コード例 #1
0
static MRI *
align_with_average(MRI *mri_src, MRI *mri_avg) {
  MRI     *mri_aligned, *mri_in_red, *mri_ref_red ;
  MRI     *mri_in_windowed, *mri_ref_windowed, *mri_in_tmp, *mri_ref_tmp ;
  int     i ;
  MATRIX  *m_L ;

  printf("initializing alignment using PCA...\n") ;
  if (Gdiag & DIAG_WRITE) {
    MRIwriteImageViews(mri_avg, "ref", 400) ;
    MRIwriteImageViews(mri_src, "before_pca", 400) ;
  }

  m_L = align_pca(mri_src, mri_avg) ;
  if (Gdiag & DIAG_SHOW) {
    printf("initial transform:\n") ;
    MatrixPrint(stdout, m_L) ;
  }
  if (Gdiag & DIAG_WRITE) {
    if (sinc_flag)
      mri_aligned = MRIsincTransform(mri_src, NULL, m_L,sinchalfwindow) ;
    else
      mri_aligned = MRIlinearTransform(mri_src, NULL, m_L) ;
    MRIwriteImageViews(mri_aligned, "after_pca", 400) ;
    MRIfree(&mri_aligned) ;
  }

  printf("aligning volume with average...\n") ;

  if (window_flag) {
    mri_in_windowed =
      MRIwindow(mri_src, NULL, WINDOW_HANNING,127,127,127,100.0f);
    mri_ref_windowed =
      MRIwindow(mri_avg,NULL,WINDOW_HANNING,127,127,127,100.0f);
    mri_src = mri_in_windowed ;
    mri_avg = mri_ref_windowed ;
  }

  MRIscaleMeanIntensities(mri_src, mri_avg, mri_src);

  mri_in_red = mri_in_tmp = MRIcopy(mri_src, NULL) ;
  mri_ref_red = mri_ref_tmp = MRIcopy(mri_avg, NULL) ;
  for (i = 0 ; i < nreductions ; i++) {
    mri_in_red = MRIreduceByte(mri_in_tmp, NULL) ;
    mri_ref_red = MRIreduceByte(mri_ref_tmp,NULL);
    MRIfree(&mri_in_tmp);
    MRIfree(&mri_ref_tmp) ;
    mri_in_tmp = mri_in_red ;
    mri_ref_tmp = mri_ref_red ;
  }
  parms.mri_ref = mri_avg ;
  parms.mri_in = mri_src ;  /* for diagnostics */
  MRIrigidAlign(mri_in_red, mri_ref_red, &parms, m_L) ;

  printf("transforming input volume...\n") ;
  MatrixPrint(stderr, parms.lta->xforms[0].m_L) ;
  printf("\n") ;

  if (sinc_flag)
    mri_aligned = MRIsincTransform(mri_src, NULL, parms.lta->xforms[0].m_L,sinchalfwindow) ;
  else
    mri_aligned = MRIlinearTransform(mri_src, NULL, parms.lta->xforms[0].m_L) ;
  if (Gdiag & DIAG_WRITE)
    MRIwriteImageViews(mri_aligned, "after_alignment", 400) ;
  MRIfree(&mri_in_red) ;
  MRIfree(&mri_ref_red) ;

  return(mri_aligned) ;
}
コード例 #2
0
int
main(int argc, char *argv[]) {
  char         *ref_fname, *in_fname, *out_fname, fname[STRLEN], **av ;
  MRI          *mri_ref, *mri_in, *mri_orig, *mri_in_red, *mri_ref_red,
  *mri_in_tmp, *mri_ref_tmp, *mri_ref_orig, *mri_in_orig ;
  int          ac, nargs, i, msec, minutes, seconds ;
  struct timeb start ;
  MATRIX       *m_L ;

  /* rkt: check for and handle version tag */
  nargs = handle_version_option (argc, argv, "$Id: mri_linear_register.c,v 1.13 2011/03/02 00:04:22 nicks Exp $", "$Name: stable5 $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  parms.mri_crop = NULL ;
  parms.l_intensity = 1.0f ;
  parms.niterations = 100 ;
  parms.levels = -1 ;   /* use default */
  parms.dt = 1e-6 ;  /* was 5e-6 */
  parms.tol = INTEGRATION_TOL*5 ;

  parms.dt = 5e-6 ;  /* was 5e-6 */
  parms.tol = 1e-3 ;
  parms.momentum = 0.8 ;
  parms.max_levels = MAX_LEVELS ;
  parms.factor = 1.0 ;
  parms.niterations = 25 ;
  Progname = argv[0] ;


  DiagInit(NULL, NULL, NULL) ;
  ErrorInit(NULL, NULL, NULL) ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 4)
    ErrorExit(ERROR_BADPARM,
              "usage: %s <in brain> <template> <output file name>\n",
              Progname) ;

  in_fname = argv[1] ;
  ref_fname = argv[2] ;
  if (xform_mean_fname) {
    int   sno, nsubjects ;
    FILE  *fp ;

    parms.m_xform_mean = MatrixAsciiRead(xform_mean_fname, NULL) ;
    if (!parms.m_xform_mean)
      ErrorExit(Gerror, "%s: could not read parameter means from %s",
                Progname, xform_mean_fname) ;

    fp = fopen(xform_covariance_fname, "r") ;
    if (!fp)
      ErrorExit(ERROR_NOFILE, "%s: could not read covariances from %s",
                Progname, xform_covariance_fname) ;

    fscanf(fp, "nsubjects=%d", &nsubjects) ;
    printf("reading %d transforms...\n", nsubjects) ;

    parms.m_xforms = (MATRIX **)calloc(nsubjects, sizeof(MATRIX *)) ;
    if (!parms.m_xforms)
      ErrorExit(ERROR_NOMEMORY, "%s: could not allocate array of %d xforms",
                Progname, nsubjects) ;
    for (sno = 0 ; sno < nsubjects ; sno++) {
      parms.m_xforms[sno] = MatrixAsciiReadFrom(fp, NULL) ;
      if (!parms.m_xforms[sno])
        ErrorExit(ERROR_NOMEMORY, "%s: could not allocate %dth xform",
                  Progname, sno) ;

    }
    parms.m_xform_covariance = MatrixAsciiReadFrom(fp, NULL) ;
    if (!parms.m_xform_covariance)
      ErrorExit(Gerror, "%s: could not read parameter covariance from %s",
                Progname, xform_covariance_fname) ;
    fclose(fp) ;
    parms.l_priors = l_priors ;
    parms.nxforms = nsubjects ;
  }
  out_fname = argv[3] ;
  FileNameOnly(out_fname, fname) ;
  FileNameRemoveExtension(fname, fname) ;
  strcpy(parms.base_name, fname) ;
  fprintf(stderr, "logging results to %s.log\n", parms.base_name) ;

  TimerStart(&start) ;
  fprintf(stderr, "reading '%s'...\n", ref_fname) ;
  fflush(stderr) ;
  mri_ref = MRIread(ref_fname) ;
  if (!mri_ref)
    ErrorExit(ERROR_NOFILE, "%s: could not open reference volume %s.\n",
              Progname, ref_fname) ;
  if (mri_ref->type != MRI_UCHAR) {
    MRI *mri_tmp ;

    mri_tmp = MRIchangeType(mri_ref, MRI_UCHAR, 0.0, 0.999, FALSE) ;
    MRIfree(&mri_ref) ;
    mri_ref = mri_tmp ;
  }

  if (var_fname)  /* read in a volume of standard deviations */
  {
    MRI *mri_var, *mri_tmp ;

    fprintf(stderr, "reading '%s'...\n", var_fname) ;
    mri_var = MRIread(var_fname) ;
    if (!mri_var)
      ErrorExit(ERROR_NOFILE, "%s: could not open variance volume %s.\n",
                Progname, var_fname) ;
    mri_tmp = MRIconcatenateFrames(mri_ref, mri_var, NULL) ;
    MRIfree(&mri_var) ;
    MRIfree(&mri_ref) ;
    mri_ref = mri_tmp ;
  }
  fprintf(stderr, "reading '%s'...\n", in_fname) ;
  fflush(stderr) ;
  mri_orig = mri_in = MRIread(in_fname) ;
  if (!mri_in)
    ErrorExit(ERROR_NOFILE, "%s: could not open input volume %s.\n",
              Progname, in_fname) ;
  if (mri_in->type != MRI_UCHAR) {
    MRI *mri_tmp ;

    mri_orig = mri_tmp = MRIchangeType(mri_in, MRI_UCHAR, 0.0, 0.999, FALSE) ;
    MRIfree(&mri_in) ;
    mri_in = mri_tmp ;
  }

  /* make sure they are the same size */
  if (mri_in->width  != mri_ref->width ||
      mri_in->height != mri_ref->height  ||
      mri_in->depth  != mri_ref->depth) {
    int  width, height, depth ;
    MRI  *mri_tmp ;

    width = MAX(mri_in->width, mri_ref->width) ;
    height = MAX(mri_in->height, mri_ref->height) ;
    depth = MAX(mri_in->depth, mri_ref->depth) ;
    mri_tmp = MRIalloc(width, height, depth, MRI_UCHAR) ;
    MRIextractInto(mri_in, mri_tmp, 0, 0, 0,
                   mri_in->width, mri_in->height, mri_in->depth, 0, 0, 0) ;
#if 0
    MRIfree(&mri_in) ;
#else
    parms.mri_in = mri_in ;
#endif
    mri_in = mri_orig = mri_tmp ;

    mri_tmp = MRIallocSequence(width, height,depth,MRI_UCHAR,mri_ref->nframes);
    MRIextractInto(mri_ref, mri_tmp, 0, 0, 0,
                   mri_ref->width, mri_ref->height, mri_ref->depth, 0, 0, 0) ;
#if 0
    MRIfree(&mri_ref) ;
#else
    parms.mri_in = mri_in ;
#endif
    mri_ref = mri_tmp ;
  }


  if (!FZERO(tx) || !FZERO(ty) || !FZERO(tz)) {
    MRI *mri_tmp ;

    fprintf(stderr, "translating second volume by (%2.1f, %2.1f, %2.1f)\n",
            tx, ty, tz) ;
    mri_tmp = MRItranslate(mri_in, NULL, tx, ty, tz) ;
    MRIfree(&mri_in) ;
    mri_in = mri_tmp ;
  }

  if (!FZERO(rzrot)) {
    MRI *mri_tmp ;

    fprintf(stderr,
            "rotating second volume by %2.1f degrees around Z axis\n",
            (float)DEGREES(rzrot)) ;
    mri_tmp = MRIrotateZ_I(mri_in, NULL, rzrot) ;
    MRIfree(&mri_in) ;
    mri_in = mri_tmp ;
  }
  if (!FZERO(rxrot)) {
    MRI *mri_tmp ;

    fprintf(stderr,
            "rotating second volume by %2.1f degrees around X axis\n",
            (float)DEGREES(rxrot)) ;
    mri_tmp = MRIrotateX_I(mri_in, NULL, rxrot) ;
    MRIfree(&mri_in) ;
    mri_in = mri_tmp ;
  }
  if (!FZERO(ryrot)) {
    MRI *mri_tmp ;

    fprintf(stderr,
            "rotating second volume by %2.1f degrees around Y axis\n",
            (float)DEGREES(ryrot)) ;
    mri_tmp = MRIrotateY_I(mri_in, NULL, ryrot) ;
    MRIfree(&mri_in) ;
    mri_in = mri_tmp ;
  }

  if (!transform_loaded)   /* wasn't preloaded */
    parms.lta = LTAalloc(1, mri_in) ;

  if (!FZERO(blur_sigma)) {
    MRI *mri_kernel, *mri_tmp ;

    mri_kernel = MRIgaussian1d(blur_sigma, 100) ;
    mri_tmp = MRIconvolveGaussian(mri_in, NULL, mri_kernel) ;
    mri_in = mri_tmp ;
    MRIfree(&mri_kernel) ;
  }
  MRIscaleMeanIntensities(mri_in, mri_ref, mri_in);

  mri_ref_orig = mri_ref ;
  mri_in_orig = mri_in ;
  if (nreductions > 0) {
    mri_in_red = mri_in_tmp = MRIcopy(mri_in, NULL) ;
    mri_ref_red = mri_ref_tmp = MRIcopy(mri_ref, NULL) ;
    for (i = 0 ; i < nreductions ; i++) {
      mri_in_red = MRIreduceByte(mri_in_tmp, NULL) ;
      mri_ref_red = MRIreduceMeanAndStdByte(mri_ref_tmp,NULL);
      MRIfree(&mri_in_tmp);
      MRIfree(&mri_ref_tmp) ;
      mri_in_tmp = mri_in_red ;
      mri_ref_tmp = mri_ref_red ;
    }
    mri_in = mri_in_red ;
    mri_ref = mri_ref_red ;
  }
  /* for diagnostics */
  if (full_res) {
    parms.mri_ref = mri_ref ;
    parms.mri_in = mri_in ;
  } else {
    parms.mri_ref = mri_ref_orig ;
    parms.mri_in = mri_in_orig ;
  }

  m_L = initialize_transform(mri_in, mri_ref, &parms) ;

  if (use_gradient) {
    MRI  *mri_in_mag, *mri_ref_mag, *mri_grad, *mri_mag ;

    printf("computing gradient magnitude of input image...\n") ;
    mri_mag = MRIalloc(mri_in->width, mri_in->height, mri_in->depth,MRI_FLOAT);
    MRIcopyHeader(mri_in, mri_mag) ;
    mri_grad = MRIsobel(mri_in, NULL, mri_mag) ;
    MRIfree(&mri_grad) ;

    /* convert it to ubytes */
    MRIvalScale(mri_mag, mri_mag, 0.0f, 255.0f) ;
    mri_in_mag = MRIclone(mri_in, NULL) ;
    MRIcopy(mri_mag, mri_in_mag) ;
    MRIfree(&mri_mag) ;

    /* now compute gradient of ref image */
    printf("computing gradient magnitude of reference image...\n") ;
    mri_mag = MRIalloc(mri_ref->width, mri_ref->height, mri_ref->depth,MRI_FLOAT);
    MRIcopyHeader(mri_ref, mri_mag) ;
    mri_grad = MRIsobel(mri_ref, NULL, mri_mag) ;
    MRIfree(&mri_grad) ;

    /* convert it to ubytes */
    MRIvalScale(mri_mag, mri_mag, 0.0f, 255.0f) ;
    mri_ref_mag = MRIclone(mri_ref, NULL) ;
    MRIcopy(mri_mag, mri_ref_mag) ;
    MRIfree(&mri_mag) ;

    register_mri(mri_in_mag, mri_ref_mag, &parms, m_L) ;
    MRIfree(&mri_in_mag) ;
    MRIfree(&mri_ref_mag) ;
  }
  register_mri(mri_in, mri_ref, &parms, m_L) ;
  if (check_crop_flag)  /* not working yet! */
  {
    printf("searching for cropped regions in the input image...\n") ;
    parms.mri_crop = find_cropping(mri_orig, mri_ref, &parms) ;
    MRIwrite(parms.mri_crop, "crop.mgh") ;
    register_mri(mri_in, mri_ref, &parms, m_L) ;
  }

  if (voxel_coords) {
    printf("transforming xform to voxel coordinates...\n") ;
    MRIrasXformToVoxelXform(mri_in_orig, mri_ref_orig,
                            parms.lta->xforms[0].m_L,
                            parms.lta->xforms[0].m_L);
    if (Gdiag & DIAG_WRITE) {
      MRI *mri_tmp ;

      mri_tmp = MRIlinearTransform(mri_in_orig, NULL,parms.lta->xforms[0].m_L);
      MRIwriteImageViews(mri_tmp, "morphed", IMAGE_SIZE) ;
      MRIfree(&mri_tmp) ;
    }
  }
  // save src and target info in lta
  getVolGeom(mri_in_orig, &parms.lta->xforms[0].src);
  getVolGeom(mri_ref_orig, &parms.lta->xforms[0].dst);
  fprintf(stderr, "writing output transformation to %s...\n", out_fname) ;
  if (invert_flag) {
    MATRIX *m_tmp ;

    m_tmp = MatrixInverse(parms.lta->xforms[0].m_L, NULL) ;
    MatrixFree(&parms.lta->xforms[0].m_L) ;
    // change src and dst
    getVolGeom(mri_in_orig, &parms.lta->xforms[0].dst);
    getVolGeom(mri_ref_orig, &parms.lta->xforms[0].src);
    parms.lta->xforms[0].m_L = m_tmp ;
  }
  //
  LTAwriteEx(parms.lta, out_fname) ;
  //
  if (mri_ref)
    MRIfree(&mri_ref) ;
  if (mri_in)
    MRIfree(&mri_in) ;
  msec = TimerStop(&start) ;
  seconds = nint((float)msec/1000.0f) ;
  minutes = seconds / 60 ;
  seconds = seconds % 60 ;
  fprintf(stderr, "registration took %d minutes and %d seconds.\n",
          minutes, seconds) ;
  exit(0) ;
  return(0) ;
}