int main(int argc,char *argv[]) { MSKenv_t env = NULL; MSKtask_t task = NULL; MSKintt r = MSK_RES_OK; /* Create mosek environment. */ r = MSK_makeenv(&env,NULL); if ( r==MSK_RES_OK ) r = MSK_maketask(env,0,0,&task); if ( r==MSK_RES_OK ) MSK_linkfunctotaskstream(task,MSK_STREAM_LOG,NULL,printstr); if (r == MSK_RES_OK) r = MSK_readdata(task,argv[1]); MSK_putintparam(task,MSK_IPAR_OPTIMIZER,MSK_OPTIMIZER_CONCURRENT); MSK_putintparam(task,MSK_IPAR_CONCURRENT_NUM_OPTIMIZERS,2); if (r == MSK_RES_OK) r = MSK_optimize(task); MSK_solutionsummary(task,MSK_STREAM_LOG); MSK_deletetask(&task); MSK_deleteenv(&env); printf("Return code: %d (0 means no error occured.)\n",r); return ( r ); } /* main */
int mosekNNSolverWrapper(const Matrix &Q, const Matrix &Eq, const Matrix &b, const Matrix &InEq, const Matrix &ib, const Matrix &lowerBounds, const Matrix &upperBounds, Matrix &sol, double *objVal, MosekObjectiveType objType) { DBGP("Mosek QP Wrapper started"); MSKrescodee r; MSKtask_t task = NULL; // Get the only instance of the mosek environment. MSKenv_t env = getMosekEnv(); // Create the optimization task. r = MSK_maketask(env, 0, 0, &task); if (r != MSK_RES_OK) { DBGA("Failed to create optimization task"); return -1; } MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr); //--------------------------------------- //start inputing the problem //prespecify number of variables to make inputting faster r = MSK_putmaxnumvar(task, sol.rows()); //number of constraints (both equality and inequality) if (r == MSK_RES_OK) { r = MSK_putmaxnumcon(task, Eq.rows() + InEq.rows()); } //make sure default value is 0 for sparse matrices assert(Q.getDefault() == 0.0); assert(Eq.getDefault() == 0.0); assert(InEq.getDefault() == 0.0); //number of non-zero entries in A if (r == MSK_RES_OK) { r = MSK_putmaxnumanz(task, Eq.numElements() + InEq.numElements()); } if (r != MSK_RES_OK) { DBGA("Failed to input variables"); MSK_deletetask(&task); return -1; } //solver is sensitive to numerical problems. Scale the problem down //we will use this value to scale down the right hand side of equality //and inequality constraints and lower and upper bounds //after solving, we must scale back up the solution and the value of the //objective double scale = b.absMax(); if (scale < 1.0e2) { scale = 1.0; } else { DBGP("Mosek solver: scaling problem down by " << scale); } //--------------------------------------- //insert the actual variables and constraints //append the variables MSK_append(task, MSK_ACC_VAR, sol.rows()); //append the constraints. MSK_append(task, MSK_ACC_CON, Eq.rows() + InEq.rows()); int i, j; double value; if (objType == MOSEK_OBJ_QP) { //quadratic optimization objective //the quadratic term Q.sequentialReset(); while (Q.nextSequentialElement(i, j, value)) { MSK_putqobjij(task, i, j, 2.0 * value); } } else if (objType == MOSEK_OBJ_LP) { //linear objective for (j = 0; j < Q.cols(); j++) { if (fabs(Q.elem(0, j)) > 1.0e-5) { MSK_putcj(task, j, Q.elem(0, j)); } } } else { assert(0); } //variable bounds assert(sol.rows() == lowerBounds.rows()); assert(sol.rows() == upperBounds.rows()); for (i = 0; i < sol.rows(); i++) { if (lowerBounds.elem(i, 0) >= upperBounds.elem(i, 0)) { if (lowerBounds.elem(i, 0) > upperBounds.elem(i, 0)) { assert(0); } if (lowerBounds.elem(i, 0) == -std::numeric_limits<double>::max()) { assert(0); } if (upperBounds.elem(i, 0) == std::numeric_limits<double>::max()) { assert(0); } //fixed variable DBGP(i << ": fixed " << lowerBounds.elem(i, 0) / scale); MSK_putbound(task, MSK_ACC_VAR, i, MSK_BK_FX, lowerBounds.elem(i, 0) / scale, upperBounds.elem(i, 0) / scale); } else if (lowerBounds.elem(i, 0) != -std::numeric_limits<double>::max()) { //finite lower bound if (upperBounds.elem(i, 0) != std::numeric_limits<double>::max()) { //two finite bounds DBGP(i << ": finite bounds " << lowerBounds.elem(i, 0) / scale << " " << upperBounds.elem(i, 0) / scale); MSK_putbound(task, MSK_ACC_VAR, i, MSK_BK_RA, lowerBounds.elem(i, 0) / scale, upperBounds.elem(i, 0) / scale); } else { //lower bound DBGP(i << ": lower bound " << lowerBounds.elem(i, 0) / scale); MSK_putbound(task, MSK_ACC_VAR, i, MSK_BK_LO, lowerBounds.elem(i, 0) / scale, +MSK_INFINITY); } } else { //infinite lower bound if (upperBounds.elem(i, 0) != std::numeric_limits<double>::max()) { //upper bound DBGP(i << ": upper bound " << upperBounds.elem(i, 0) / scale); MSK_putbound(task, MSK_ACC_VAR, i, MSK_BK_UP, -MSK_INFINITY, upperBounds.elem(i, 0) / scale); } else { //unbounded DBGP(i << ": unbounded"); MSK_putbound(task, MSK_ACC_VAR, i, MSK_BK_FR, -MSK_INFINITY, +MSK_INFINITY); } } } //constraints and constraint bounds //equality constraints Eq.sequentialReset(); while (Eq.nextSequentialElement(i, j, value)) { MSK_putaij(task, i, j, value); } for (i = 0; i < Eq.rows(); i++) { MSK_putbound(task, MSK_ACC_CON, i, MSK_BK_FX, b.elem(i, 0) / scale, b.elem(i, 0) / scale); } //inequality constraints, <= InEq.sequentialReset(); while (InEq.nextSequentialElement(i, j, value)) { int eqi = i + Eq.rows(); MSK_putaij(task, eqi, j, value); } for (i = 0; i < InEq.rows(); i++) { int eqi = i + Eq.rows(); MSK_putbound(task, MSK_ACC_CON, eqi, MSK_BK_UP, -MSK_INFINITY, ib.elem(i, 0) / scale); } //specify objective: minimize MSK_putobjsense(task, MSK_OBJECTIVE_SENSE_MINIMIZE); //give it 800 iterations, twice the default. MSK_putintparam(task, MSK_IPAR_INTPNT_MAX_ITERATIONS, 800); //---------------------------------- //solve the thing DBGP("Optimization started"); r = MSK_optimize(task); DBGP("Optimization returns"); //write problem to file /* static int fileNum = 0; if (r != MSK_RES_OK) { char filename[50]; sprintf(filename,"mosek_error_%d_%d.opf",fileNum++, r); MSK_writedata(task, filename); FILE *fp = fopen(filename,"a"); fprintf(fp,"\n\nEquality matrix:\n"); Eq.print(fp); fclose(fp); } */ if (r != MSK_RES_OK) { DBGA("Mosek optimization call failed, error code " << r); MSK_deletetask(&task); return -1; } DBGP("Optimization complete"); //debug code, find out number of iterations used //int iter; //MSK_getintinf(task, MSK_IINF_INTPNT_ITER, &iter); //DBGA("Iterations used: " << iter); //find out what kind of solution we have MSKprostae pst; MSKsolstae sst; MSK_getsolutionstatus(task, MSK_SOL_ITR, &pst, &sst); int result; if (sst == MSK_SOL_STA_OPTIMAL || sst == MSK_SOL_STA_NEAR_OPTIMAL) { //success, we have an optimal problem if (sst == MSK_SOL_STA_OPTIMAL) {DBGP("QP solution is optimal");} else {DBGA("QP solution is *nearly* optimal");} result = 0; } else if (sst == MSK_SOL_STA_PRIM_INFEAS_CER) { //unfeasible problem DBGP("Mosek optimization: primal infeasible"); result = 1; } else if (sst == MSK_SOL_STA_DUAL_INFEAS_CER) { //unfeasible problem DBGA("Mosek optimization: dual infeasible (primal unbounded?)"); result = 1; } else if (sst == MSK_SOL_STA_PRIM_AND_DUAL_FEAS) { //i think this means feasible problem, but unbounded solution //this shouldn't happen as our Q is positive semidefinite DBGA("QP solution is prim and dual feasible, but not optimal"); DBGA("Is Q positive semidefinite?"); result = -1; } else { //unknown return status DBGA("QP fails with solution status " << sst << " and problem status " << pst); result = -1; } //MSK_SOL_STA_DUAL_FEAS; //retrieve the solutions if (!result) { //get the value of the objective function MSKrealt obj, foo; MSK_getsolutioninf(task, MSK_SOL_ITR, &pst, &sst, &obj, &foo, &foo, &foo, &foo, &foo, &foo, &foo, &foo); if (objType == MOSEK_OBJ_QP) { *objVal = obj * scale * scale; } else if (objType == MOSEK_OBJ_LP) { *objVal = obj * scale; } else { assert(0); } double *xx = new double[sol.rows()]; MSK_getsolutionslice(task, MSK_SOL_ITR, MSK_SOL_ITEM_XX, 0, sol.rows(), xx); for (i = 0; i < sol.rows(); i++) { sol.elem(i, 0) = scale * xx[i]; DBGP("x" << i << ": " << xx[i]); } delete [] xx; } MSK_deletetask(&task); return result; }
int main(int argc,char *argv[]) { const MSKint32t numvar = 3, numcon = 3; MSKint32t i,j; double c[] = {1.5, 2.5, 3.0}; MSKint32t ptrb[] = {0, 3, 6}, ptre[] = {3, 6, 9}, asub[] = { 0, 1, 2, 0, 1, 2, 0, 1, 2}; double aval[] = { 2.0, 3.0, 2.0, 4.0, 2.0, 3.0, 3.0, 3.0, 2.0}; MSKboundkeye bkc[] = {MSK_BK_UP, MSK_BK_UP, MSK_BK_UP }; double blc[] = {-MSK_INFINITY, -MSK_INFINITY, -MSK_INFINITY}; double buc[] = {100000, 50000, 60000}; MSKboundkeye bkx[] = {MSK_BK_LO, MSK_BK_LO, MSK_BK_LO}; double blx[] = {0.0, 0.0, 0.0,}; double bux[] = {+MSK_INFINITY, +MSK_INFINITY,+MSK_INFINITY}; double *xx=NULL; MSKenv_t env; MSKtask_t task; MSKint32t varidx,conidx; MSKrescodee r; /* Create the mosek environment. */ r = MSK_makeenv(&env,NULL); if ( r==MSK_RES_OK ) { /* Create the optimization task. */ r = MSK_maketask(env,numcon,numvar,&task); /* Directs the log task stream to the 'printstr' function. */ MSK_linkfunctotaskstream(task,MSK_STREAM_LOG,NULL,printstr); /* Append the constraints. */ if (r == MSK_RES_OK) r = MSK_appendcons(task,numcon); /* Append the variables. */ if (r == MSK_RES_OK) r = MSK_appendvars(task,numvar); /* Put C. */ if (r == MSK_RES_OK) r = MSK_putcfix(task, 0.0); if (r == MSK_RES_OK) for(j=0; j<numvar; ++j) r = MSK_putcj(task,j,c[j]); /* Put constraint bounds. */ if (r == MSK_RES_OK) for(i=0; i<numcon; ++i) r = MSK_putconbound(task,i,bkc[i],blc[i],buc[i]); /* Put variable bounds. */ if (r == MSK_RES_OK) for(j=0; j<numvar; ++j) r = MSK_putvarbound(task,j,bkx[j],blx[j],bux[j]); /* Put A. */ if (r == MSK_RES_OK) if ( numcon>0 ) for(j=0; j<numvar; ++j) r = MSK_putacol(task, j, ptre[j]-ptrb[j], asub+ptrb[j], aval+ptrb[j]); if (r == MSK_RES_OK) r = MSK_putobjsense(task, MSK_OBJECTIVE_SENSE_MAXIMIZE); if (r == MSK_RES_OK) r = MSK_optimizetrm(task,NULL); if (r == MSK_RES_OK) { xx = calloc(numvar,sizeof(double)); if ( !xx ) r = MSK_RES_ERR_SPACE; } if (r == MSK_RES_OK) r = MSK_getxx(task, MSK_SOL_BAS, /* Basic solution. */ xx); /* Make a change to the A matrix */ if (r == MSK_RES_OK) r = MSK_putaij(task, 0, 0, 3.0); if (r == MSK_RES_OK) r = MSK_optimizetrm(task,NULL); /* Get index of new variable, this should be 3 */ if (r == MSK_RES_OK) r = MSK_getnumvar(task,&varidx); /* Append a new variable x_3 to the problem */ if (r == MSK_RES_OK) r = MSK_appendvars(task,1); /* Set bounds on new variable */ if (r == MSK_RES_OK) r = MSK_putvarbound(task, varidx, MSK_BK_LO, 0, +MSK_INFINITY); /* Change objective */ if (r == MSK_RES_OK) r = MSK_putcj(task,varidx,1.0); /* Put new values in the A matrix */ if (r == MSK_RES_OK) { MSKint32t acolsub[] = {0, 2}; double acolval[] = {4.0, 1.0}; r = MSK_putacol(task, varidx, /* column index */ 2, /* num nz in column*/ acolsub, acolval); } /* Change optimizer to free simplex and reoptimize */ if (r == MSK_RES_OK) r = MSK_putintparam(task,MSK_IPAR_OPTIMIZER,MSK_OPTIMIZER_FREE_SIMPLEX); if (r == MSK_RES_OK) r = MSK_optimizetrm(task,NULL); /* Get index of new constraint*/ if (r == MSK_RES_OK) r = MSK_getnumcon(task,&conidx); /* Append a new constraint */ if (r == MSK_RES_OK) r = MSK_appendcons(task,1); /* Set bounds on new constraint */ if (r == MSK_RES_OK) r = MSK_putconbound(task, conidx, MSK_BK_UP, -MSK_INFINITY, 30000); /* Put new values in the A matrix */ if (r == MSK_RES_OK) { MSKidxt arowsub[] = {0, 1, 2, 3 }; double arowval[] = {1.0, 2.0, 1.0, 1.0}; r = MSK_putarow(task, conidx, /* row index */ 4, /* num nz in row*/ arowsub, arowval); } if (r == MSK_RES_OK) r = MSK_optimizetrm(task,NULL); if ( xx ) free(xx); MSK_deletetask(&task); } MSK_deleteenv(&env); printf("Return code: %d (0 means no error occured.)\n",r); return ( r ); } /* main */
int main(int argc,char **argv) { MSKintt r=MSK_RES_OK,i; MSKenv_t env = NULL; MSKtask_t task = NULL; MSKtask_t task_list[NUMTASKS]; /* Ensure that we can delete tasks even if they are not allocated */ task_list[0] = NULL; /* Create mosek environment. */ r = MSK_makeenv(&env,NULL); /* Create a task for each concurrent optimization. The 'task' is the master task that will hold the problem data. */ if ( r==MSK_RES_OK ) r = MSK_maketask(env,0,0,&task); if (r == MSK_RES_OK) r = MSK_maketask(env,0,0,&task_list[0]); /* Assign call-back functions to each task */ if (r == MSK_RES_OK) MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr1); if (r == MSK_RES_OK) MSK_linkfunctotaskstream(task_list[0], MSK_STREAM_LOG, NULL, printstr2); if (r == MSK_RES_OK) r = MSK_linkfiletotaskstream(task, MSK_STREAM_LOG, "simplex.log", 0); if (r == MSK_RES_OK) r = MSK_linkfiletotaskstream(task_list[0], MSK_STREAM_LOG, "intpnt.log", 0); if (r == MSK_RES_OK) r = MSK_readdata(task,argv[1]); /* Assign different parameter values to each task. In this case different optimizers. */ if (r == MSK_RES_OK) r = MSK_putintparam(task, MSK_IPAR_OPTIMIZER, MSK_OPTIMIZER_PRIMAL_SIMPLEX); if (r == MSK_RES_OK) r = MSK_putintparam(task_list[0], MSK_IPAR_OPTIMIZER, MSK_OPTIMIZER_INTPNT); /* Optimize task and task_list[0] in parallel. The problem data i.e. C, A, etc. is copied from task to task_list[0]. */ if (r == MSK_RES_OK) r = MSK_optimizeconcurrent (task, task_list, NUMTASKS); printf ("Return Code = %d\n",r); MSK_solutionsummary(task, MSK_STREAM_LOG); MSK_deletetask(&task); MSK_deletetask(&task_list[0]); MSK_deleteenv(&env); return r; }
template <typename _Scalar> typename MosekOpt<_Scalar>::ReturnType MosekOpt<_Scalar>:: update( bool verbose ) { if ( _task != NULL ) { std::cerr << "[" << __func__ << "]: " << "update can only be called once! returning." << std::endl; return MSK_RES_ERR_UNKNOWN; } /* Create the optimization task. */ if ( MSK_RES_OK == _r ) { _r = MSK_maketask( _env, this->getConstraintCount(), this->getVarCount(), &_task ); if ( MSK_RES_OK != _r ) std::cerr << "[" << __func__ << "]: " << "could not create task with " << this->getVarCount() << " vars, and " << this->getConstraintCount() << " constraints" << std::endl; } // redirect output if ( MSK_RES_OK == _r ) { _r = MSK_linkfunctotaskstream( _task, MSK_STREAM_LOG, NULL, mosekPrintStr ); if ( MSK_RES_OK != _r ) std::cerr << "[" << __func__ << "]: " << "could not create rewire output to mosekPrintStr(), continuing though..." << std::endl; } // Append _numCon empty constraints. The constraints will initially have no bounds. if ( MSK_RES_OK == _r ) { if ( verbose ) std::cout << "my: MSK_appendcons(_task,"<< this->getConstraintCount() <<");" << std::endl; _r = MSK_appendcons( _task, this->getConstraintCount() ); if ( MSK_RES_OK != _r ) std::cerr << "[" << __func__ << "]: " << "could not append " << this->getConstraintCount() << " constraints" << std::endl; } // Append _numVar variables. The variables will initially be fixed at zero (x=0). if ( MSK_RES_OK == _r ) { if ( verbose ) std::cout << "my: MSK_appendvars(_task," << this->getVarCount() <<");" << std::endl; _r = MSK_appendvars( _task, this->getVarCount() ); if ( MSK_RES_OK != _r ) std::cerr << "[" << __func__ << "]: " << "could not append " << this->getVarCount() << " variables" << std::endl; } // Optionally add a constant term to the objective. if ( MSK_RES_OK == _r ) { if ( verbose ) std::cout << "my: MSK_putcfix(_task," << this->getObjectiveBias() << ");" << std::endl; _r = MSK_putcfix( _task, this->getObjectiveBias() ); if ( MSK_RES_OK != _r ) std::cerr << "[" << __func__ << "]: " << "could not add constant " << this->getObjectiveBias() << " to objective function" << std::endl; } // set Variables for ( size_t j = 0; (j < this->getVarCount()) && (MSK_RES_OK == _r); ++j ) { // set Variable j's Bounds // blx[j] <= x_j <= bux[j] if ( MSK_RES_OK == _r ) { _r = MSK_putvarbound( _task, j, /* Index of variable.*/ MosekOpt<Scalar>::getBoundTypeCustom( this->getVarBoundType(j) ), /* Bound key.*/ this->getVarLowerBound(j), /* Numerical value of lower bound.*/ this->getVarUpperBound(j) ); /* Numerical value of upper bound.*/ if ( verbose ) std::cout << "my: MSK_putvarbound(_task," << j << "," << this->getVarBoundType(j) << "," << this->getVarLowerBound(j) << "," << this->getVarUpperBound(j) << ");" << std::endl; } // set Variable j's Type if ( MSK_RES_OK == _r ) { _r = MSK_putvartype( _task, j, MosekOpt<Scalar>::getVarTypeCustom(this->getVarType(j)) ); } // set Variable j's linear coefficient in the objective function if ( MSK_RES_OK == _r ) { if ( verbose ) std::cout << "my: putcj(_task," << j << "," << this->getLinObjectives()[j] << ")" << std::endl; _r = MSK_putcj( _task, j, this->getLinObjectives()[j] ); } } // set Quadratic Objectives if ( MSK_RES_OK == _r ) { const int numNonZeros = this->getQuadraticObjectives().size(); MSKint32t *qsubi = new MSKint32t[numNonZeros], *qsubj = new MSKint32t[numNonZeros]; double *qval = new double[numNonZeros]; for ( size_t qi = 0; qi != this->getQuadraticObjectives().size(); ++qi ) { qsubi[qi] = this->getQuadraticObjectives()[qi].row(); qsubj[qi] = this->getQuadraticObjectives()[qi].col(); qval [qi] = this->getQuadraticObjectives()[qi].value(); } if ( verbose ) std::cout<<"my: putqobj( _task, " << numNonZeros << ",\n"; for ( size_t vi = 0; vi != numNonZeros; ++vi ) { if ( verbose ) std::cout << qsubi[vi] << "," << qsubj[vi] << ", " << qval[vi] << std::endl; } if ( verbose ) std::cout << ");" << std::endl; _r = MSK_putqobj( _task, numNonZeros, qsubi, qsubj, qval ); if ( qsubi ) { delete[] qsubi; qsubi = NULL; } if ( qsubj ) { delete[] qsubj; qsubj = NULL; } if ( qval ) { delete[] qval ; qval = NULL; } if ( MSK_RES_OK != _r ) std::cerr << "[" << __func__ << "]: " << "Setting Quadratic Objectives caused error code " << (int)_r << std::endl; } // ...Quadratic objective // set Linear Constraints { typename ParentType::SparseMatrix A( this->getLinConstraintsMatrix() ); // ( this->getConstraintCount(), this->getVarCount() ); // A.setFromTriplets( this->getLinConstraints().begin(), this->getLinConstraints().end() ); std::vector<double> aval; // Linear constraints coeff matrix (sparse) std::vector<int> asub; // Linear constraints coeff matrix indices std::vector<int> aptrb, aptre; for ( int row = 0; (row < A.outerSize()) && (MSK_RES_OK == _r); ++row ) { // set Constraint Bounds for row if ( MSK_RES_OK == _r ) { if ( verbose ) std::cout << "my: MSK_putconbound( _task, " << row << ", " << MosekOpt<Scalar>::getBoundTypeCustom( this->getConstraintBoundType(row) ) << ", " << this->getConstraintLowerBound( row ) << ", " << this->getConstraintUpperBound( row ) << ")" << std::endl; fflush( stdout ); _r = MSK_putconbound( _task, row, /* Index of constraint.*/ MosekOpt<Scalar>::getBoundTypeCustom(this->getConstraintBoundType(row)), /* Bound key.*/ this->getConstraintLowerBound(row), /* Numerical value of lower bound.*/ this->getConstraintUpperBound(row) ); /* Numerical value of upper bound.*/ } // set Linear Constraint row if ( MSK_RES_OK == _r ) { // new line starts at index == current size aptrb.push_back( aval.size() ); // add coeffs from new line for ( typename ParentType::SparseMatrix::InnerIterator it(A,row); it; ++it ) { if ( row != it.row() ) std::cerr << "[" << __func__ << "]: " << "this shouldn't happen" << std::endl; // coeff value aval.push_back( it.value() ); // TODO: A should be a matrix, not a vector... // coeff subscript asub.push_back( it.col() ); } // new line ends at index == new size aptre.push_back( aval.size() ); if ( verbose ) { std::cout << "my: MSK_putarow( _task, " << row << ", " << aptre[row] - aptrb[row] << ", " << *(asub.data() + aptrb[row]) << ", " << *(aval.data() + aptrb[row]) << ");" << std::endl; fflush( stdout ); } _r = MSK_putarow( _task, row, /* Row index.*/ aptre[row] - aptrb[row], /* Number of non-zeros in row i.*/ asub.data() + aptrb[row], /* Pointer to column indexes of row i.*/ aval.data() + aptrb[row]); /* Pointer to values of row i.*/ } } // ... for A.rows // report error if ( MSK_RES_OK != _r ) std::cerr << "[" << __func__ << "]: " << "Setting Lin constraints caused error code " << (int)_r << std::endl; } // ...set Linear Constraints // set Quadratic constraints if ( verbose ) std::cout << "[" << __func__ << "]: " << "adding q constraints" << std::endl; for ( size_t constr_id = 0; (constr_id != this->getQuadraticConstraints().size()) && (MSK_RES_OK == _r); ++constr_id ) { const int numNonZeros = this->getQuadraticConstraints(constr_id).size(); MSKint32t *qsubi = new MSKint32t[numNonZeros], *qsubj = new MSKint32t[numNonZeros]; double *qval = new double[numNonZeros]; for ( size_t qi = 0; qi != this->getQuadraticConstraints(constr_id).size(); ++qi ) { qsubi[qi] = this->getQuadraticConstraints(constr_id)[qi].row(); qsubj[qi] = this->getQuadraticConstraints(constr_id)[qi].col(); qval [qi] = this->getQuadraticConstraints(constr_id)[qi].value(); } if ( verbose ) std::cout<<"my: MSK_putqonk( _task, " << constr_id << ", " << numNonZeros << ",\n"; for(size_t vi=0;vi!=numNonZeros;++vi) { if ( verbose ) std::cout << qsubi[vi] << "," << qsubj[vi] << ", " << qval[vi] << std::endl; } if ( verbose ) std::cout << "); " << std::endl; _r = MSK_putqconk(_task, constr_id, numNonZeros, qsubi, qsubj, qval); if ( qsubi ) { delete[] qsubi; qsubi = NULL; } if ( qsubj ) { delete[] qsubj; qsubj = NULL; } if ( qval ) { delete[] qval ; qval = NULL; } if ( MSK_RES_OK != _r ) std::cerr << "[" << __func__ << "]: " << "Setting Quad constraints caused error code " << (int)_r << std::endl; } // ...set Quadratic Constraints // save to file { if ( _r == MSK_RES_OK ) { _r = MSK_putintparam( _task, MSK_IPAR_WRITE_DATA_FORMAT, MSK_DATA_FORMAT_LP ); if ( _r == MSK_RES_OK ) { _r = MSK_writedata( _task, "mosek.lp" ); if ( _r != MSK_RES_OK ) { std::cerr << "[" << __func__ << "]: " << "Writedata did not work" << (int)_r << std::endl; } } } } if ( _r == MSK_RES_OK ) { this->_x.setZero(); this->_updated = true; } // return error code return _r; } // ...MosekOpt::update()
template <typename _Scalar> typename MosekOpt<_Scalar>::ReturnType MosekOpt<_Scalar>::optimize( std::vector<_Scalar> *x_out, OBJ_SENSE objective_sense ) { if ( !this->_updated ) { std::cerr << "[" << __func__ << "]: " << "Please call update() first!" << std::endl; return MSK_RES_ERR_UNKNOWN; } // cache problem size const int numvar = this->getVarCount(); // determine problem type MSKobjsense_enum objsense = (objective_sense == OBJ_SENSE::MINIMIZE) ? MSK_OBJECTIVE_SENSE_MINIMIZE : MSK_OBJECTIVE_SENSE_MAXIMIZE; if ( MSK_RES_OK == _r ) _r = MSK_putobjsense( _task, objsense ); if ( MSK_RES_OK == _r ) { // set termination sensitivity MSKrescodee trmcode; if ( (_r == MSK_RES_OK) && (this->getTolRelGap() > Scalar(0)) ) { _r = MSK_putdouparam( _task, MSK_DPAR_MIO_TOL_REL_GAP, this->getTolRelGap() /*1e-10f*/ ); if ( _r != MSK_RES_OK ) { std::cerr << "[" << __func__ << "]: " << "setting MSK_DPAR_MIO_DISABLE_TERM_TIME to " << this->getTimeLimit() << " did NOT work!" << std::endl; } } if ( (_r == MSK_RES_OK) && (this->getTimeLimit() > Scalar(0)) ) { _r = MSK_putdouparam(_task, MSK_DPAR_MIO_DISABLE_TERM_TIME, this->getTimeLimit() ); if ( _r != MSK_RES_OK ) { std::cerr << "[" << __func__ << "]: " << "setting MSK_DPAR_MIO_DISABLE_TERM_TIME to " << this->getTimeLimit() << " did NOT work!" << std::endl; } _r = MSK_putdouparam(_task, MSK_DPAR_MIO_MAX_TIME, this->getTimeLimit()+Scalar(5) ); if ( _r != MSK_RES_OK ) { std::cerr << "[" << __func__ << "]: " << "setting MSK_DPAR_MIO_MAX_TIME to " << this->getTimeLimit()+Scalar(5) << " did NOT work!" << std::endl; } } if (_r == MSK_RES_OK) { //_r = MSK_putintparam(_task, MSK_IPAR_OPTIMIZER, MSK_OPTIMIZER_MIXED_INT_CONIC ); if ( _r != MSK_RES_OK ) { std::cerr << "[" << __func__ << "]: " << "setting MSK_OPTIMIZER_MIXED_INT_CONIC did not work!" << std::endl; } } if ( _r == MSK_RES_OK ) { _r = MSK_putintparam( _task, MSK_IPAR_MIO_PRESOLVE_USE, MSK_ON ); if ( _r != MSK_RES_OK ) { std::cerr << "[" << __func__ << "]: " << "setting MSK_IPAR_MIO_PRESOLVE_USE did not work!" << std::endl; } } if ( _r == MSK_RES_OK ) { _r = MSK_putintparam( _task, MSK_IPAR_MIO_HEURISTIC_LEVEL, 5 ); if ( _r != MSK_RES_OK ) { std::cerr << "[" << __func__ << "]: " << "setting MSK_IPAR_MIO_HEURISTIC_LEVEL did not work!" << std::endl; } } // Run optimizer _r = MSK_optimizetrm( _task, &trmcode ); // Print a summary containing information about the solution for debugging purposes. MSK_solutionsummary( _task, MSK_STREAM_LOG ); // save solution double *xx = (double*) calloc(numvar,sizeof(double)); if ( _r == MSK_RES_OK ) { MSKsolstae solsta; if ( _r == MSK_RES_OK ) { _r = MSK_getsolsta( _task, MSK_SOL_ITR, &solsta ); if ( _r != MSK_RES_OK ) { _r = MSK_getsolsta( _task, MSK_SOL_ITG, &solsta ); } if ( _r != MSK_RES_OK ) { std::cerr << "[" << __func__ << "]: " << "neithter MSK_SOL_ITR, nor MSK_SOL_ITR worked" << std::endl; } } switch ( solsta ) { case MSK_SOL_STA_OPTIMAL: case MSK_SOL_STA_NEAR_OPTIMAL: { if ( xx ) { MSK_getxx(_task, MSK_SOL_ITR, /* Request the basic solution. */ xx); _storeSolution( xx, numvar ); printf("Optimal primal solution\n"); } else { _r = MSK_RES_ERR_SPACE; } break; } case MSK_SOL_STA_DUAL_INFEAS_CER: case MSK_SOL_STA_PRIM_INFEAS_CER: case MSK_SOL_STA_NEAR_DUAL_INFEAS_CER: case MSK_SOL_STA_NEAR_PRIM_INFEAS_CER: printf("Primal or dual infeasibility certificate found.\n"); break; case MSK_SOL_STA_UNKNOWN: { MSKprostae prosta; MSK_getprosta(_task,MSK_SOL_ITG,&prosta); switch (prosta) { case MSK_PRO_STA_PRIM_INFEAS_OR_UNBOUNDED: printf("Problem status Infeasible or unbounded\n"); break; case MSK_PRO_STA_PRIM_INFEAS: printf("Problem status Infeasible.\n"); break; case MSK_PRO_STA_UNKNOWN: printf("Problem status unknown.\n"); break; default: printf("Other problem status."); break; } char symname[MSK_MAX_STR_LEN]; char desc[MSK_MAX_STR_LEN]; /* If the solutions status is unknown, print the termination code indicating why the optimizer terminated prematurely. */ MSK_getcodedesc(trmcode, symname, desc); printf("The solutuion status is unknown.\n"); printf("The optimizer terminitated with code: %s\n",symname); break; } // ITG //asdf todo: consolidate this last part: case MSK_SOL_STA_INTEGER_OPTIMAL: case MSK_SOL_STA_NEAR_INTEGER_OPTIMAL : MSK_getxx(_task, MSK_SOL_ITG, /* Request the integer solution. */ xx); _storeSolution( xx, numvar ); printf("Optimal integer solution.\n"); break; case MSK_SOL_STA_PRIM_FEAS: /* A feasible but not necessarily optimal solution was located. */ MSK_getxx(_task,MSK_SOL_ITG,xx); _storeSolution( xx, numvar ); printf("Feasible solution.\n"); break; default: std::cerr << "[" << __func__ << "]: " << "unknown code " << (int)solsta << std::endl; break; } if ( xx ) { free(xx); xx = NULL; } } } if ( MSK_RES_OK != _r ) { /* In case of an error print error code and description. */ char symname[MSK_MAX_STR_LEN]; char desc[MSK_MAX_STR_LEN]; printf("An error occurred while optimizing.\n"); MSK_getcodedesc( _r, symname, desc); printf("Error %s - '%s'\n",symname,desc); } else { // output if ( x_out ) { x_out->clear(); x_out->reserve( this->_x.size() ); for ( int j=0; j < this->_x.size(); ++j ) { x_out->push_back( this->_x[j] ); } } } return _r; } // ...MosekOpt::optimize()
int main(int argc,char *argv[]) { MSKrescodee r; MSKboundkeye bkc[NUMCON],bkx[NUMVAR]; int j,i, ptrb[NUMVAR],ptre[NUMVAR],sub[NUMANZ]; double blc[NUMCON],buc[NUMCON], c[NUMVAR],blx[NUMVAR],bux[NUMVAR],val[NUMANZ], xx[NUMVAR]; MSKenv_t env; MSKtask_t task; /* Make mosek environment. */ r = MSK_makeenv(&env,NULL,NULL,NULL,NULL); /* Check is return code is ok. */ if ( r==MSK_RES_OK ) { /* Directs the env log stream to the user specified procedure 'printstr'. */ MSK_linkfunctoenvstream(env,MSK_STREAM_LOG,NULL,printstr); } /* Initialize the environment. */ r = MSK_initenv(env); if ( r==MSK_RES_OK ) { /* Send a message to the MOSEK Message stream. */ MSK_echoenv(env, MSK_STREAM_MSG, "\nMaking the MOSEK optimization task\n"); /* Make the optimization task. */ r = MSK_maketask(env,NUMCON,NUMVAR,&task); if ( r==MSK_RES_OK ) { /* Directs the log task stream to the user specified procedure 'printstr'. */ MSK_linkfunctotaskstream(task,MSK_STREAM_LOG,NULL,printstr); MSK_echotask(task, MSK_STREAM_MSG, "\nDefining the problem data.\n"); /* Define bounds for the constraints. */ /* Constraint: 0 */ bkc[0] = MSK_BK_FX; /* Type of bound. */ blc[0] = 30.0; /* Lower bound on the constraint. */ buc[0] = 30.0; /* Upper bound on the constraint. */ /* Constraint: 1 */ bkc[1] = MSK_BK_LO; blc[1] = 15.0; buc[1] = MSK_INFINITY; /* Constraint: 2 */ bkc[2] = MSK_BK_UP; blc[2] = -MSK_INFINITY; buc[2] = 25.0; /* Define information for the variables. */ /* Variable: x0 */ c[0] = 3.0; /* The objective function. */ ptrb[0] = 0; ptre[0] = 2; /* First column in the constraint matrix. */ sub[0] = 0; val[0] = 3.0; sub[1] = 1; val[1] = 2.0; bkx[0] = MSK_BK_LO; /* Type of bound. */ blx[0] = 0.0; /* Lower bound on the variables. */ bux[0] = MSK_INFINITY; /* Upper bound on the variables. */ /* Variable: x1 */ c[1] = 1.0; ptrb[1] = 2; ptre[1] = 5; sub[2] = 0; val[2] = 1.0; sub[3] = 1; val[3] = 1.0; sub[4] = 2; val[4] = 2.0; bkx[1] = MSK_BK_RA; blx[1] = 0.0; bux[1] = 10; /* Variable: x2 */ c[2] = 5.0; ptrb[2] = 5; ptre[2] = 7; sub[5] = 0; val[5] = 2.0; sub[6] = 1; val[6] = 3.0; bkx[2] = MSK_BK_LO; blx[2] = 0.0; bux[2] = MSK_INFINITY; /* Variable: x3 */ c[3] = 1.0; ptrb[3] = 7; ptre[3] = 9; sub[7] = 1; val[7] = 1.0; sub[8] = 2; val[8] = 3.0; bkx[3] = MSK_BK_LO; blx[3] = 0.0; bux[3] = MSK_INFINITY; MSK_putobjsense(task, MSK_OBJECTIVE_SENSE_MAXIMIZE); /* Use the primal simplex optimizer. */ MSK_putintparam(task, MSK_IPAR_OPTIMIZER, MSK_OPTIMIZER_PRIMAL_SIMPLEX); MSK_echotask(task, MSK_STREAM_MSG, "\nAdding constraints\n"); r = MSK_append(task, MSK_ACC_CON, NUMCON); /* Adding bounds on empty constraints */ for(i=0; r==MSK_RES_OK && i<NUMCON; ++i) { r = MSK_putbound(task, MSK_ACC_CON, i, bkc[i], blc[i], buc[i]); } /* Dynamically adding columns */ for(j= 0; r==MSK_RES_OK && j<NUMVAR; ++j) { MSK_echotask(task, MSK_STREAM_MSG, "\nAdding a new variable.\n"); r = MSK_append(task,MSK_ACC_VAR,1); if ( r==MSK_RES_OK ) r = MSK_putcj(task,j,c[j]); if ( r==MSK_RES_OK ) r = MSK_putavec(task, MSK_ACC_VAR, j, ptre[j]-ptrb[j], sub+ptrb[j], val+ptrb[j]); if ( r==MSK_RES_OK ) r = MSK_putbound(task, MSK_ACC_VAR, j, bkx[j], blx[j], bux[j]); if( r == MSK_RES_OK ) { MSK_echotask(task, MSK_STREAM_MSG, "\nOptimizing\n"); r = MSK_optimize(task); MSK_solutionsummary(task,MSK_STREAM_MSG); } } MSK_deletetask(&task); } } MSK_deleteenv(&env); printf("Return code: %d (0 means no error occured.)\n",r); return ( r ); } /* main */