コード例 #1
0
ファイル: OLS.cpp プロジェクト: HargisJ/KrisLibrary
bool LeastSquares1D::SolveUnweighted()
{
  assert(x.n == y.n);
  assert(x.n >= 2);
  Real sxx,syy,sxy;
  Real xmean = Mean(x);
  Real ymean = Mean(y);
  sxx = syy = sxy = 0;
  for(int i=0;i<x.n;i++) {
    sxx += Sqr(x(i) - xmean);
    syy += Sqr(y(i) - ymean);
    sxy += (x(i) - xmean)*(y(i) - ymean);
  }
  if(sxx == 0) {  //vertical line!
    b = xmean;
    a = Inf;
    stda = stdb = 0;
    corrCoeff = 1;
    return true;
  }
  a = sxy / sxx;
  b = ymean - b*xmean;
  if(x.n == 2) {
    stda = stdb = 0;
    corrCoeff = 1;
    return true;
  }
  Real s = Sqrt((syy - b*sxy)/(x.n-2));
  stda = s / Sqrt(sxx);
  stdb = s*Sqrt(One/(Real)x.n + Sqr(xmean)/sxx);
  return true;
}
コード例 #2
0
ファイル: OpenSMOKE_KPP.cpp プロジェクト: acuoci/OpenSMOKE
void MassUmbalances(OpenSMOKE_KPP_ReactorNetwork& network)
{
	BzzVector umbalances(network.NumberOfReactors());
	for(int k=1;k<=network.NumberOfReactors();k++)
		umbalances[k] = fabs(network.reactors(k).MassUmbalance());

	BzzVector massFlowIn(network.NumberOfReactors());
	for(int k=1;k<=network.NumberOfReactors();k++)
		massFlowIn[k] = fabs(network.reactors(k).MassFlowIn());

	cout << endl;
	cout << "// *********************************************************** // " << endl;
	cout << "//                     UMBALANCE ANALYSIS                      // " << endl;
	cout << "// *********************************************************** // " << endl;
	cout << setw(20) << left << "Max umbalance:";
	cout << setw(16) << left << umbalances.Max();
	cout << endl;
	cout << setw(20) << left << "Mean umbalance:";
	cout << setw(16) << left << Mean(umbalances);
	cout << endl;
	cout << setw(20) << left << "Max in flow:";
	cout << setw(16) << left << massFlowIn.Max();
	cout << endl;
	cout << setw(20) << left << "Min in flow:";
	cout << setw(16) << left << massFlowIn.Min();
	cout << endl;
	cout << setw(20) << left << "Mean in flow:";
	cout << setw(16) << left << Mean(massFlowIn);
	cout << endl;

}
コード例 #3
0
ファイル: OLS.cpp プロジェクト: HargisJ/KrisLibrary
bool LeastSquares1D::SolvePerpendicular()
{
  //minimize sum_i { (yi - a*xi - b)^2 / (1+b^2) }
  assert(x.n == y.n);
  assert(x.n >= 2);
  Real sxx,syy,sxy;
  Real xmean = Mean(x);
  Real ymean = Mean(y);
  sxx = syy = sxy = 0;
  for(int i=0;i<x.n;i++) {
    sxx += Sqr(x(i) - xmean);
    syy += Sqr(y(i) - ymean);
    sxy += (x(i) - xmean)*(y(i) - ymean);
  }
  Real den = (x.n*xmean*ymean - dot(x,y));
  if(FuzzyZero(den)) {
    cerr<<"Warning, denominator is close to zero"<<endl;
  }
  Real B = (syy - sxx) / den;
  a = -B + Sqrt(Sqr(B)+1);
  b = ymean - xmean*b;
  cerr<<"Warning, don't know how to calculate std errors for perpendicular least-squares"<<endl;
  stda = stdb = 0;
  corrCoeff = 1;
  return true;
}
コード例 #4
0
ファイル: filters.c プロジェクト: pratas/falcon
void FilterStream(FILTER *FIL, FILE *OUT){
  int64_t  n = 1;
  ENTP     val = Mean(FIL, 0);
  int      region = val < FIL->threshold ? LOW_REGION : HIGH_REGION, cmp = 0;
  uint64_t initPosition = 1;
  uint64_t lastPosition = n;
  for(n = 1 ; n < FIL->nEntries ; ++n){
    if(n % FIL->drop == 0){
      if((val = Mean(FIL, n)) >= FIL->threshold){
        if(region == LOW_REGION){
          region = HIGH_REGION;
          cmp = SelfSimilarity(FIL->bases, initPosition, n);
          fprintf(OUT, "%"PRIu64":%"PRIu64"\t%u\n", initPosition, n, cmp);
          }
        }
      else{ // val < threshold ====> LOW_REGION
        if(region == HIGH_REGION){
          region       = LOW_REGION;
          initPosition = n;
          }
        }
      lastPosition = n;
      }
    }
  if(region == LOW_REGION){
    cmp = SelfSimilarity(FIL->bases, initPosition, n);
    fprintf(OUT, "%"PRIu64":%"PRIu64"\t%u\n", initPosition, lastPosition, cmp);
    }
  }
コード例 #5
0
//This tells you how corrolated your x and y are. A straight line, at any non0 angle, give you a corrolation of 1. 
//If this is nonzero, it means the points vary more in one direction than in another. This number should be close to 0.
double PearsonProductMomentCorrelation(double x[], double y[], int size)
{
	//Base case
    if( size<=1 )
    {
        return 0;
    }
    double ans;
    double xmean;
    double ymean;
    xmean = Mean(x, size);
	ymean=Mean(y, size);
    int i;
   double s;
    double xv;
    double yv;
    double t1;
    double t2;
    s = 0;
    xv = 0;
    yv = 0;
    for(i=0; i<size; i++)
    {
        t1 = abs(x[i]-xmean);
        t2 = abs(y[i]-ymean);
        xv = xv+sqrt(t1);
        yv = yv+sqrt(t2);
        s = s+t1*t2;
    }
	
        ans = s/sqrt(xv)*sqrt(yv);
    
    return ans;
}
コード例 #6
0
TEST(Util, NormalSampleTest) {
    VReal tmp;
    for (int i = 0; i < 1000000; i++) {
        tmp.push_back(NormalSample() / 100);
    }
    EXPECT_LT(std::abs(0.0 - Mean(tmp)), 0.00001);
    EXPECT_LT(std::abs(0.0001 - Var(tmp)), 0.00001);
    VVVReal tmp2;
    RandomInit(100, 100, 100, &tmp2);
    EXPECT_LT(std::abs(0.0 - Mean(tmp2)), 0.00001);
    EXPECT_LT(std::abs(0.0001 - Var(tmp2)), 0.00001);
}
コード例 #7
0
ファイル: unser_float.c プロジェクト: tiagojc/IBTSFIF
//Histogram *Unser(Image *img)
float *Unser(Image *img)
{
  Histogram *h = NULL;
  float sum[4][511], dif[4][511], *val=NULL;
  float mean, contrast, correlation;
  int i;

  val = (float*) calloc(SIZE,sizeof(float));

  ComputeHistograms(img, sum, dif);

  for (i=0; i<4; i++){
    mean = Mean(sum[i]);
    val[i * 8 + 0] = mean;
    contrast = Contrast(dif[i]);
    val[i * 8 + 1] = contrast;// / 255.0;
    correlation = Correlation(sum[i], mean, contrast);
    val[i * 8 + 2] = (correlation);// + 32512.5) / 255.0;
    val[i * 8 + 3] = Energy(sum[i], dif[i]);// * 255.0 ;
    val[i * 8 + 4] = Entropy(sum[i], dif[i]);// * 255.0 / 5.4168418;
    val[i * 8 + 5] = Homogeneity(dif[i]);// * 255.0;
    val[i * 8 + 6] = MaximalProbability(sum[i]);// * 255.0;
    val[i * 8 + 7] = StandardDeviation(contrast, correlation);// *sqrt(2);
  }

  //h = CreateHistogram(SIZE);
  //LinearNormalizeHistogram(h->v, val, 255.0, SIZE);

  //return(h);
  return(val);
}
コード例 #8
0
/*---------------------------------------------------------------------------*/
void PrintNormMatch(FILE *File,
                    int NumParams,
                    PROTOTYPE *Proto,
                    FEATURE Feature) {
/*
 **	Parameters:
 **		File		open text file to dump match debug info to
 **		NumParams	# of parameters in proto and feature
 **		Proto[]		array of prototype parameters
 **		Feature[]	array of feature parameters
 **	Globals: none
 **	Operation: This routine dumps out detailed normalization match info.
 **	Return: none
 **	Exceptions: none
 **	History: Wed Jan  2 09:49:35 1991, DSJ, Created.
 */
  int i;
  FLOAT32 ParamMatch;
  FLOAT32 TotalMatch;

  for (i = 0, TotalMatch = 0.0; i < NumParams; i++) {
    ParamMatch = ((ParamOf (Feature, i) - Mean (Proto, i)) /
      StandardDeviation (Proto, i));

    fprintf (File, " %6.1f", ParamMatch);

    if (i == CharNormY || i == CharNormRx)
      TotalMatch += ParamMatch * ParamMatch;
  }
  fprintf (File, " --> %6.1f (%4.2f)\n",
    TotalMatch, NormEvidenceOf (TotalMatch));

}                                /* PrintNormMatch */
コード例 #9
0
ファイル: statistics.c プロジェクト: rishik1/reposi
/*
Function Name	:: StandarDeviation
input		:: pointer to bag
return's	:: float
This function will take in a bag as input.
This function will then calculate the standard deviation of the data in the bag.
Using the formula for the standard deviation of a normal distribution.
Return the standard deviation calculated.

standard deviation = sqrt((sum of square of  all deviation/(number of elemnts -1)))
*/
float StandardDeviation(bag *bg)
{
	int length = getsize(bg);
	int i;
	float mean = Mean(bg);
	float sum = 0;
	float difference = 0;
	data *dat = NULL;
	for(i=0;i< length;i++)
	{
		dat = getItem(bg,i);
		difference = (mean - dat->val);
		if(difference < 0)
		{
			difference = (-1 * difference);
		}
		sum = sum + (difference *difference);
	}

	float deviation = (float)sum/(length-1);

	deviation = sqrtf(deviation);

return (deviation);

}
コード例 #10
0
TEST(Util, MeanTest) {
    VReal tmp;
    tmp.push_back(1);
    tmp.push_back(2);
    tmp.push_back(3);
    EXPECT_DOUBLE_EQ(2, Mean(tmp));
}
コード例 #11
0
ファイル: HillClimbing.cpp プロジェクト: Chuyu-Team/VC-LTL
    /// <summary>
    ///     Tests if the difference between two measurement histories is statistically significant to
    ///     make a hill climbing decision.
    /// </summary>
    /// <remarks>
    ///     A two sided test is used.
    /// </remarks>
    /// <param name="pMeasuredHistory">
    ///     The pointer to second measurement history.
    /// </param>
    /// <param name="significanceLevel">
    ///     The significance level in percent. Accepts 1 through 10.
    /// </param>
    /// <returns>
    ///     -1 - second history is larger than this history
    ///      0 - statistically identical
    ///      1 - this history is larger than second history
    /// </returns>
    int HillClimbing::MeasuredHistory::SignificanceTest(MeasuredHistory * pMeasuredHistory, const int significanceLevel)
    {
        const int critSize = 10;
        double critArray[critSize] = { 2.576, 2.3263, 2.17, 2.05, 1.96, 1.88, 1.81, 1.75, 1.70, 1.64 };

        double thisVariance = this->VarianceMean();
        double thisMean = Mean();
        double secondVariance = pMeasuredHistory->VarianceMean();
        double secondMean = pMeasuredHistory->Mean();

        _CONCRT_ASSERT(significanceLevel > 0 && significanceLevel <= 10); // Invalid significance level

        int result = (int) sign(thisMean - secondMean);

        if (thisVariance > 0 && secondVariance > 0)
        {
            double pooledVar = thisVariance / Count() + secondVariance / pMeasuredHistory->Count();

            double testStatistic = (thisMean - secondMean) / sqrt(pooledVar);
            double critVal = critArray[significanceLevel-1];
            double absVal = abs(testStatistic);

            if (absVal < critVal)
            {
                result = 0;
            }
        }

        return result;
    }
コード例 #12
0
ファイル: gpibrw.c プロジェクト: cedschmidt/QC-Vision
void plot_data (int color)
{
	int pix_num,bckgrd_satus;
	double bckgrd_val;

	GetCtrlVal (ERG_panel, ERG_panel_bckgrd_sub, &bckgrd_satus); 
	if (bckgrd_satus==1)
	{
		GetCtrlVal (ERG_panel, ERG_panel_bckgrd, &pix_num);
		Mean (&data2fit[pix_num-50], 100, &bckgrd_val);
		j=0;
		while (j<10000)
		{
			buffer[j] = data2fit[j]-bckgrd_val;
			j++;
		}
	}
	else
	{
		  j=0;
		while (j<10000)
		{
			buffer[j] = data2fit[j];
			j++;
		}
	}
	
	PlotY (ERG_panel, ERG_panel_scope, buffer, 10000,VAL_DOUBLE , VAL_THIN_LINE, VAL_EMPTY_SQUARE, VAL_SOLID, 1, MakeColor(color,color,color));
}
コード例 #13
0
ファイル: net.cpp プロジェクト: Geekrick88/ConvNet
void Net::ReadLabels(const mxArray *mx_labels) {
  std::vector<size_t> labels_dim = mexGetDimensions(mx_labels);  
  mexAssert(labels_dim.size() == 2, "The label array must have 2 dimensions");
  size_t samples_num = labels_dim[0];
  size_t classes_num = labels_dim[1];
  mexAssert(classes_num == layers_.back()->length_,
    "Labels and last layer must have equal number of classes");  
  MatCPU labels_norm; // order_ == false
  mexGetMatrix(mx_labels, labels_norm);
  if (params_.balance_) {  
    MatCPU labels_mean(1, classes_num);
    Mean(labels_norm, labels_mean, 1);
    mexAssert(!labels_mean.hasZeros(), 
      "Balancing impossible: one of the classes is not presented");
    MatCPU cpucoeffs(1, classes_num);
    cpucoeffs.assign(1);
    cpucoeffs /= labels_mean;
    classcoefs_.resize(1, classes_num);
    classcoefs_ = cpucoeffs;
    classcoefs_ /= (ftype) classes_num;
  }
  labels_.resize(samples_num, classes_num);
  labels_.reorder(true, false); // order_ == true;
  labels_ = labels_norm; 
}
コード例 #14
0
inline
const std::vector<T>
ICR::EnsembleLearning::DeterministicNode<Model,T>::GetMean() 
{
  std::vector<T> Mean(1, m_Moments[0]);
  return Mean;
}
コード例 #15
0
double ChiRand::Skewness() const
{
    double mu = Mean();
    double sigmaSq = Variance();
    double skew = mu * (1 - 2 * sigmaSq);
    skew /= std::pow(sigmaSq, 1.5);
    return skew;
}
コード例 #16
0
ファイル: chanfnc.c プロジェクト: gaorlov/DAAS
static void chanfunc_CalcStatistics (channelPtr chan)
{
    double mean, std_dev, variance, rms, moment, median, mode, min, max;
    int err, order, min_i, max_i, intervals;
    char newnote[256];

    Fmt (chanfunc.note, "");
    err = MaxMin1D (chan->readings, chan->pts, &max, &max_i, &min, &min_i);
    SetInputMode (chanfunc.p, STATISTICS_MIN, !err);
    SetCtrlVal (chanfunc.p, STATISTICS_MIN, min);
    SetInputMode (chanfunc.p, STATISTICS_MAX, !err);
    SetCtrlVal (chanfunc.p, STATISTICS_MAX, max);
    if (err == NoErr)
    {
        Fmt (chanfunc.note, "%s<Min: %f[e2p5]\n", min);
        Fmt (chanfunc.note, "%s[a]<Max: %f[e2p5]\n", max);
    }

    err = Mean (chan->readings, chan->pts, &mean);
    SetInputMode (chanfunc.p, STATISTICS_MEAN, !err);
    SetCtrlVal (chanfunc.p, STATISTICS_MEAN, mean);
    if (err == NoErr) Fmt (chanfunc.note, "%s[a]<Mean: %f[e2p5]\n", mean);

    err = StdDev (chan->readings, chan->pts, &mean, &std_dev);
    SetInputMode (chanfunc.p, STATISTICS_STDDEV, !err);
    SetCtrlVal (chanfunc.p, STATISTICS_STDDEV, std_dev);
    if (err == NoErr) Fmt (chanfunc.note, "%s[a]<StdDev: %f[e2p5]\n", std_dev);

    err = Variance (chan->readings, chan->pts, &mean, &variance);
    SetInputMode (chanfunc.p, STATISTICS_VAR, !err);
    SetCtrlVal (chanfunc.p, STATISTICS_VAR, variance);
    if (err == NoErr) Fmt (chanfunc.note, "%s[a]<Variance: %f[e2p5]\n", variance);

    err = RMS (chan->readings, chan->pts, &rms);
    SetInputMode (chanfunc.p, STATISTICS_RMS, !err);
    SetCtrlVal (chanfunc.p, STATISTICS_RMS, rms);
    if (err == NoErr) Fmt (chanfunc.note, "%s[a]<RMS: %f[e2p5]\n", rms);

    GetCtrlVal (chanfunc.p, STATISTICS_ORDER, &order);
    err = Moment (chan->readings, chan->pts, order, &moment);
    SetInputMode (chanfunc.p, STATISTICS_MOMENT, !err);
    SetInputMode (chanfunc.p, STATISTICS_ORDER, !err);
    SetCtrlVal (chanfunc.p, STATISTICS_MOMENT, moment);
    if (err == NoErr) Fmt (chanfunc.note, "%s[a]<Moment: %f[e2p5] (order: %i)\n", moment, order);

    err = Median (chan->readings, chan->pts, &median);
    SetInputMode (chanfunc.p, STATISTICS_MEDIAN, !err);
    SetCtrlVal (chanfunc.p, STATISTICS_MEDIAN, median);
    if (err == NoErr) Fmt (chanfunc.note, "%s[a]<Median: %f[e2p5]\n", median);

    GetCtrlVal (chanfunc.p, STATISTICS_INTERVAL, &intervals);
    err = Mode (chan->readings, chan->pts, min, max, intervals, &mode);
    SetInputMode (chanfunc.p, STATISTICS_INTERVAL, !err);
    SetInputMode (chanfunc.p, STATISTICS_MODE, !err);
    SetCtrlVal (chanfunc.p, STATISTICS_INTERVAL, intervals);
    SetCtrlVal (chanfunc.p, STATISTICS_MODE, mode);
    if (err == NoErr) Fmt (chanfunc.note, "%s[a]<Mode: %f[e2p5] (intervals: %i)\n", mode, intervals);
}
コード例 #17
0
ファイル: TimeWiener.cpp プロジェクト: maggo1404/hamdrm-dll
CReal CTimeWiener::ModLinRegr(CComplexVector& veccCorrEst)
{
	/* Modified linear regression to estimate the "sigma" of the Gaussian
	   correlation function */
	/* Get vector length */
	int iVecLen = Size(veccCorrEst);

	/* Init vectors and variables */
	CReal		rSigmaRet;
	CRealVector Tau(iVecLen);
	CRealVector Z(iVecLen);
	CRealVector W(iVecLen);
	CRealVector Wmrem(iVecLen);
	CReal		Wm, Zm;
	CReal		A1;

	/* Generate the tau vector */
	for (int i = 0; i < iVecLen; i++)
		Tau[i] = (CReal) (i * iScatPilTimeInt);

	/* Linearize acf equation:  y = a * exp(-b * x^2)
	   z = ln(y);   w = x^2
	   -> z = a0 + a1 * w */
	Z = Log(Abs(veccCorrEst));

	W = Tau * Tau;

	Wm = Mean(W);
	Zm = Mean(Z);

	Wmrem = W - Wm; /* Remove mean of W */

	A1 = Sum(Wmrem * (Z - Zm)) / Sum(Wmrem * Wmrem);

	/* Final sigma calculation from estimation and assumed Gaussian model */
	rSigmaRet = (CReal) 0.5 / crPi * sqrt((CReal) -2.0 * A1) / Ts;

	/* Bound estimated sigma value */
	if (rSigmaRet > rSigmaMax)
		rSigmaRet = rSigmaMax;
	if (rSigmaRet < LOW_BOUND_SIGMA)
		rSigmaRet = LOW_BOUND_SIGMA;

	return rSigmaRet;
}
コード例 #18
0
double NakagamiDistribution::Skewness() const
{
    double thirdMoment = lgammaShapeRatio;
    thirdMoment -= 1.5 * Y.GetLogRate();
    thirdMoment = (m + 0.5) * std::exp(thirdMoment);
    double mean = Mean();
    double variance = Variance();
    return (thirdMoment - mean * (3 * variance + mean * mean)) / std::pow(variance, 1.5);
}
コード例 #19
0
ファイル: Statistics.cpp プロジェクト: szagoruyko/clipp.torch
double Statistics::StdDev(Image& Source, double& mean)
{
    mean = Mean(Source);

    Kernel(reduce_stddev, In(Source), Out(), *m_PartialResultBuffer, Source.Step(), Source.Width(), Source.Height(), float(mean));

    m_PartialResultBuffer->Read(true);

    return sqrt(ReduceMean(m_PartialResult));
}
コード例 #20
0
double UnivariateDistribution<T>::ThirdMoment() const
{
    double mean = Mean();
    double variance = Variance();
    double skewness = Skewness();

    double moment = skewness * std::sqrt(variance) * variance;
    moment += mean * mean * mean;
    moment += 3 * mean * variance;
    return moment;
}
コード例 #21
0
ファイル: pp6math.cpp プロジェクト: mspangen/pp6calculator
double StandardDeviation(std::vector<double> vars)
{
	double stddev = 0;
	double mean = Mean(vars);
	for (unsigned int i=0; i<vars.size(); ++i) {
		stddev += Square(vars.at(i) - mean);
	}
	stddev = stddev/vars.size();
	
	return sqrt(stddev);
}
コード例 #22
0
double ChiRand::ExcessKurtosis() const
{
    double mu = Mean();
    double sigmaSq = Variance();
    double sigma = std::sqrt(sigmaSq);
    double skew = Skewness();
    double kurt = 1.0 - mu * sigma * skew;
    kurt /= sigmaSq;
    --kurt;
    return 2 * kurt;
}
コード例 #23
0
int main()
{
  double scores[MaxJudges];
  int nJudges;

  printf("Enter the number of judges: ");
  nJudges=GetInteger();
  if(nJudges>MaxJudges) Error("Too many judges");
  ReadAllScores(scores,nJudges);
  printf("The average score is %.2f\n",Mean(scores,nJudges));
}
コード例 #24
0
ファイル: OVR_SensorFilter.cpp プロジェクト: edqu/oculus-ane
//  Only the diagonal of the covariance matrix.
Vector3f SensorFilter::Variance() const
{
    Vector3f mean = Mean();
    Vector3f total = Vector3f(0.0f, 0.0f, 0.0f);
    for (int i = 0; i < Count; i++) 
    {
        total.x += (Elements[i].x - mean.x) * (Elements[i].x - mean.x);
        total.y += (Elements[i].y - mean.y) * (Elements[i].y - mean.y);
        total.z += (Elements[i].z - mean.z) * (Elements[i].z - mean.z);
    }
    return total / (float) Count;
}
コード例 #25
0
double NakagamiDistribution::ExcessKurtosis() const
{
    double mean = Mean();
    double secondMoment = SecondMoment();
    double thirdMoment = ThirdMoment();
    double fourthMoment = FourthMoment();
    double meanSq = mean * mean;
    double variance = secondMoment - meanSq;
    double numerator = fourthMoment - 4 * thirdMoment * mean + 6 * secondMoment * meanSq - 3 * meanSq * meanSq;
    double denominator = variance * variance;
    return numerator / denominator - 3.0;
}
コード例 #26
0
void MyOpenSMOKE_SolidRegression::Prepare()
{
	ChangeDimensions(numTotal, &temperatures_global);
	ChangeDimensions(numTotal, &utemperatures_global);
	ChangeDimensions(numTotal, &pressures_Gas_global);

	int k=1;
	for(int i=1;i<=nCases;i++)
	{
		for(int j=1;j<=experiments[i].nPoints;j++)
		{
			temperatures_global[k]   = experiments[i].temperature;
			utemperatures_global[k]  = 1./temperatures_global[k];
			pressures_Gas_global[k]  = experiments[i].pressure;
			k++;
		}
	}
	
	TMeanGlobal		= Mean(temperatures_global);
	PGasMeanGlobal   = Mean(pressures_Gas_global);

	C2 = -1./TMeanGlobal;
	C3 = pressures_Gas_global.Norm2();

	BzzVector auxiliar_vector = utemperatures_global;
	for(k=1;k<=numTotal;k++) auxiliar_vector[k] += C2;

	C1 = 1./auxiliar_vector.Norm2();

	cout << "Tmin:    " << temperatures_global.Min()	<< " K"		<< endl;
	cout << "Tmax:    " << temperatures_global.Max()	<< " K"		<< endl;
	cout << "Tmean:   " << TMeanGlobal					<< " K"		<< endl;
	cout << "PGasmin:  " << pressures_Gas_global.Min()	<< " atm"		<< endl;
	cout << "PGasmax:  " << pressures_Gas_global.Max()	<< " atm"		<< endl;
	cout << "PGasmean: " << PGasMeanGlobal				<< " atm"		<< endl;

	cout << "C1:    " << C1							<< " K"		<< endl;
	cout << "C2:    " << C2							<< " 1/K"	<< endl;
	cout << "C3:    " << C3							<< " atm"	<< endl;
}
コード例 #27
0
void RunningStats::Print(FILE * pFile, const char * header) const
    {
    fprintf (pFile, "\n%s\n", header);
    fprintf (pFile, "NumDataValues:     %ld\n", NumDataValues());
    fprintf (pFile, "Mean:              %f\n", Mean());
    fprintf (pFile, "Variance:          %f\n", Variance());
    fprintf (pFile, "StandardDeviation: %f\n", StandardDeviation());
    fprintf (pFile, "Skewness:          %f\n", Skewness());
    fprintf (pFile, "Kurtosis:          %f\n", Kurtosis());
    fprintf (pFile, "Maximum:           %f\n", Maximum());
    fprintf (pFile, "Minimum:           %f\n", Minimum());
    return;
    }
コード例 #28
0
ファイル: Blob.cpp プロジェクト: ashokzg/billiards
double CBlob::StdDev( IplImage *image )
{
	// it is calculated?
/*	if( m_stdDevGray != -1 )
	{
		return m_stdDevGray;
	}
*/
	// call mean calculation (where also standard deviation is calculated)
	Mean( image );

	return m_stdDevGray;
}
コード例 #29
0
/******************************************************************************\
* Phase lock loop (PLL)                                                        *
\******************************************************************************/
void CPLL::Process(CRealVector& vecrIn /* in/out */)
{
	/* Mix it down to zero frequency */
	cvecLow = vecrIn;
	Mixer.Process(cvecLow);

	/* Complex loop filter */
	rvecRealTmp = Filter(rvecB, rvecA, Real(cvecLow), rvecZReal);
	rvecImagTmp = Filter(rvecB, rvecA, Imag(cvecLow), rvecZImag);

	/* Calculate current phase for GUI */
	rCurPhase = Angle(CComplex(Mean(rvecRealTmp), Mean(rvecImagTmp)));

	/* Average over entire block (only real part) */
	const CReal rOffsEst = Mean(rvecRealTmp);

	/* Close loop */
	rNormCurFreqOffsetAdd = PLL_LOOP_GAIN * rOffsEst;

	/* Update mixer */
	Mixer.SetMixFreq(rNormCurFreqOffset + rNormCurFreqOffsetAdd);
}
コード例 #30
0
ファイル: samtrial.c プロジェクト: cckayne/ALEPH
// Standard deviation of a set of probabilities
static double Sigma(ub4 minx,ub4 maxs) {
	register ub4 i,dv;
	double	m, t=0.0;
	double d[MODU];
	dv   = maxs-minx+1;
	m = Mean(minx,maxs);
	for (i=minx; i<=maxs; i++) 
			d[i] = pow((prob[i]-m),2);
	// variance 
	for (i=minx; i<=maxs; i++) t += d[i];
	m = (double) t/dv;	
	return sqrt(m);
}