(&then) ; order = atoi (argv[3]); fprintf(stdout, "Set %s as the finest scale level\n", argv[3]); if (order > 7) ErrorExit(ERROR_BADPARM, "the highest order is 7\n"); /*Spherical Wavelet Analysis*/ if (ANALYSIS&&!CURV) { mris_in = MRISread(argv[1]) ; if (!mris_in) ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s", Progname, argv[1]) ; fprintf(stdout, "Reading input spherical surface from %s\n", argv[1]); MRISreadOriginalProperties(mris_in, argv[2]) ; fprintf(stdout, "Reading original surface from %s orig area is %f\n", argv[2],mris_in->orig_area); mris_out = ReadIcoByOrder(order, 100); for (m = 0; m<mris_out->nvertices; m++) mris_out->vertices[m].nsize=1; mrisp = MRISPalloc(1, 3); #if 1 MRIScoordsToParameterization(mris_in, mrisp, 1, ORIGINAL_VERTICES) ; MRISPblur(mrisp, mrisp, 1, 0); MRISPblur(mrisp, mrisp, 1, 1); MRISPblur(mrisp, mrisp, 1, 2); MRIScoordsFromParameterization(mrisp, mris_out) ; #else MRISreadOriginalProperties(mris_out, argv[2]) ; #endif #if 1 /*just to test if the parameterization is correct */ MRISsaveVertexPositions(mris_out, TMP_VERTICES) ; MRISrestoreVertexPositions(mris_out, ORIGINAL_VERTICES) ; MRISupdateSurface(mris_out); fprintf(stderr, "original area becomes %f\n", mris_out->total_area); center_brain(mris_out, mris_out); MRISscaleBrain(mris_out, mris_out, sqrt(100000.0f/mris_out->total_area)) ; MRISupdateSurface(mris_out); for (fno=0; fno<mris_out->nfaces; fno++) area += mris_out->faces[fno].area; fprintf(stderr, "original area becomes %f\n", area); //MRISwrite(mris_out, "/space/xrt/1/users/btquinn/buckner_paper/010223_61223/surf/lh.sampled") ; MRISsaveVertexPositions(mris_out, ORIGINAL_VERTICES) ; MRISrestoreVertexPositions(mris_out, TMP_VERTICES) ; #endif /* Initialize Ij,k*/ for (vno = 0 ; vno<mris_out->nvertices; vno++) { vm_out = &mris_out->vertices[vno]; vm_out->val = 1; } /*Iteratively compute Ij,k*/ for (i=order;i>0;i--) { mris_high = ReadIcoByOrder(i, 100); //higher order surface for (m = 0; m<mris_high->nvertices; m++) mris_high->vertices[m].nsize=1; MRISsetNeighborhoodSize(mris_high, 3) ; number = IcoNVtxsFromOrder(i-1); //the start of m vertices for (m = number; m<mris_high->nvertices; m++) { vm_out = &mris_out->vertices[m]; vm_high = &mris_high->vertices[m]; flag=0; for (nnum=0; nnum<vm_high->vnum; nnum++) if ( vm_high->v[nnum]<number ) //A(j,m) { k = vm_high->v[nnum]; v = &mris_out->vertices[k]; v->val += 0.5*vm_out->val ; } for (; nnum<vm_high->v2num; nnum++) if ( vm_high->v[nnum]<number ) //B(j,m) { k = vm_high->v[nnum]; if (flag==0) b1=k; else b2=k; flag++; v = &mris_out->vertices[k]; v->val += 0.125*vm_out->val ; } for (; nnum<vm_high->v3num; nnum++) if ( vm_high->v[nnum]<number ) //C(j,m) { k = vm_high->v[nnum]; flag=0; //C has to be a second-order neighbor of B for (cno=mris_high->vertices[b1].vnum; cno<mris_high->vertices[b1].v2num;cno++) if (mris_high->vertices[b1].v[cno]==k) flag=1; for (cno=mris_high->vertices[b2].vnum; cno<mris_high->vertices[b2].v2num;cno++) if (mris_high->vertices[b2].v[cno]==k) flag=1; if (flag) { v = &mris_out->vertices[k]; v->val -= 0.0625*vm_out->val ; } } } } /*Analysis Stage I:*/ for (i=order;i>0;i--) { mris_high = ReadIcoByOrder(i, 100); //higher order surface for (m = 0; m<mris_high->nvertices; m++) mris_high->vertices[m].nsize=1; MRISsetNeighborhoodSize(mris_high, 3) ; number = IcoNVtxsFromOrder(i-1); //the start of m vertices /* compute Yj,m for each m vertices */ for (m = number; m<mris_high->nvertices; m++) { vm_out = &mris_out->vertices[m]; vm_high = &mris_high->vertices[m]; flag=0; for (nnum=0; nnum<vm_high->vnum; nnum++) //first order neighborhood if ( vm_high->v[nnum]<number ) //neighbor A(j,m) { k = vm_high->v[nnum] ; v = &mris_out->vertices[k]; vm_out->origx -= 0.5*v->origx; vm_out->origy -= 0.5*v->origy; vm_out->origz -= 0.5*v->origz; } for (; nnum<vm_high->v2num; nnum++) //second order neighborhood if ( vm_high->v[nnum]<number ) //neighbor B(j,m) { k = vm_high->v[nnum] ; if (flag==0) b1=k; else b2=k; flag++; v = &mris_out->vertices[k]; vm_out->origx -= 0.125*v->origx; vm_out->origy -= 0.125*v->origy; vm_out->origz -= 0.125*v->origz; } for (; nnum<vm_high->v3num; nnum++) if ( vm_high->v[nnum]<number ) //neighbor C(j,m) { k = vm_high->v[nnum] ; flag=0; //C has to be a second-order neighbor of B for (cno=mris_high->vertices[b1].vnum; cno<mris_high->vertices[b1].v2num;cno++) if (mris_high->vertices[b1].v[cno]==k) flag=1; for (cno=mris_high->vertices[b2].vnum; cno<mris_high->vertices[b2].v2num;cno++) if (mris_high->vertices[b2].v[cno]==k) flag=1; if (flag) { v = &mris_out->vertices[k]; vm_out->origx += 0.0625*v->origx; vm_out->origy += 0.0625*v->origy; vm_out->origz += 0.0625*v->origz; } } } /*Analysis Stage II: */ /*Compute Lamda(j,k) using the Yita(j,m)*/ for (m = number; m<mris_high->nvertices; m++) { vm_out = &mris_out->vertices[m]; vm_high = &mris_high->vertices[m]; for (nnum=0; nnum<vm_high->vnum; nnum++) if ( vm_high->v[nnum]<number ) //A(j,m) { k = vm_high->v[nnum]; v = &mris_out->vertices[k]; s_jkm = vm_out->val/2/v->val; v->origx += s_jkm*vm_out->origx; v->origy += s_jkm*vm_out->origy; v->origz += s_jkm*vm_out->origz; } } } MRISsaveVertexPositions(mris_out, TMP_VERTICES) ; MRISrestoreVertexPositions(mris_out, ORIGINAL_VERTICES) ; #if 0 for (m=0;m<mris_out->nvertices;m++) if (mris_out->vertices[m].z>6) fprintf(stdout, "%d %f %f %f\n", m,mris_out->vertices[m].x, mris_out->vertices[m].y, mris_out->vertices[m].z); //mris_high = ReadIcoByOrder(0, 100); //for (m=0;m<mris_high->nvertices;m++) //{mris_high->vertices[m].x=mris_out->vertices[m].x; //mris_high->vertices[m].y=mris_out->vertices[m].y; //mris_high->vertices[m].z=mris_out->vertices[m].z; //} //MRISwrite(mris_high, "/space/xrt/1/users/btquinn/buckner_paper/010223_61223/surf/lh.sampled") ; #endif fprintf(stdout, "Writing wavelets coefficient of original surface to %s\n", argv[4]); MRISwrite(mris_out,argv[4] ) ; MRISrestoreVertexPositions(mris_out, TMP_VERTICES) ; MRISPfree(&mrisp) ; MRISfree(&mris_in) ; /*End of Analysis*/ } else if (ANALYSIS&&CURV) { mris_in = MRISread(argv[1]) ; if (!mris_in) ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s", Progname, argv[1]) ; fprintf(stdout, "Reading input spherical surface from %s\n", argv[1]); MRISreadCurvatureFile(mris_in, argv[2]) ; fprintf(stdout, "Reading input from %s\n", argv[2]); mris_out = ReadIcoByOrder(order, 100); for (m = 0; m<mris_out->nvertices; m++) mris_out->vertices[m].nsize=1; //mrisp = MRISPalloc(1, 3); mrisp = MRIStoParameterization(mris_in, NULL, 1, 0) ; //MRISPblur(mrisp, mrisp, 1, 0); MRISfromParameterization(mrisp, mris_out, 0) ; //MRISwriteCurvature(mris_out,"/space/xrt/1/users/btquinn/buckner_paper/010223_61223/surf/lh.thickness.sampled"); /* Initialize Ij,k*/ for (vno = 0 ; vno<mris_out->nvertices; vno++) { vm_out = &mris_out->vertices[vno]; vm_out->val = 1; } /*Iteratively compute Ij,k*/ for (i=order;i>0;i--) { mris_high = ReadIcoByOrder(i, 100); //higher order surface for (m = 0; m<mris_high->nvertices; m++) mris_high->vertices[m].nsize=1; MRISsetNeighborhoodSize(mris_high, 3) ; number = IcoNVtxsFromOrder(i-1); //the start of m vertices for (m = number; m<mris_high->nvertices; m++) { vm_out = &mris_out->vertices[m]; vm_high = &mris_high->vertices[m]; flag=0; for (nnum=0; nnum<vm_high->vnum; nnum++) if ( vm_high->v[nnum]<number ) //A(j,m) { k = vm_high->v[nnum]; v = &mris_out->vertices[k]; v->val += 0.5*vm_out->val ; } for (; nnum<vm_high->v2num; nnum++) if ( vm_high->v[nnum]<number ) //B(j,m) { k = vm_high->v[nnum]; if (flag==0) b1=k; else b2=k; flag++; v = &mris_out->vertices[k]; v->val += 0.125*vm_out->val ; } for (; nnum<vm_high->v3num; nnum++) if ( vm_high->v[nnum]<number ) //C(j,m) { k = vm_high->v[nnum]; flag=0; //C has to be a second-order neighbor of B for (cno=mris_high->vertices[b1].vnum; cno<mris_high->vertices[b1].v2num;cno++) if (mris_high->vertices[b1].v[cno]==k) flag=1; for (cno=mris_high->vertices[b2].vnum; cno<mris_high->vertices[b2].v2num;cno++) if (mris_high->vertices[b2].v[cno]==k) flag=1; if (flag) { v = &mris_out->vertices[k]; v->val -= 0.0625*vm_out->val ; } } } } /*Analysis Stage I:*/ for (i=order;i>0;i--) { mris_high = ReadIcoByOrder(i, 100); //higher order surface for (m = 0; m<mris_high->nvertices; m++) mris_high->vertices[m].nsize=1; MRISsetNeighborhoodSize(mris_high, 3) ; number = IcoNVtxsFromOrder(i-1); //the start of m vertices /* compute Yj,m for each m vertices */ for (m = number; m<mris_high->nvertices; m++) { vm_out = &mris_out->vertices[m]; vm_high = &mris_high->vertices[m]; flag=0; for (nnum=0; nnum<vm_high->vnum; nnum++) //first order neighborhood if ( vm_high->v[nnum]<number ) //neighbor A(j,m) { k = vm_high->v[nnum] ; v = &mris_out->vertices[k]; vm_out->curv -= 0.5*v->curv; } for (; nnum<vm_high->v2num; nnum++) //second order neighborhood if ( vm_high->v[nnum]<number ) //neighbor B(j,m) { k = vm_high->v[nnum] ; if (flag==0) b1=k; else b2=k; flag++; v = &mris_out->vertices[k]; vm_out->curv -= 0.125*v->curv; } for (; nnum<vm_high->v3num; nnum++) if ( vm_high->v[nnum]<number ) //neighbor C(j,m) { k = vm_high->v[nnum] ; flag=0; //C has to be a second-order neighbor of B for (cno=mris_high->vertices[b1].vnum; cno<mris_high->vertices[b1].v2num;cno++) if (mris_high->vertices[b1].v[cno]==k) flag=1; for (cno=mris_high->vertices[b2].vnum; cno<mris_high->vertices[b2].v2num;cno++) if (mris_high->vertices[b2].v[cno]==k) flag=1; if (flag) { v = &mris_out->vertices[k]; vm_out->curv += 0.0625*v->curv; } } } /*Analysis Stage II: */ /*Compute Lamda(j,k) using the Yita(j,m)*/ for (m = number; m<mris_high->nvertices; m++) { vm_out = &mris_out->vertices[m]; vm_high = &mris_high->vertices[m]; for (nnum=0; nnum<vm_high->vnum; nnum++) if ( vm_high->v[nnum]<number ) //A(j,m) { k = vm_high->v[nnum]; v = &mris_out->vertices[k]; s_jkm = vm_out->val/2/v->val; v->curv += s_jkm*vm_out->curv; } } } fprintf(stdout, "Writing wavelets coefficient of original surface to %s\n", argv[4]); MRISwriteCurvature(mris_out,argv[4] ) ; MRISPfree(&mrisp) ; MRISfree(&mris_in) ; /*End of Analysis*/ } else if (SYNTHESIS) /*Spherical Wavelet Synthesis*/ { mris_out = ReadIcoByOrder(order, 100); //higher order surface fprintf(stdout, "Creating a %d order spherical surface\n", order); MRISreadOriginalProperties(mris_out, argv[1]) ; fprintf(stdout, "Reading wavelet coefficients from %s\n", argv[1]); for (m = 0; m<mris_out->nvertices; m++) mris_out->vertices[m].nsize=1; MRISsetNeighborhoodSize(mris_out, 3) ; if (COMPARE) { mris_in = MRISread(fname); for (i=1; i<IcoNVtxsFromOrder(order-1); i++) { if (mris_out->vertices[i].origx==0) area = fabs(mris_out->vertices[i].origx-mris_in->vertices[i].x); else area = fabs((mris_out->vertices[i].origx-mris_in->vertices[i].x)/mris_out->vertices[i].origx); if ( area>5 ) { mris_out->vertices[i].origx = mris_in->vertices[i].x ; fprintf(stdout, "%d %f\n", i, area); } if (mris_out->vertices[i].origy==0) area = fabs(mris_out->vertices[i].origy-mris_in->vertices[i].y); else area = fabs((mris_out->vertices[i].origy-mris_in->vertices[i].y)/mris_out->vertices[i].origy); if ( area>5 ) { mris_out->vertices[i].origy = mris_in->vertices[i].y ; fprintf(stdout, "%d %f\n", i, area); } if (mris_out->vertices[i].origz==0) area = fabs(mris_out->vertices[i].origz-mris_in->vertices[i].z); else area = fabs((mris_out->vertices[i].origz-mris_in->vertices[i].z)/mris_out->vertices[i].origz); if ( area>5 ) { mris_out->vertices[i].origz = mris_in->vertices[i].z ; fprintf(stdout, "%d %f\n", i, area); } } MRISfree(&mris_in); } fprintf(stdout, "Recover the surface using %s order coefficients\n",argv[2]); number = IcoNVtxsFromOrder(atoi(argv[2])); for (m = number; m<mris_out->nvertices; m++) { mris_out->vertices[m].origx = 0; mris_out->vertices[m].origy = 0; mris_out->vertices[m].origz = 0; } /*Initialize Ij,k*/ for (vno = 0; vno<mris_out->nvertices; vno++) { vm_out = &mris_out->vertices[vno]; vm_out->val = 1; } /*Iteratively compute Ij,k*/ for (i=order;i>0;i--) { mris_high = ReadIcoByOrder(i, 100); //higher order surface for (m = 0; m<mris_high->nvertices; m++) mris_high->vertices[m].nsize=1; MRISsetNeighborhoodSize(mris_high, 3) ; number = IcoNVtxsFromOrder(i-1); //the start of m vertices for (m = number; m<mris_high->nvertices; m++) { vm_out = &mris_out->vertices[m]; vm_high = &mris_high->vertices[m]; flag=0; for (nnum=0; nnum<vm_high->vnum; nnum++) if ( vm_high->v[nnum]<number ) //A(j,m) { k = vm_high->v[nnum]; v = &mris_out->vertices[k]; v->val += 0.5*vm_out->val ; } for (; nnum<vm_high->v2num; nnum++) if ( vm_high->v[nnum]<number ) //B(j,m) { k = vm_high->v[nnum]; if (flag==0) b1=k; else b2=k; flag++; v = &mris_out->vertices[k]; v->val += 0.125*vm_out->val ; } for (; nnum<vm_high->v3num; nnum++) if ( vm_high->v[nnum]<number ) //C(j,m) { k = vm_high->v[nnum]; flag=0; //C has to be a second-order neighbor of B for (cno=mris_high->vertices[b1].vnum; cno<mris_high->vertices[b1].v2num;cno++) if (mris_high->vertices[b1].v[cno]==k) flag=1; for (cno=mris_high->vertices[b2].vnum; cno<mris_high->vertices[b2].v2num;cno++) if (mris_high->vertices[b2].v[cno]==k) flag=1; if (flag) { v = &mris_out->vertices[k]; v->val -= 0.0625*vm_out->val ; } } } } for (i=1;i<=order;i++) { mris_high = ReadIcoByOrder(i, 100); //higher order surface for (m = 0; m<mris_high->nvertices; m++) mris_high->vertices[m].nsize=1; MRISsetNeighborhoodSize(mris_high, 3) ; number = IcoNVtxsFromOrder(i-1); //the start of m vertices /* Synthesis Stage I */ /* Compute Lamda(j+1,k) using the Yita(j,m) */ for (m = number; m<mris_high->nvertices; m++) { vm_out = &mris_out->vertices[m]; vm_high = &mris_high->vertices[m]; for (nnum=0; nnum<vm_high->vnum; nnum++) if ( vm_high->v[nnum]<number ) //A(j,m) { k = vm_high->v[nnum]; v = &mris_out->vertices[k]; s_jkm = vm_out->val/2/v->val; v->origx -= s_jkm*vm_out->origx; v->origy -= s_jkm*vm_out->origy; v->origz -= s_jkm*vm_out->origz; } } /* compute Lamda(j+1,m) for each m vertices */ for (m = number; m<mris_high->nvertices; m++) { vm_out = &mris_out->vertices[m]; vm_high = &mris_high->vertices[m]; flag=0; for (nnum=0; nnum<vm_high->vnum; nnum++) //first order neighborhood if ( vm_high->v[nnum]<number ) //neighbor A(j,m) { k = vm_high->v[nnum] ; v = &mris_out->vertices[k]; vm_out->origx += 0.5*v->origx; vm_out->origy += 0.5*v->origy; vm_out->origz += 0.5*v->origz; } for (; nnum<vm_high->v2num; nnum++) //second order neighborhood if ( vm_high->v[nnum]<number ) //neighbor B(j,m) { k = vm_high->v[nnum] ; if (flag==0) b1=k; else b2=k; flag++; v = &mris_out->vertices[k]; vm_out->origx += 0.125*v->origx; vm_out->origy += 0.125*v->origy; vm_out->origz += 0.125*v->origz; } for (; nnum<vm_high->v3num; nnum++) //third order neighborhood if ( vm_high->v[nnum]<number ) //neighbor C(j,m) { k = vm_high->v[nnum] ; flag=0; //C has to be a second-order neighbor of B for (cno=mris_high->vertices[b1].vnum; cno<mris_high->vertices[b1].v2num;cno++) if (mris_high->vertices[b1].v[cno]==k) flag=1; for (cno=mris_high->vertices[b2].vnum; cno<mris_high->vertices[b2].v2num;cno++) if (mris_high->vertices[b2].v[cno]==k) flag=1; if (flag) { v = &mris_out->vertices[k]; vm_out->origx -= 0.0625*v->origx; vm_out->origy -= 0.0625*v->origy; vm_out->origz -= 0.0625*v->origz; } } } } MRISsaveVertexPositions(mris_out, TMP_VERTICES) ; MRISrestoreVertexPositions(mris_out, ORIGINAL_VERTICES) ; fprintf(stdout, "Writing recovered surface to %s\n", argv[4]); MRISwrite(mris_out, argv[4]) ; #if 0 mris_high = ReadIcoByOrder(4, 100); for (m=0;m<mris_high->nvertices;m++) { mris_high->vertices[m].x=mris_out->vertices[m].x; mris_high->vertices[m].y=mris_out->vertices[m].y; mris_high->vertices[m].z=mris_out->vertices[m].z; } MRISwrite(mris_high, "/space/xrt/1/users/btquinn/buckner_paper/010223_61223/surf/lh.wavelet.recon") ; #endif MRISrestoreVertexPositions(mris_out, TMP_VERTICES) ; /*End of Synthesis*/ } MRISfree(&mris_out); MRISfree(&mris_high) ; msec = TimerStop(&then) ; fprintf(stdout, "spherical wavelet took %2.1f minutes\n", (float)msec/(1000.0f*60.0f)); exit(0) ; return(0) ; }
int main(int argc, char *argv[]) { char **av, surf_fname[STRLEN], *template_fname, *hemi, *sphere_name, *cp, *subject, fname[STRLEN] ; int ac, nargs, ino, sno, nbad = 0, failed, n,nfields; VERTEX *v; VALS_VP *vp; MRI_SURFACE *mris ; MRI_SP *mrisp, /* *mrisp_aligned,*/ *mrisp_template ; INTEGRATION_PARMS parms ; /* rkt: check for and handle version tag */ nargs = handle_version_option (argc, argv, "$Id: mris_make_template.c,v 1.27 2011/03/02 00:04:33 nicks Exp $", "$Name: stable5 $"); if (nargs && argc - nargs == 1) exit (0); argc -= nargs; memset(&parms, 0, sizeof(parms)) ; Progname = argv[0] ; ErrorInit(NULL, NULL, NULL) ; DiagInit(NULL, NULL, NULL) ; /* setting default values for vectorial registration */ setParms(&parms); ac = argc ; av = argv ; for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) { nargs = get_option(argc, argv,&parms) ; argc -= nargs ; argv += nargs ; } if (argc < 5) usage_exit() ; /* multiframe registration */ if (multiframes) parms.flags |= IP_USE_MULTIFRAMES; if (!strlen(subjects_dir)) /* not specified on command line*/ { cp = getenv("SUBJECTS_DIR") ; if (!cp) ErrorExit(ERROR_BADPARM, "%s: SUBJECTS_DIR not defined in environment.\n", Progname) ; strcpy(subjects_dir, cp) ; } hemi = argv[1] ; sphere_name = argv[2] ; template_fname = argv[argc-1] ; if (1 || !FileExists(template_fname)) /* first time - create it */ { fprintf(stderr, "creating new parameterization...\n") ; if (multiframes) { mrisp_template = MRISPalloc(scale, atlas_size * IMAGES_PER_SURFACE ); /* if (no_rot) /\* don't do rigid alignment *\/ */ /* mrisp_aligned = NULL ; */ /* else */ /* mrisp_aligned = MRISPalloc(scale, PARAM_FRAMES); */ } else { mrisp_template = MRISPalloc(scale, PARAM_IMAGES); /* if (no_rot) /\* don't do rigid alignment *\/ */ /* mrisp_aligned = NULL ; */ /* else */ /* mrisp_aligned = MRISPalloc(scale, PARAM_IMAGES); */ } } else { fprintf(stderr, "reading template parameterization from %s...\n", template_fname) ; /* mrisp_aligned = NULL ; */ mrisp_template = MRISPread(template_fname) ; if (!mrisp_template) ErrorExit(ERROR_NOFILE, "%s: could not open template file %s", Progname, template_fname) ; } argv += 3 ; argc -= 3 ; for (ino = 0 ; ino < argc-1 ; ino++) { failed = 0 ; subject = argv[ino] ; fprintf(stderr, "\nprocessing subject %s (%d of %d)\n", subject, ino+1, argc-1) ; sprintf(surf_fname, "%s/%s/surf/%s.%s", subjects_dir, subject, hemi, sphere_name) ; fprintf(stderr, "reading spherical surface %s...\n", surf_fname) ; mris = MRISread(surf_fname) ; if (!mris) { nbad++ ; ErrorPrintf(ERROR_NOFILE, "%s: could not read surface file %s", Progname, surf_fname) ; exit(1) ; } if (annot_name) { if (MRISreadAnnotation(mris, annot_name) != NO_ERROR) ErrorExit(ERROR_BADPARM, "%s: could not read annot file %s", Progname, annot_name) ; MRISripMedialWall(mris) ; } MRISsaveVertexPositions(mris, CANONICAL_VERTICES) ; MRIScomputeMetricProperties(mris) ; MRISstoreMetricProperties(mris) ; if (Gdiag & DIAG_WRITE) { char *cp1 ; FileNameOnly(template_fname, fname) ; cp = strchr(fname, '.') ; if (cp) { cp1 = strrchr(fname, '.') ; if (cp1 && cp1 != cp) strncpy(parms.base_name, cp+1, cp1-cp-1) ; else strcpy(parms.base_name, cp+1) ; } else strcpy(parms.base_name, "template") ; sprintf(fname, "%s.%s.out", hemi, parms.base_name); parms.fp = fopen(fname, "w") ; printf("writing output to '%s'\n", fname) ; } /* multiframe registration */ if (multiframes) { nfields=parms.nfields; for ( n = 0; n < mris->nvertices ; n++) /* allocate the VALS_VP structure */ { v=&mris->vertices[n]; vp=calloc(1,sizeof(VALS_VP)); vp->nvals=nfields; vp->orig_vals=(float*)malloc(nfields*sizeof(float)); /* before blurring */ vp->vals=(float*)malloc(nfields*sizeof(float)); /* values used by MRISintegrate */ v->vp=(void*)vp; } /* load the different fields */ for (n = 0 ; n < parms.nfields ; n++) { if (parms.fields[n].name != NULL) { sprintf(surf_fname, "%s/%s/%s/%s.%s", subjects_dir, subject, overlay_dir, hemi, parms.fields[n].name) ; printf("reading overlay file %s...\n", surf_fname) ; if (MRISreadValues(mris, surf_fname) != NO_ERROR) ErrorExit(ERROR_BADPARM, "%s: could not read overlay file %s", Progname, surf_fname) ; MRIScopyValuesToCurvature(mris) ; } else if (ReturnFieldName(parms.fields[n].field)) { /* read in precomputed curvature file */ sprintf(surf_fname, "%s/%s/surf/%s.%s", subjects_dir, subject, hemi, ReturnFieldName(parms.fields[n].field)) ; // fprintf(stderr,"\nreading field %d from %s(type=%d,frame=%d)\n",parms.fields[n].field,surf_fname,parms.fields[n].type,parms.fields[n].frame); if (MRISreadCurvatureFile(mris, surf_fname) != NO_ERROR) { fprintf(stderr,"\n\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\n"); fprintf(stderr, "%s: could not read curvature file '%s'\n", Progname, surf_fname) ; failed = 1; break; } } else { /* compute curvature of surface */ sprintf(surf_fname, "%s/%s/surf/%s.%s", subjects_dir, subject, hemi, surface_names[parms.fields[n].field]) ; /*if(parms.fields[n].field==0) sprintf(fname, "inflated") ; else sprintf(fname, "smoothwm") ;*/ //fprintf(stderr,"\ngenerating field %d(type=%d,frame=%d) (from %s)\n",parms.fields[n].field,parms.fields[n].type,parms.fields[n].frame,surf_fname); // MRISsaveVertexPositions(mris, TMP_VERTICES) ; if (MRISreadVertexPositions(mris, surf_fname) != NO_ERROR) { fprintf(stderr,"\n\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\n"); ErrorPrintf(ERROR_NOFILE, "%s: could not read surface file %s", Progname, surf_fname) ; fprintf(stderr,"setting up correlation coefficient to zero\n"); parms.fields[n].l_corr=parms.fields[n].l_pcorr=0.0; failed=1; break; } if (nbrs > 1) MRISsetNeighborhoodSize(mris, nbrs) ; MRIScomputeMetricProperties(mris) ; MRIScomputeSecondFundamentalForm(mris) ; MRISuseMeanCurvature(mris) ; MRISaverageCurvatures(mris, navgs) ; MRISrestoreVertexPositions(mris, CANONICAL_VERTICES) ; } /* if(parms.fields[n].field!=SULC_CORR_FRAME)*/ MRISnormalizeField(mris,parms.fields[n].type, parms.fields[n].which_norm); /* normalize values */ MRISsetCurvaturesToOrigValues(mris,n); MRISsetCurvaturesToValues(mris,n); } if (failed) { fprintf(stderr,"\n\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\n"); fprintf(stderr,"Subject %s Failed",subject); fprintf(stderr,"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\n\n"); /* free cal structure*/ for ( n = 0; n < mris->nvertices ; n++) { v=&mris->vertices[n]; vp=(VALS_VP*)v->vp; free(vp->orig_vals); free(vp->vals); free(vp); v->vp=NULL; } /* free surface */ MRISfree(&mris); /* go onto the next subject */ continue; } } if (multiframes && (!no_rot)) { /* rigid body alignment */ parms.frame_no = 3 ; /* don't use single field correlation functions */ parms.l_corr = parms.l_pcorr = 0.0f ; parms.mrisp = MRIStoParameterization(mris, NULL, scale, 0) ; parms.mrisp_template = mrisp_template ; MRISrigidBodyAlignVectorGlobal(mris, &parms, 1.0, 64.0, 8) ; if (Gdiag & DIAG_WRITE) MRISwrite(mris, "sphere.rot.global") ; MRISrigidBodyAlignVectorLocal(mris, &parms) ; if (Gdiag & DIAG_WRITE) MRISwrite(mris, "sphere.rot.local") ; MRISPfree(&parms.mrisp) ; MRISsaveVertexPositions(mris, CANONICAL_VERTICES) ; }; if ((!multiframes) && (!no_rot) && ino > 0) { /* rigid body alignment */ sprintf(surf_fname, "%s/%s/surf/%s.%s", subjects_dir, subject, hemi, "sulc") ; if (MRISreadCurvatureFile(mris, surf_fname) != NO_ERROR) { ErrorPrintf(Gerror, "%s: could not read curvature file '%s'\n", Progname, surf_fname) ; nbad++ ; MRISfree(&mris) ; continue ; } parms.frame_no = 3 ; /* use sulc for rigid registration */ parms.mrisp = MRIStoParameterization(mris, NULL, scale, 0) ; parms.mrisp_template = mrisp_template ; parms.l_corr = 1.0f ; MRISrigidBodyAlignGlobal(mris, &parms, 1.0, 64.0, 8) ; if (Gdiag & DIAG_WRITE) MRISwrite(mris, "sphere.rot.global") ; MRISrigidBodyAlignLocal(mris, &parms) ; if (Gdiag & DIAG_WRITE) MRISwrite(mris, "sphere.rot.local") ; MRISPfree(&parms.mrisp) ; MRISsaveVertexPositions(mris, CANONICAL_VERTICES) ; } if (multiframes) { for (n = 0; n < parms.nfields ; n++) { MRISsetOrigValuesToCurvatures(mris,n); MRISaverageCurvatures(mris, parms.fields[n].navgs) ; mrisp = MRIStoParameterization(mris, NULL, scale, 0) ; MRISPcombine(mrisp, mrisp_template, parms.fields[n].frame * IMAGES_PER_SURFACE) ; MRISPfree(&mrisp) ; } /* free the VALS_VP structure */ for ( n = 0; n < mris->nvertices ; n++) { v=&mris->vertices[n]; vp=(VALS_VP*)v->vp; free(vp->orig_vals); free(vp->vals); free(vp); v->vp=NULL; } MRISfree(&mris) ; } else { for (sno = 0; sno < SURFACES ; sno++) { if (curvature_names[sno]) /* read in precomputed curvature file */ { sprintf(surf_fname, "%s/%s/surf/%s.%s", subjects_dir, subject, hemi, curvature_names[sno]) ; if (MRISreadCurvatureFile(mris, surf_fname) != NO_ERROR) { nbad++ ; ErrorPrintf(Gerror, "%s: could not read curvature file '%s'\n", Progname, surf_fname) ; failed = 1 ; break ; } /* the two next lines were not in the original code */ MRISaverageCurvatures(mris, navgs) ; MRISnormalizeCurvature(mris, which_norm) ; } else /* compute curvature of surface */ { sprintf(surf_fname, "%s/%s/surf/%s.%s", subjects_dir, subject, hemi, surface_names[sno]) ; if (MRISreadVertexPositions(mris, surf_fname) != NO_ERROR) { ErrorPrintf(ERROR_NOFILE, "%s: could not read surface file %s", Progname, surf_fname) ; nbad++ ; failed = 1 ; break ; } if (nbrs > 1) MRISsetNeighborhoodSize(mris, nbrs) ; MRIScomputeMetricProperties(mris) ; MRIScomputeSecondFundamentalForm(mris) ; MRISuseMeanCurvature(mris) ; MRISaverageCurvatures(mris, navgs) ; MRISrestoreVertexPositions(mris, CANONICAL_VERTICES) ; MRISnormalizeCurvature(mris, which_norm) ; } fprintf(stderr, "computing parameterization for surface %s...\n", surf_fname); if (failed) { continue ; MRISfree(&mris) ; } mrisp = MRIStoParameterization(mris, NULL, scale, 0) ; MRISPcombine(mrisp, mrisp_template, sno*3) ; MRISPfree(&mrisp) ; } MRISfree(&mris) ; } } #if 0 if (mrisp_aligned) /* new parameterization - use rigid alignment */ { MRI_SP *mrisp_tmp ; if (Gdiag & DIAG_WRITE) { char *cp1 ; FileNameOnly(template_fname, fname) ; cp = strchr(fname, '.') ; if (cp) { cp1 = strrchr(fname, '.') ; if (cp1 && cp1 != cp) strncpy(parms.base_name, cp+1, cp1-cp-1) ; else strcpy(parms.base_name, cp+1) ; } else strcpy(parms.base_name, "template") ; sprintf(fname, "%s.%s.out", hemi, parms.base_name); parms.fp = fopen(fname, "w") ; printf("writing output to '%s'\n", fname) ; } for (ino = 0 ; ino < argc-1 ; ino++) { subject = argv[ino] ; if (Gdiag & DIAG_WRITE) fprintf(parms.fp, "processing subject %s\n", subject) ; fprintf(stderr, "processing subject %s\n", subject) ; sprintf(surf_fname, "%s/%s/surf/%s.%s", subjects_dir, subject, hemi, sphere_name) ; fprintf(stderr, "reading spherical surface %s...\n", surf_fname) ; mris = MRISread(surf_fname) ; if (!mris) ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s", Progname, surf_fname) ; MRIScomputeMetricProperties(mris) ; MRISstoreMetricProperties(mris) ; MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ; sprintf(surf_fname, "%s/%s/surf/%s.%s", subjects_dir, subject, hemi, "sulc") ; if (MRISreadCurvatureFile(mris, surf_fname) != NO_ERROR) ErrorExit(Gerror, "%s: could not read curvature file '%s'\n", Progname, surf_fname) ; parms.frame_no = 3 ; parms.mrisp = MRIStoParameterization(mris, NULL, scale, 0) ; parms.mrisp_template = mrisp_template ; parms.l_corr = 1.0f ; MRISrigidBodyAlignGlobal(mris, &parms, 1.0, 32.0, 8) ; if (Gdiag & DIAG_WRITE) MRISwrite(mris, "sphere.rot.global") ; MRISrigidBodyAlignLocal(mris, &parms) ; if (Gdiag & DIAG_WRITE) MRISwrite(mris, "sphere.rot.local") ; MRISPfree(&parms.mrisp) ; #if 0 /* write out rotated surface */ sprintf(surf_fname, "%s.rot", mris->fname) ; fprintf(stderr, "writing out rigidly aligned surface to '%s'\n", surf_fname) ; MRISwrite(mris, surf_fname) ; #endif /* now generate new parameterization using the optimal alignment */ for (sno = 0; sno < SURFACES ; sno++) { if (curvature_names[sno]) /* read in precomputed curvature file */ { sprintf(surf_fname, "%s/%s/surf/%s.%s", subjects_dir, subject, hemi, curvature_names[sno]) ; if (MRISreadCurvatureFile(mris, surf_fname) != NO_ERROR) ErrorExit(Gerror, "%s: could not read curvature file '%s'\n", Progname, surf_fname) ; } else /* compute curvature of surface */ { sprintf(surf_fname, "%s/%s/surf/%s.%s", subjects_dir, subject, hemi, surface_names[sno]) ; if (MRISreadVertexPositions(mris, surf_fname) != NO_ERROR) ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s", Progname, surf_fname) ; if (nbrs > 1) MRISsetNeighborhoodSize(mris, nbrs) ; MRIScomputeMetricProperties(mris) ; MRIScomputeSecondFundamentalForm(mris) ; MRISuseMeanCurvature(mris) ; MRISaverageCurvatures(mris, navgs) ; MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ; MRISnormalizeCurvature(mris) ; } fprintf(stderr, "computing parameterization for surface %s...\n", surf_fname); mrisp = MRIStoParameterization(mris, NULL, scale, 0) ; MRISPcombine(mrisp, mrisp_aligned, sno*3) ; MRISPfree(&mrisp) ; } MRISfree(&mris) ; } if (Gdiag & DIAG_WRITE) fclose(parms.fp) ; mrisp_tmp = mrisp_aligned ; mrisp_aligned = mrisp_template ; mrisp_template = mrisp_tmp ; MRISPfree(&mrisp_aligned) ; } #endif fprintf(stderr, "writing updated template with %d subjects to %s...\n", argc-1-nbad, template_fname) ; MRISPwrite(mrisp_template, template_fname) ; MRISPfree(&mrisp_template) ; exit(0) ; return(0) ; /* for ansi */ }
int main(int argc, char *argv[]) { char **av, *surf_fname, *template_fname, *out_fname, fname[STRLEN],*cp; int ac, nargs,err, msec ; MRI_SURFACE *mris ; MRI_SP *mrisp_template ; char cmdline[CMD_LINE_LEN] ; struct timeb start ; make_cmd_version_string (argc, argv, "$Id: mris_register.c,v 1.59 2011/03/02 00:04:33 nicks Exp $", "$Name: stable5 $", cmdline); /* rkt: check for and handle version tag */ nargs = handle_version_option (argc, argv, "$Id: mris_register.c,v 1.59 2011/03/02 00:04:33 nicks Exp $", "$Name: stable5 $"); if (nargs && argc - nargs == 1) { exit (0); } argc -= nargs; TimerStart(&start) ; Progname = argv[0] ; ErrorInit(NULL, NULL, NULL) ; DiagInit(NULL, NULL, NULL) ; memset(&parms, 0, sizeof(parms)) ; parms.projection = PROJECT_SPHERE ; parms.flags |= IP_USE_CURVATURE ; parms.tol = 0.5 ; // was 1e-0*2.5 parms.min_averages = 0 ; parms.l_area = 0.0 ; parms.l_parea = 0.1f ; // used to be 0.2 parms.l_dist = 5.0 ; // used to be 0.5, and before that 0.1 parms.l_corr = 1.0f ; parms.l_nlarea = 1 ; parms.l_pcorr = 0.0f ; parms.niterations = 25 ; parms.n_averages = 1024 ; // used to be 256 parms.write_iterations = 100 ; parms.dt_increase = 1.01 /* DT_INCREASE */; parms.dt_decrease = 0.99 /* DT_DECREASE*/ ; parms.error_ratio = 1.03 /*ERROR_RATIO */; parms.dt_increase = 1.0 ; parms.dt_decrease = 1.0 ; parms.l_external = 10000 ; /* in case manual label is specified */ parms.error_ratio = 1.1 /*ERROR_RATIO */; parms.integration_type = INTEGRATE_ADAPTIVE ; parms.integration_type = INTEGRATE_MOMENTUM /*INTEGRATE_LINE_MINIMIZE*/ ; parms.integration_type = INTEGRATE_LINE_MINIMIZE ; parms.dt = 0.9 ; parms.momentum = 0.95 ; parms.desired_rms_height = -1.0 ; parms.nbhd_size = -10 ; parms.max_nbrs = 10 ; ac = argc ; av = argv ; for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) { nargs = get_option(argc, argv) ; argc -= nargs ; argv += nargs ; } if (nsigmas > 0) { MRISsetRegistrationSigmas(sigmas, nsigmas) ; } parms.which_norm = which_norm ; if (argc < 4) { usage_exit() ; } printf("%s\n", vcid) ; printf(" %s\n",MRISurfSrcVersion()); fflush(stdout); surf_fname = argv[1] ; template_fname = argv[2] ; out_fname = argv[3] ; if (parms.base_name[0] == 0) { FileNameOnly(out_fname, fname) ; cp = strchr(fname, '.') ; if (cp) { strcpy(parms.base_name, cp+1) ; } else { strcpy(parms.base_name, "sphere") ; } } fprintf(stderr, "reading surface from %s...\n", surf_fname) ; mris = MRISread(surf_fname) ; if (!mris) ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s", Progname, surf_fname) ; if (parms.var_smoothness) { parms.vsmoothness = (float *)calloc(mris->nvertices, sizeof(float)) ; if (parms.vsmoothness == NULL) { ErrorExit(ERROR_NOMEMORY, "%s: could not allocate vsmoothness array", Progname) ; } parms.dist_error = (float *)calloc(mris->nvertices, sizeof(float)) ; if (parms.dist_error == NULL) { ErrorExit(ERROR_NOMEMORY, "%s: could not allocate dist_error array", Progname) ; } parms.area_error = (float *)calloc(mris->nvertices, sizeof(float)) ; if (parms.area_error == NULL) { ErrorExit(ERROR_NOMEMORY, "%s: could not allocate area_error array", Progname) ; } parms.geometry_error = (float *)calloc(mris->nvertices, sizeof(float)) ; if (parms.geometry_error == NULL) { ErrorExit(ERROR_NOMEMORY, "%s: could not allocate geometry_error array", Progname) ; } } MRISresetNeighborhoodSize(mris, 1) ; if (annot_name) { if (MRISreadAnnotation(mris, annot_name) != NO_ERROR) ErrorExit(ERROR_BADPARM, "%s: could not read annot file %s", Progname, annot_name) ; MRISripMedialWall(mris) ; } MRISsaveVertexPositions(mris, TMP2_VERTICES) ; MRISaddCommandLine(mris, cmdline) ; if (!FZERO(dalpha) || !FZERO(dbeta) || !FZERO(dgamma)) MRISrotate(mris, mris, RADIANS(dalpha), RADIANS(dbeta), RADIANS(dgamma)) ; if (curvature_fname[0]) { fprintf(stderr, "reading source curvature from %s\n",curvature_fname) ; MRISreadCurvatureFile(mris, curvature_fname) ; } if (single_surf) { char fname[STRLEN], *cp, surf_dir[STRLEN], hemi[10] ; MRI_SURFACE *mris_template ; int sno, tnbrs=3 ; FileNamePath(template_fname, surf_dir) ; cp = strrchr(template_fname, '/') ; if (cp == NULL) // no path - start from beginning of file name { cp = template_fname ; } cp = strchr(cp, '.') ; if (cp == NULL) ErrorExit(ERROR_NOFILE, "%s: could no scan hemi from %s", Progname, template_fname) ; strncpy(hemi, cp-2, 2) ; hemi[2] = 0 ; fprintf(stderr, "reading spherical surface %s...\n", template_fname) ; mris_template = MRISread(template_fname) ; if (mris_template == NULL) { ErrorExit(ERROR_NOFILE, "") ; } #if 0 if (reverse_flag) { MRISreverse(mris_template, REVERSE_X, 1) ; } #endif MRISsaveVertexPositions(mris_template, CANONICAL_VERTICES) ; MRIScomputeMetricProperties(mris_template) ; MRISstoreMetricProperties(mris_template) ; if (noverlays > 0) { mrisp_template = MRISPalloc(scale, IMAGES_PER_SURFACE*noverlays); for (sno = 0; sno < noverlays ; sno++) { sprintf(fname, "%s/../label/%s.%s", surf_dir, hemi, overlays[sno]) ; if (MRISreadValues(mris_template, fname) != NO_ERROR) ErrorExit(ERROR_NOFILE, "%s: could not read overlay from %s", Progname, fname) ; MRIScopyValuesToCurvature(mris_template) ; MRISaverageCurvatures(mris_template, navgs) ; MRISnormalizeCurvature(mris_template, which_norm) ; fprintf(stderr, "computing parameterization for overlay %s...\n", fname); MRIStoParameterization(mris_template, mrisp_template, scale, sno*3) ; MRISPsetFrameVal(mrisp_template, sno*3+1, 1.0) ; } } else { mrisp_template = MRISPalloc(scale, PARAM_IMAGES); for (sno = 0; sno < SURFACES ; sno++) { if (curvature_names[sno]) /* read in precomputed curvature file */ { sprintf(fname, "%s/%s.%s", surf_dir, hemi, curvature_names[sno]) ; if (MRISreadCurvatureFile(mris_template, fname) != NO_ERROR) ErrorExit(Gerror, "%s: could not read curvature file '%s'\n", Progname, fname) ; /* the two next lines were not in the original code */ MRISaverageCurvatures(mris_template, navgs) ; MRISnormalizeCurvature(mris_template, which_norm) ; } else /* compute curvature of surface */ { sprintf(fname, "%s/%s.%s", surf_dir, hemi, surface_names[sno]) ; if (MRISreadVertexPositions(mris_template, fname) != NO_ERROR) ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s", Progname, fname) ; if (tnbrs > 1) { MRISresetNeighborhoodSize(mris_template, tnbrs) ; } MRIScomputeMetricProperties(mris_template) ; MRIScomputeSecondFundamentalForm(mris_template) ; MRISuseMeanCurvature(mris_template) ; MRISaverageCurvatures(mris_template, navgs) ; MRISrestoreVertexPositions(mris_template, CANONICAL_VERTICES) ; MRISnormalizeCurvature(mris_template, which_norm) ; } fprintf(stderr, "computing parameterization for surface %s...\n", fname); MRIStoParameterization(mris_template, mrisp_template, scale, sno*3) ; MRISPsetFrameVal(mrisp_template, sno*3+1, 1.0) ; } } } else { fprintf(stderr, "reading template parameterization from %s...\n", template_fname) ; mrisp_template = MRISPread(template_fname) ; if (!mrisp_template) ErrorExit(ERROR_NOFILE, "%s: could not open template file %s", Progname, template_fname) ; if (noverlays > 0) { if (mrisp_template->Ip->num_frame != IMAGES_PER_SURFACE*noverlays) ErrorExit(ERROR_BADPARM, "template frames (%d) doesn't match input (%d x %d) = %d\n", mrisp_template->Ip->num_frame, IMAGES_PER_SURFACE,noverlays, IMAGES_PER_SURFACE*noverlays) ; } } if (use_defaults) { if (*IMAGEFseq_pix(mrisp_template->Ip, 0, 0, 2) <= 1.0) /* 1st time */ { parms.l_dist = 5.0 ; parms.l_corr = 1.0 ; parms.l_parea = 0.2 ; } else /* subsequent alignments */ { parms.l_dist = 5.0 ; parms.l_corr = 1.0 ; parms.l_parea = 0.2 ; } } if (nbrs > 1) { MRISresetNeighborhoodSize(mris, nbrs) ; } MRISprojectOntoSphere(mris, mris, DEFAULT_RADIUS) ; mris->status = MRIS_PARAMETERIZED_SPHERE ; MRIScomputeMetricProperties(mris) ; if (!FZERO(parms.l_dist)) { MRISscaleDistances(mris, scale) ; } #if 0 MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ; MRISzeroNegativeAreas(mris) ; MRISstoreMetricProperties(mris) ; #endif MRISstoreMeanCurvature(mris) ; /* use curvature from file */ MRISsetOriginalFileName(orig_name) ; if (inflated_name) { MRISsetInflatedFileName(inflated_name) ; } err = MRISreadOriginalProperties(mris, orig_name) ; if (err != 0) { printf("ERROR %d from MRISreadOriginalProperties().\n",err); exit(1); } if (MRISreadCanonicalCoordinates(mris, canon_name) != NO_ERROR) ErrorExit(ERROR_BADFILE, "%s: could not read canon surface %s", Progname, canon_name) ; if (reverse_flag) { MRISreverse(mris, REVERSE_X, 1) ; MRISsaveVertexPositions(mris, TMP_VERTICES) ; MRISrestoreVertexPositions(mris, CANONICAL_VERTICES) ; MRISreverse(mris, REVERSE_X, 0) ; MRISsaveVertexPositions(mris, CANONICAL_VERTICES) ; MRISrestoreVertexPositions(mris, TMP_VERTICES) ; MRIScomputeMetricProperties(mris) ; } #if 0 MRISsaveVertexPositions (mris, CANONICAL_VERTICES) ; // uniform spherical positions #endif if (starting_reg_fname) if (MRISreadVertexPositions(mris, starting_reg_fname) != NO_ERROR) { exit(Gerror) ; } if (multiframes) { if (use_initial_registration) MRISvectorRegister(mris, mrisp_template, &parms, max_passes, min_degrees, max_degrees, nangles) ; parms.l_corr=parms.l_pcorr=0.0f; #if 0 parms.l_dist = 0.0 ; parms.l_corr = 0.0 ; parms.l_parea = 0.0 ; parms.l_area = 0.0 ; parms.l_parea = 0.0f ; parms.l_dist = 0.0 ; parms.l_corr = 0.0f ; parms.l_nlarea = 0.0f ; parms.l_pcorr = 0.0f ; #endif MRISvectorRegister(mris, mrisp_template, &parms, max_passes, min_degrees, max_degrees, nangles) ; } else { double l_dist = parms.l_dist ; if (multi_scale > 0) { int i ; parms.l_dist = l_dist * pow(5.0, (multi_scale-1.0)) ; parms.flags |= IPFLAG_NOSCALE_TOL ; parms.flags &= ~IP_USE_CURVATURE ; for (i = 0 ; i < multi_scale ; i++) { printf("*************** round %d, l_dist = %2.3f **************\n", i, parms.l_dist) ; MRISregister(mris, mrisp_template, &parms, max_passes, min_degrees, max_degrees, nangles) ; parms.flags |= IP_NO_RIGID_ALIGN ; parms.flags &= ~IP_USE_INFLATED ; parms.l_dist /= 5 ; } if (parms.nbhd_size < 0) { parms.nbhd_size *= -1 ; printf("**** starting 2nd epoch, with long-range distances *****\n"); parms.l_dist = l_dist * pow(5.0, (multi_scale-2.0)) ; for (i = 1 ; i < multi_scale ; i++) { printf("*********** round %d, l_dist = %2.3f *************\n", i, parms.l_dist) ; MRISregister(mris, mrisp_template, &parms, max_passes, min_degrees, max_degrees, nangles) ; parms.l_dist /= 5 ; } } printf("****** final curvature registration ***************\n") ; if (parms.nbhd_size > 0) { parms.nbhd_size *= -1 ; // disable long-range stuff } parms.l_dist *= 5 ; parms.flags |= (IP_USE_CURVATURE | IP_NO_SULC); MRISregister(mris, mrisp_template, &parms, max_passes, min_degrees, max_degrees, nangles) ; } else MRISregister(mris, mrisp_template, &parms, max_passes, min_degrees, max_degrees, nangles) ; } if (remove_negative) { parms.niterations = 1000 ; MRISremoveOverlapWithSmoothing(mris,&parms) ; } fprintf(stderr, "writing registered surface to %s...\n", out_fname) ; MRISwrite(mris, out_fname) ; if (jacobian_fname) { MRIScomputeMetricProperties(mris) ; compute_area_ratios(mris) ; /* will put results in v->curv */ #if 0 MRISwriteArea(mris, jacobian_fname) ; #else MRISwriteCurvature(mris, jacobian_fname) ; #endif } msec = TimerStop(&start) ; if (Gdiag & DIAG_SHOW) printf("registration took %2.2f hours\n", (float)msec/(1000.0f*60.0f*60.0f)); MRISPfree(&mrisp_template) ; MRISfree(&mris) ; exit(0) ; return(0) ; /* for ansi */ }
int main(int argc, char *argv[]) { char **av, in_surf_fname[STRLEN], *in_patch_fname, *out_patch_fname, fname[STRLEN], path[STRLEN], *cp, hemi[10] ; int ac, nargs ; MRI_SURFACE *mris ; MRI *mri_vertices ; /* rkt: check for and handle version tag */ nargs = handle_version_option (argc, argv, "$Id: mris_flatten.c,v 1.42 2016/12/10 22:57:46 fischl Exp $", "$Name: $"); if (nargs && argc - nargs == 1) exit (0); argc -= nargs; Gdiag |= DIAG_SHOW ; Progname = argv[0] ; ErrorInit(NULL, NULL, NULL) ; DiagInit(NULL, NULL, NULL) ; Gdiag |= (DIAG_SHOW | DIAG_WRITE) ; memset(&parms, 0, sizeof(parms)) ; parms.dt = .1 ; parms.projection = PROJECT_PLANE ; parms.tol = 0.2 ; parms.n_averages = 1024 ; parms.l_dist = 1.0 ; parms.l_nlarea = 1.0 ; parms.niterations = 40 ; parms.area_coef_scale = 1.0 ; parms.dt_increase = 1.01 /* DT_INCREASE */; parms.dt_decrease = 0.98 /* DT_DECREASE*/ ; parms.error_ratio = 1.03 /*ERROR_RATIO */; parms.integration_type = INTEGRATE_LINE_MINIMIZE ; parms.momentum = 0.9 ; parms.desired_rms_height = -1.0 ; parms.base_name[0] = 0 ; parms.nbhd_size = 7 ; /* out to 7-connected neighbors */ parms.max_nbrs = 12 ; /* 12 at each distance */ ac = argc ; av = argv ; for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) { nargs = get_option(argc, argv) ; argc -= nargs ; argv += nargs ; } if (argc < 3) print_help() ; parms.base_dt = base_dt_scale * parms.dt ; in_patch_fname = argv[1] ; out_patch_fname = argv[2] ; FileNamePath(in_patch_fname, path) ; cp = strrchr(in_patch_fname, '/') ; if (!cp) cp = in_patch_fname ; cp = strchr(cp, '.') ; if (cp) { strncpy(hemi, cp-2, 2) ; hemi[2] = 0 ; } else strcpy(hemi, "lh") ; if (one_surf_flag) sprintf(in_surf_fname, "%s", in_patch_fname) ; else sprintf(in_surf_fname, "%s/%s.%s", path, hemi, original_surf_name) ; if (parms.base_name[0] == 0) { FileNameOnly(out_patch_fname, fname) ; cp = strchr(fname, '.') ; if (cp) strcpy(parms.base_name, cp+1) ; else strcpy(parms.base_name, "flattened") ; } mris = MRISread(in_surf_fname) ; if (!mris) ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s", Progname, in_surf_fname) ; if (sphere_flag) { MRIScenter(mris, mris) ; mris->radius = MRISaverageRadius(mris) ; MRISstoreMetricProperties(mris) ; MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ; } if (Gdiag_no >= 0) { int n ; printf("vertex %d has %d nbrs before patch:\n", Gdiag_no, mris->vertices[Gdiag_no].vnum) ; for (n = 0 ; n < mris->vertices[Gdiag_no].vnum ; n++) printf("\t%d\n", mris->vertices[Gdiag_no].v[n]) ; } if (one_surf_flag) /* only have the 1 surface - no patch file */ { mris->patch = 1 ; mris->status = MRIS_PATCH ; if (!FEQUAL(rescale,1)) { MRISscaleBrain(mris, mris, rescale) ; MRIScomputeMetricProperties(mris) ; } MRISstoreMetricProperties(mris) ; MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ; } else { MRISresetNeighborhoodSize(mris, mris->vertices[0].nsize) ; // set back to max if (label_fname) // read in a label instead of a patch { LABEL *area ; area = LabelRead(NULL, label_fname) ; if (area == NULL) ErrorExit(ERROR_BADPARM, "%s: could not read label file %s", Progname, label_fname) ; LabelDilate(area, mris, dilate_label, CURRENT_VERTICES) ; MRISclearMarks(mris) ; LabelMark(area, mris) ; MRISripUnmarked(mris) ; MRISripFaces(mris); mris->patch = 1 ; mris->status = MRIS_CUT ; LabelFree(&area) ; printf("%d valid vertices (%2.1f %% of total)\n", MRISvalidVertices(mris), 100.0*MRISvalidVertices(mris)/mris->nvertices) ; } else { if (MRISreadPatch(mris, in_patch_fname) != NO_ERROR) ErrorExit(ERROR_BADPARM, "%s: could not read patch file %s", Progname, in_patch_fname) ; if (dilate) { printf("dilating patch %d times\n", dilate) ; MRISdilateRipped(mris, dilate) ; printf("%d valid vertices (%2.1f %% of total)\n", MRISvalidVertices(mris), 100.0*MRISvalidVertices(mris)/mris->nvertices) ; } } MRISremoveRipped(mris) ; MRISupdateSurface(mris) ; #if 0 mris->nsize = 1 ; // before recalculation of 2 and 3-nbrs { int vno ; VERTEX *v ; for (vno= 0 ; vno < mris->nvertices ; vno++) { v = &mris->vertices[vno] ; v->vtotal = v->vnum ; v->nsize = 1 ; } } MRISsetNeighborhoodSize(mris, nbrs) ; #endif } if (Gdiag_no >= 0) printf("vno %d is %sin patch\n", Gdiag_no, mris->vertices[Gdiag_no].ripflag ? "NOT " : "") ; if (Gdiag_no >= 0 && mris->vertices[Gdiag_no].ripflag == 0) { int n ; printf("vertex %d has %d nbrs after patch:\n", Gdiag_no, mris->vertices[Gdiag_no].vnum) ; for (n = 0 ; n < mris->vertices[Gdiag_no].vnum ; n++) printf("\t%d\n", mris->vertices[Gdiag_no].v[n]) ; } fprintf(stderr, "reading original vertex positions...\n") ; if (!FZERO(disturb)) mrisDisturbVertices(mris, disturb) ; if (parms.niterations > 0) { MRISresetNeighborhoodSize(mris, nbrs) ; if (!FZERO(parms.l_unfold) || !FZERO(parms.l_expand)) { static INTEGRATION_PARMS p2 ; sprintf(in_surf_fname, "%s/%s.%s", path, hemi, original_surf_name) ; if (stricmp(original_unfold_surf_name,"none") == 0) { printf("using current position of patch as initial position\n") ; MRISstoreMetricProperties(mris) ; /* use current positions */ } else if (!sphere_flag && !one_surf_flag) MRISreadOriginalProperties(mris, original_unfold_surf_name) ; *(&p2) = *(&parms) ; p2.l_dist = 0 ; p2.niterations = 100 ; p2.nbhd_size = p2.max_nbrs = 1 ; p2.n_averages = 0 ; p2.write_iterations = parms.write_iterations > 0 ? 25 : 0 ; p2.tol = -1 ; p2.dt = 0.5 ; p2.l_area = 0.0 ; p2.l_spring = 0.9 ; p2.l_convex = 0.9 ; p2.momentum = 0 ; p2.integration_type = INTEGRATE_MOMENTUM ; MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ; #if 0 p2.flags |= IPFLAG_NO_SELF_INT_TEST ; printf("expanding surface....\n") ; MRISexpandSurface(mris, 4.0, &p2) ; // push it away from fissure #endif p2.niterations = 100 ; MRISunfold(mris, &p2, 1) ; p2.niterations = 300 ; p2.l_unfold *= 0.25 ; MRISunfold(mris, &p2, 1) ; p2.l_unfold *= 0.25 ; MRISunfold(mris, &p2, 1) ; #if 0 printf("smoothing unfolded surface..\n"); p2.niterations = 200 ; p2.l_unfold = 0 ; // just smooth it MRISunfold(mris, &p2, max_passes) ; #endif parms.start_t = p2.start_t ; parms.l_unfold = parms.l_convex = parms.l_boundary = parms.l_expand=0 ; MRIfree(&parms.mri_dist) ; } sprintf(in_surf_fname, "%s/%s.%s", path, hemi, original_surf_name) ; if (!sphere_flag && !one_surf_flag) MRISreadOriginalProperties(mris, original_surf_name) ; if (randomly_flatten) MRISflattenPatchRandomly(mris) ; else MRISflattenPatch(mris) ; /* optimize metric properties of flat map */ fprintf(stderr,"minimizing metric distortion induced by projection...\n"); MRISscaleBrain(mris, mris, scale) ; MRIScomputeMetricProperties(mris) ; MRISunfold(mris, &parms, max_passes) ; MRIScenter(mris, mris) ; fprintf(stderr, "writing flattened patch to %s\n", out_patch_fname) ; MRISwritePatch(mris, out_patch_fname) ; } if (plane_flag || sphere_flag) { char fname[STRLEN] ; FILE *fp ; #if 0 sprintf(fname, "%s.%s.out", mris->hemisphere == RIGHT_HEMISPHERE ? "rh" : "lh", parms.base_name); #else sprintf(fname, "flatten.log") ; #endif fp = fopen(fname, "a") ; if (plane_flag) MRIScomputeAnalyticDistanceError(mris, MRIS_PLANE, fp) ; else if (sphere_flag) MRIScomputeAnalyticDistanceError(mris, MRIS_SPHERE, fp) ; fclose(fp) ; } if (mri_overlay) { MRI *mri_flattened ; char fname[STRLEN] ; // if it is NxNx1x1 reshape it to be Nx1x1xN if ( mri_overlay->width == mri_overlay->height && mri_overlay->depth == 1 && mri_overlay->nframes == 1) { MRI *mri_tmp ; printf("reshaping to move 2nd dimension to time\n") ; mri_tmp = mri_reshape( mri_overlay, mri_overlay->width, 1, 1, mri_overlay->height); MRIfree( &mri_overlay ); mri_overlay = mri_tmp; } // put in some special code that knows about icosahedra if (mris->nvertices == 163842 || // ic7 mris->nvertices == 40962 || // ic6 mris->nvertices == 10242 || // ic5 mris->nvertices == 2562) // ic4 { int nvals, start_index, end_index ; MRI *mri_tmp ; printf("cross-hemispheric correlation matrix detected, reshaping...\n") ; nvals = mri_overlay->width * mri_overlay->height * mri_overlay->depth ; if (nvals == 2*mris->nvertices) // it's a corr matrix for both hemis { if (mris->hemisphere == LEFT_HEMISPHERE || mris->hemisphere == RIGHT_HEMISPHERE) { if (mris->hemisphere == LEFT_HEMISPHERE) { start_index = 0 ; end_index = mris->nvertices-1 ; } else { start_index = mris->nvertices ; end_index = 2*mris->nvertices-1 ; } mri_tmp = MRIextract(mri_overlay, NULL, start_index, 0, 0, mris->nvertices, 1, 1) ; MRIfree(&mri_overlay) ; mri_overlay = mri_tmp; } else // both hemis { } } } printf("resampling overlay (%d x %d x %d x %d) into flattened coordinates..\n", mri_overlay->width, mri_overlay->height, mri_overlay->depth, mri_overlay->nframes) ; if (synth_name) { LABEL *area_lh, *area_rh ; char fname[STRLEN], path[STRLEN], fname_no_path[STRLEN] ; int vno, n, vno2, n2 ; MRIsetValues(mri_overlay, 0) ; FileNameOnly(synth_name, fname_no_path) ; FileNamePath(synth_name, path) ; sprintf(fname, "%s/lh.%s", path, fname_no_path) ; area_lh = LabelRead(NULL, fname) ; if (area_lh == NULL) ErrorExit(ERROR_NOFILE, "%s: could not read label from %s", Progname,fname) ; sprintf(fname, "%s/rh.%s", path, fname_no_path) ; area_rh = LabelRead(NULL, fname) ; if (area_rh == NULL) ErrorExit(ERROR_NOFILE, "%s: could not read label from %s", Progname,fname) ; #if 0 for (n = 0 ; n < area_lh->n_points ; n++) { vno = area_lh->lv[n].vno ; MRIsetVoxVal(mri_overlay, vno, 0, 0, vno, 1) ; printf("synthesizing map with vno %d: (%2.1f, %2.1f)\n", vno, mris->vertices[vno].x, mris->vertices[vno].y) ; break ; } #else for (n = 0 ; n < area_lh->n_points ; n++) { vno = area_lh->lv[n].vno ; if (vno >= 0) { for (n2 = 0 ; n2 < area_lh->n_points ; n2++) { vno2 = area_lh->lv[n2].vno ; if (vno2 >= 0) MRIsetVoxVal(mri_overlay, vno, 0, 0, vno2, 1) ; } for (n2 = 0 ; n2 < area_rh->n_points ; n2++) { vno2 = area_rh->lv[n2].vno ; if (vno2 >= 0) MRIsetVoxVal(mri_overlay, vno, 0, 0, mris->nvertices+vno2, 1) ; } } } #endif } mri_flattened = MRIflattenOverlay(mris, mri_overlay, NULL, 1.0, label_overlay, &mri_vertices) ; printf("writing flattened overlay to %s\n", out_patch_fname) ; MRIwrite(mri_flattened, out_patch_fname) ; MRIfree(&mri_flattened) ; FileNameRemoveExtension(out_patch_fname, fname) ; strcat(fname, ".vnos.mgz") ; printf("writing flattened vertex #s to %s\n", fname) ; MRIwrite(mri_vertices, fname) ; MRIfree(&mri_vertices) ; } #if 0 sprintf(fname, "%s.area_error", out_fname) ; printf("writing area errors to %s\n", fname) ; MRISwriteAreaError(mris, fname) ; sprintf(fname, "%s.angle_error", out_fname) ; printf("writing angle errors to %s\n", fname) ; MRISwriteAngleError(mris, fname) ; MRISfree(&mris) ; #endif exit(0) ; return(0) ; /* for ansi */ }
int MRISpositionOptimalSphere(MRI_SURFACE *mris, MRI *mri_inner, float sample_dist) { double r, rmin, rmax, min_sse, min_r, min_x0, min_y0, min_z0, x0, y0, z0, sse, xmin, xmax, ymin, ymax, zmin, zmax, delta_r, delta_x, delta_y, delta_z ; int scale ; MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ; MRIScomputeMetricProperties(mris) ; rmin = mris->radius*.5 ; rmax = mris->radius*1.5 ; min_x0 = mris->xctr ; min_y0 = mris->yctr ; min_z0 = mris->zctr ; min_r = mris->radius ; MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ; MRISprojectOntoTranslatedSphere(mris, mris, min_r, min_x0, min_y0, min_z0) ; min_sse = compute_surface_sse(mris, mri_inner, sample_dist) ; delta_r = DELTA_R ; for (r = rmin ; r <= rmax ; r += delta_r) { MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ; MRISprojectOntoTranslatedSphere(mris, mris, r, min_x0, min_y0, min_z0) ; sse = compute_surface_sse(mris, mri_inner, sample_dist) ; if (sse < min_sse) { min_sse = sse ; min_r = r ; printf("new min sse %2.0f, found at r=%2.1f mm, c = (%2.1f, %2.1f, %2.1f)\n", min_sse, min_r, min_x0, min_y0, min_z0) ; } } MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ; MRISprojectOntoTranslatedSphere(mris, mris, min_r, min_x0, min_y0, min_z0) ; MRISwrite(mris, "lh.minr") ; for (scale = 8 ; scale >= 1 ; scale /=2) { printf("scale = %d\n", scale) ; xmin = min_x0-scale ; xmax = min_x0+scale ; ymin = min_y0-scale ; ymax = min_y0+scale ; zmin = min_z0-scale ; zmax = min_z0+scale ; rmin = min_r*(1.0-scale/128.0) ; rmax = min_r*(1.0+scale/128.0) ; delta_x = mri_inner->xsize*scale/16 ; delta_y = mri_inner->ysize*scale/16 ; delta_z = mri_inner->zsize*scale/16 ; delta_r = DELTA_R*scale ; if (delta_x > (xmax-xmin)/3) delta_x = (xmax-xmin)/3 ; if (delta_y > (ymax-ymin)/3) delta_y = (ymax-ymin)/3 ; if (delta_z > (zmax-zmin)/3) delta_z = (zmax-zmin)/3 ; if (delta_r > (rmax-rmin)/3) delta_r = (rmax-rmin)/3 ; for (x0 = xmin ; x0 <= xmax ; x0 += delta_x) { for (y0 = ymin ; y0 <= ymax ; y0 += delta_y) { for (z0 = zmin ; z0 <= zmax ; z0 += delta_z) { for (r = rmin ; r <= rmax ; r += delta_r) { MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ; MRISprojectOntoTranslatedSphere(mris, mris, r, x0, y0, z0) ; sse = compute_surface_sse(mris, mri_inner, sample_dist) ; if (sse < min_sse) { min_sse = sse ; min_r = r ; min_x0 = x0 ; min_y0 = y0 ; min_z0 = z0 ; printf("new min sse %2.0f, found at r=%2.1f mm, c = (%2.1f, %2.1f, %2.1f)\n", min_sse, min_r, min_x0, min_y0, min_z0) ; } } } } } { char fname[STRLEN] ; MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ; MRISprojectOntoTranslatedSphere(mris, mris, min_r, min_x0, min_y0, min_z0) ; sprintf(fname, "lh.min_scale%d", scale) ; MRISwrite(mris, fname) ; } } MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ; MRISprojectOntoTranslatedSphere(mris, mris, min_r, min_x0, min_y0, min_z0) ; return(NO_ERROR) ; }
int main(int argc, char *argv[]) { char **av, *in_fname, *out_fname, fname[STRLEN], path[STRLEN] ; int ac, nargs, start_t, pass ; MRI_SURFACE *mris ; char cmdline[CMD_LINE_LEN] ; make_cmd_version_string (argc, argv, "$Id: mris_smooth.c,v 1.28 2011/03/02 00:04:34 nicks Exp $", "$Name: stable5 $", cmdline); /* rkt: check for and handle version tag */ nargs = handle_version_option (argc, argv, "$Id: mris_smooth.c,v 1.28 2011/03/02 00:04:34 nicks Exp $", "$Name: stable5 $"); if (nargs && argc - nargs == 1) { exit (0); } argc -= nargs; Progname = argv[0] ; ErrorInit(NULL, NULL, NULL) ; DiagInit(NULL, NULL, NULL) ; ac = argc ; av = argv ; for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) { nargs = get_option(argc, argv) ; argc -= nargs ; argv += nargs ; } if (argc < 3) { print_help() ; } in_fname = argv[1] ; out_fname = argv[2] ; FileNamePath(out_fname, path) ; mris = MRISfastRead(in_fname) ; if (!mris) ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s", Progname, in_fname) ; MRISaddCommandLine(mris, cmdline) ; MRISremoveTriangleLinks(mris) ; fprintf(stderr, "smoothing surface tessellation for %d iterations...\n", niterations); MRIScomputeMetricProperties(mris) ; MRISstoreMetricProperties(mris) ; MRISsetNeighborhoodSize(mris, nbrs) ; #define DT 0.5 if (gaussian_norm > 0) { int i, done, start_avgs = gaussian_avgs, j ; done = 0; start_t = 0 ; pass = 0 ; do { for (i = start_t ; i < niterations+start_t ; i++) { MRIScomputeMetricProperties(mris) ; MRISsaveVertexPositions(mris, TMP_VERTICES) ; for (j = 0 ; j < 5 ; j++) { MRISaverageVertexPositions(mris, 2) ; // turn flat spikes into tubular ones MRIScomputeMetricProperties(mris) ; MRIScomputeSecondFundamentalForm(mris) ; MRIShistoThresholdGaussianCurvatureToMarked(mris, (float)(mris->nvertices-20)/mris->nvertices) ; } MRISrestoreVertexPositions(mris, TMP_VERTICES) ; MRIScomputeMetricProperties(mris) ; MRISsmoothSurfaceNormals(mris, gaussian_avgs) ; MRISclearMarks(mris) ; MRISthresholdGaussianCurvatureToMarked(mris, 10, 50); MRIScomputeSecondFundamentalForm(mris) ; MRIShistoThresholdGaussianCurvatureToMarked(mris, (float)(mris->nvertices-20)/mris->nvertices) ; MRISthresholdGaussianCurvatureToMarked(mris, 10, 50); if ((write_iterations > 0) && ((i % write_iterations) == 0)) { char fname[STRLEN] ; sprintf(fname, "%s%04d", out_fname, i) ; printf("writing snapshot to %s...\n", fname) ; MRISwrite(mris, fname) ; if (Gdiag & DIAG_WRITE) { MRISuseGaussianCurvature(mris) ; sprintf(fname, "%s_K%04d", out_fname, i) ; printf("writing curvature to %s...\n", fname) ; MRISwriteCurvature(mris, fname) ; sprintf(fname, "%s_marked%04d", out_fname, i) ; printf("writing marks to %s...\n", fname) ; MRISwriteMarked(mris, fname) ; } } for (j = 0 ; j <= 5*nint(1/DT) ; j++) { MRISmarkedSpringTerm(mris, l_spring) ; MRISaverageGradients(mris, gaussian_avgs) ; MRISmomentumTimeStep(mris, momentum, DT, 1, gaussian_avgs) ; MRISclearGradient(mris) ; MRIScomputeMetricProperties(mris) ; MRISsmoothSurfaceNormals(mris, gaussian_avgs) ; { int vno ; VERTEX *v ; for (vno = 0 ; vno < mris->nvertices ; vno++) { v = &mris->vertices[vno] ; if (v->marked > 0) { v->K = 1.0/(v->marked) ; } else { v->K = 0 ; } } } } } MRISclearGradient(mris) ; if (gaussian_avgs == 2) { if (pass++ > 4) { done = 1 ; } else { int num = count_big_curvatures(mris, 2) ; printf("------------------------------------------------------\n") ; printf("------------------------------------------------------\n") ; printf("------------------ pass %d (num=%d) ------------------\n", pass, num) ; printf("------------------------------------------------------\n") ; printf("------------------------------------------------------\n") ; gaussian_avgs = start_avgs ; } } else { gaussian_avgs /= 2 ; if (done ==0) { printf("----------------- setting avgs to %d -----------------\n", gaussian_avgs) ; } } start_t = i ; } while (!done) ; #if 0 // more smoothing with principal curvatures gaussian_avgs = start_avgs ; printf("--------------------------------------------------------------------------\n") ; printf("--------------------------------------------------------------------------\n") ; printf("---------------------- starting threshold smoothing ----------------------\n") ; printf("--------------------------------------------------------------------------\n") ; printf("--------------------------------------------------------------------------\n") ; do { for (i = start_t ; i < niterations+start_t ; i++) { MRIScomputeMetricProperties(mris) ; MRIScomputeSecondFundamentalForm(mris) ; MRISsmoothSurfaceNormals(mris, 16) ; #define KTHRESH 1.5 // everything with kmin less than this will not move MRISthresholdPrincipalCurvatures(mris, KTHRESH) ; MRISspringTermWithGaussianCurvature(mris, gaussian_norm, l_spring) ; MRISaverageGradients(mris, gaussian_avgs) ; MRISmomentumTimeStep(mris, 0, 0.1, 1, gaussian_avgs) ; MRISclearGradient(mris) ; if ((write_iterations > 0) && (((i+1) % write_iterations) == 0)) { char fname[STRLEN] ; sprintf(fname, "%s%04d", out_fname, i+1) ; printf("writing snapshot to %s...\n", fname) ; MRISwrite(mris, fname) ; if (Gdiag & DIAG_WRITE/* && DIAG_VERBOSE_ON*/) { MRISuseGaussianCurvature(mris) ; sprintf(fname, "%s_K%04d", out_fname, i+1) ; printf("writing curvature to %s...\n", fname) ; MRISwriteCurvature(mris, fname) ; } } } MRISclearGradient(mris) ; done = (gaussian_avgs == 2) ; gaussian_avgs /= 2 ; if (done ==0) { printf("---------------------- setting avgs to %d ----------------------\n", gaussian_avgs) ; } start_t = i ; } while (!done) ; #endif } else { MRISaverageVertexPositions(mris, niterations) ; } fprintf(stderr, "smoothing complete - recomputing first and second " "fundamental forms...\n") ; MRIScomputeMetricProperties(mris) ; if (rescale) { MRISscaleBrainArea(mris) ; } MRIScomputeSecondFundamentalForm(mris) ; MRISuseMeanCurvature(mris) ; MRISaverageCurvatures(mris, navgs) ; if (normalize_flag) { MRISnormalizeCurvature(mris, which_norm) ; } sprintf(fname, "%s.%s", mris->hemisphere == LEFT_HEMISPHERE?"lh":"rh", curvature_fname); if (no_write == 0) { fprintf(stderr, "writing smoothed curvature to %s/%s\n", path,fname) ; MRISwriteCurvature(mris, fname) ; sprintf(fname, "%s.%s", mris->hemisphere == LEFT_HEMISPHERE?"lh":"rh", area_fname); fprintf(stderr, "writing smoothed area to %s/%s\n", path, fname) ; MRISwriteArea(mris, fname) ; } if (Gdiag & DIAG_SHOW) { fprintf(stderr, "writing smoothed surface to %s\n", out_fname) ; } MRISwrite(mris, out_fname) ; exit(0) ; return(0) ; /* for ansi */ }
int main(int argc, char *argv[]) { char *cp, **av, *in_fname, fname[100], path[100], name[100], hemi[100] ; int ac, nargs ; /* rkt: check for and handle version tag */ nargs = handle_version_option (argc, argv, "$Id: mris_errors.c,v 1.11 2011/03/02 00:04:31 nicks Exp $", "$Name: $"); if (nargs && argc - nargs == 1) exit (0); argc -= nargs; Progname = argv[0] ; ErrorInit(NULL, NULL, NULL) ; DiagInit(NULL, NULL, NULL) ; ac = argc ; av = argv ; for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) { nargs = get_option(argc, argv) ; argc -= nargs ; argv += nargs ; } if (argc < 2) usage_exit() ; in_fname = argv[1] ; #if 0 out_fname = argv[2] ; cp = strrchr(out_fname, '.') ; #endif if (patch_flag) /* read in orig surface before reading in patch */ { FileNamePath(in_fname, path) ; FileNameOnly(in_fname, name) ; cp = strchr(name, '.') ; if (cp) { strncpy(hemi, cp-2, 2) ; hemi[2] = 0 ; } else strcpy(hemi, "lh") ; sprintf(fname, "%s/%s.smoothwm", path, hemi) ; mris = MRISread(fname) ; if (!mris) ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s", Progname, fname) ; FileNameOnly(in_fname, name) ; MRISstoreMetricProperties(mris) ; MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ; if (MRISreadPatch(mris, name) != NO_ERROR) ErrorExit(ERROR_NOFILE, "%s: could not read patch file %s", Progname, name) ; } else { mris = MRISread(in_fname) ; if (!mris) ErrorExit(ERROR_NOFILE, "%s: could not read surface file %s", Progname, in_fname) ; MRISreadOriginalProperties(mris, "smoothwm") ; } MRISsaveVertexPositions(mris, TMP_VERTICES) ; MRISrestoreVertexPositions(mris, ORIGINAL_VERTICES) ; MRISsampleAtEachDistance(mris, nbhd_size, max_nbrs) ; MRIScomputeMetricProperties(mris) ; MRISstoreMetricProperties(mris) ; MRISrestoreVertexPositions(mris, TMP_VERTICES) ; MRIScomputeMetricProperties(mris) ; MRIScomputeDistanceErrors(mris, nbhd_size, max_nbrs) ; #if 0 if (write_flag) { MRISareaErrors(mris) ; MRISangleErrors(mris) ; } if (area_flag) { sprintf(fname, "%s.area_error", in_fname) ; printf("writing area errors to %s\n", fname) ; MRISwriteAreaError(mris, fname) ; sprintf(fname, "%s.angle_error", in_fname) ; printf("writing angle errors to %s\n", fname) ; MRISwriteAngleError(mris, fname) ; } #else sprintf(fname, "%s.distance_error", in_fname) ; fprintf(stderr, "writing errors to %s\n", fname) ; MRISwriteValues(mris, fname) ; #endif MRISfree(&mris) ; exit(0) ; return(0) ; /* for ansi */ }
FCD_DATA * FCDloadData(char *sdir, char *subject) { FCD_DATA *fcd ; char fname[STRLEN] ; MRI *mri_interior, *mri_dist, *mri_int_lh, *mri_int_rh, *mri_pvals ; fcd = (FCD_DATA *)calloc(1, sizeof(FCD_DATA)) ; sprintf(fname, "%s/%s/surf/lh.white", sdir, subject) ; fcd->mris_lh = MRISread(fname) ; if (fcd->mris_lh == NULL) { ErrorExit(ERROR_NOFILE, "FCDloadData: couldn't load %s", fname) ; } MRISsaveVertexPositions(fcd->mris_lh, WHITE_VERTICES) ; if (MRISreadPialCoordinates(fcd->mris_lh, "pial") != NO_ERROR) { ErrorExit(ERROR_NOFILE, "FCDloadData: couldn't load lh pial vertices") ; } sprintf(fname, "%s/%s/surf/lh.pial", sdir, subject) ; fcd->mris_lh_pial = MRISread(fname) ; if (fcd->mris_lh_pial == NULL) { ErrorExit(ERROR_NOFILE, "FCDloadData: couldn't load %s", fname) ; } sprintf(fname, "%s/%s/surf/lh.sphere.d1.left_right", sdir, subject) ; fcd->mris_lh_sphere_d1 = MRISread(fname) ; if (fcd->mris_lh_sphere_d1 == NULL) { ErrorExit(ERROR_NOFILE, "FCDloadData: couldn't load %s", fname) ; } exec_progress_callback(1, 12, 0, 1) ; sprintf(fname, "%s/%s/surf/rh.white", sdir, subject) ; fcd->mris_rh = MRISread(fname) ; if (fcd->mris_rh == NULL) { ErrorExit(ERROR_NOFILE, "FCDloadData: couldn't load %s", fname) ; } MRISsaveVertexPositions(fcd->mris_rh, WHITE_VERTICES) ; if (MRISreadPialCoordinates(fcd->mris_rh, "pial") != NO_ERROR) { ErrorExit(ERROR_NOFILE, "FCDloadData: couldn't load rh pial vertices") ; } sprintf(fname, "%s/%s/surf/rh.pial", sdir, subject) ; fcd->mris_rh_pial = MRISread(fname) ; if (fcd->mris_rh_pial == NULL) { ErrorExit(ERROR_NOFILE, "FCDloadData: couldn't load %s", fname) ; } sprintf(fname, "%s/%s/surf/rh.sphere.d1.left_right", sdir, subject) ; fcd->mris_rh_sphere_d1 = MRISread(fname) ; if (fcd->mris_rh_sphere_d1 == NULL) { ErrorExit(ERROR_NOFILE, "FCDloadData: couldn't load %s", fname) ; } exec_progress_callback(2, 12, 0, 1) ; sprintf(fname, "%s/%s/mri/aseg.mgz", sdir, subject) ; fcd->mri_aseg = MRIread(fname) ; if (fcd->mri_aseg == NULL) { ErrorExit(ERROR_NOFILE, "FCDloadData: couldn't load %s", fname) ; } exec_progress_callback(3, 12, 0, 1) ; sprintf(fname, "%s/%s/mri/aparc+aseg.mgz", sdir, subject) ; fcd->mri_aparc = MRIread(fname) ; if (fcd->mri_aparc == NULL) { ErrorExit(ERROR_NOFILE, "FCDloadData: couldn't load %s", fname) ; } exec_progress_callback(4, 12, 0, 1) ; fcd->mri_flair = NULL; sprintf(fname, "%s/%s/mri/flair.reg.norm.mgz", sdir, subject) ; if ( ! FileExists(fname)) { sprintf(fname, "%s/%s/mri/FLAIR.mgz", sdir, subject) ; if ( ! FileExists(fname)) { sprintf(fname, "%s/%s/mri/FLAIRax.mgz", sdir, subject) ; if ( ! FileExists(fname)) { sprintf(fname, "%s/%s/mri/FLAIRcor.mgz", sdir, subject) ; if ( ! FileExists(fname)) { sprintf(fname, " "); } } } } if (strlen(fname) > 1) { fcd->mri_flair = MRIread(fname) ; if (fcd->mri_flair == NULL) { ErrorExit(ERROR_NOFILE, "FCDloadData: couldn't load $s", fname) ; } } fcd->mri_t2 = NULL; sprintf(fname, "%s/%s/mri/T2.mgz", sdir, subject) ; if ( ! FileExists(fname)) { sprintf(fname, "%s/%s/mri/T2ax.mgz", sdir, subject) ; if ( ! FileExists(fname)) { sprintf(fname, "%s/%s/mri/T2cor.mgz", sdir, subject) ; if ( ! FileExists(fname)) { sprintf(fname, " "); } } } if (strlen(fname) > 1) { fcd->mri_t2 = MRIread(fname) ; if (fcd->mri_t2 == NULL) { ErrorExit(ERROR_NOFILE, "FCDloadData: couldn't load $s", fname) ; } } exec_progress_callback(5, 12, 0, 1) ; sprintf(fname, "%s/%s/mri/norm.mgz", sdir, subject) ; fcd->mri_norm = MRIread(fname) ; if (fcd->mri_norm == NULL) { ErrorExit(ERROR_NOFILE, "FCDloadData: couldn't load %s", fname) ; } fcd->mri_thickness_increase = MRIcloneDifferentType(fcd->mri_aseg, MRI_FLOAT) ; fcd->mri_thickness_decrease = MRIcloneDifferentType(fcd->mri_aseg, MRI_FLOAT) ; fcd->mri_thickness_difference = MRIadd(fcd->mri_thickness_increase, fcd->mri_thickness_decrease, NULL); exec_progress_callback(6, 12, 0, 1) ; sprintf(fname, "%s/%s/surf/lh.rh.thickness.smooth0.mgz", sdir, subject) ; fcd->rh_thickness_on_lh = MRIread(fname) ; if (fcd->mri_aseg == NULL) { ErrorExit(ERROR_NOFILE, "FCDloadData: couldn't load %s", fname) ; } exec_progress_callback(7, 12, 0, 1) ; sprintf(fname, "%s/%s/surf/rh.thickness.mgz", sdir, subject) ; fcd->rh_thickness_on_rh = MRIread(fname) ; if (fcd->rh_thickness_on_rh == NULL) { ErrorExit(ERROR_NOFILE, "FCDloadData: couldn't load %s", fname) ; } exec_progress_callback(8, 12, 0, 1) ; sprintf(fname, "%s/%s/surf/lh.thickness.mgz", sdir, subject) ; fcd->lh_thickness_on_lh = MRIread(fname) ; if (fcd->lh_thickness_on_lh == NULL) { ErrorExit(ERROR_NOFILE, "FCDloadData: couldn't load %s", fname) ; } exec_progress_callback(9, 12, 0, 1) ; sprintf(fname, "%s/%s/surf/rh.lh.thickness.smooth0.mgz", sdir, subject) ; if ( ! FileExists(fname)) { sprintf(fname, "%s/%s/surf/rh.lh.thickness.mgz", sdir, subject) ; if (fcd->lh_thickness_on_rh == NULL) { ErrorExit(ERROR_NOFILE, "FCDloadData: couldn't load %s", fname) ; } } fcd->lh_thickness_on_rh = MRIread(fname) ; exec_progress_callback(10, 12, 0, 1) ; mri_int_lh = MRIclone(fcd->mri_norm, NULL) ; mri_int_rh = MRIclone(fcd->mri_norm, NULL) ; mri_interior = MRIclone(fcd->mri_norm, NULL) ; mri_dist = MRIcloneDifferentType(mri_interior, MRI_FLOAT) ; MRISrestoreVertexPositions(fcd->mris_lh, PIAL_VERTICES) ; MRISrestoreVertexPositions(fcd->mris_rh, PIAL_VERTICES) ; MRISfillInterior(fcd->mris_lh, mri_interior->xsize, mri_int_lh) ; MRISfillInterior(fcd->mris_rh, mri_interior->xsize, mri_int_rh) ; exec_progress_callback(11, 12, 0, 1) ; MRIor(mri_int_lh, mri_int_rh, mri_interior, 0) ; MRIfree(&mri_int_lh) ; MRIfree(&mri_int_rh) ; MRIbinarize(mri_interior, mri_interior, 1, 0, 1) ; if (Gdiag & DIAG_WRITE) { MRIwrite(mri_interior, "int.mgz") ; } MRIdistanceTransform(mri_interior, mri_dist, 1, 2*MAX_DIST, DTRANS_MODE_SIGNED, NULL); if (Gdiag & DIAG_WRITE) { MRIwrite(mri_dist, "dist.mgz") ; } mri_pvals = build_distance_by_intensity_histo(fcd->mri_norm, mri_dist, fcd->mri_aseg, DIST_SPACING, MAX_DIST) ; exec_progress_callback(12, 12, 0, 1) ; augment_thicknesses(fcd, mri_pvals, 1.5, 5, 1) ; MRISrestoreVertexPositions(fcd->mris_lh, WHITE_VERTICES) ; MRISrestoreVertexPositions(fcd->mris_rh, WHITE_VERTICES) ; MRIfree(&mri_dist) ; MRIfree(&mri_interior) ; MRIfree(&mri_pvals) ; return(fcd) ; }