コード例 #1
0
ファイル: mnphyhy.c プロジェクト: Godkey/coreboot
VOID
MemNBeforeDQSTrainingHy (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 Dct;
  UINT8 ChipSel;
  UINT32 TestAddrRJ16;
  UINT32 RealAddr;

  MemTBeginTraining (NBPtr->TechPtr);

  for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
    MemNSwitchDCTNb (NBPtr, Dct);
    if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
      for (ChipSel = 0; ChipSel < MAX_CS_PER_CHANNEL; ChipSel += 2) {
        if (MemNGetMCTSysAddrNb (NBPtr, ChipSel, &TestAddrRJ16)) {

          RealAddr = MemUSetUpperFSbase (TestAddrRJ16, NBPtr->MemPtr);

          MemUDummyCLRead (RealAddr);

          MemNSetBitFieldNb (NBPtr, BFErr350, 0x8000);
          MemUWait10ns (60, NBPtr->MemPtr);   // Wait 300ns
          MemNSetBitFieldNb (NBPtr, BFErr350, 0x0000);
          MemUWait10ns (400, NBPtr->MemPtr);  // Wait 2us
          MemUProcIOClFlush (TestAddrRJ16, 1, NBPtr->MemPtr);
          break;
        }
      }
    }
    if (NBPtr->IsSupported[CheckEccDLLPwrDnConfig]) {
      if (!NBPtr->MCTPtr->Status[SbEccDimms]) {
        MemNSetBitFieldNb (NBPtr, BFEccDLLPwrDnConf, 0x0010);
      }
      if (NBPtr->DCTPtr->Timings.Dimmx4Present == 0) {
        MemNSetBitFieldNb (NBPtr, BFEccDLLConf, 0x0080);
      }
    }
  }

  MemTEndTraining (NBPtr->TechPtr);

  MemNSetBitFieldNb (NBPtr, BFDisDatMsk, 1);
}
コード例 #2
0
ファイル: mnphyon.c プロジェクト: AdriDlu/coreboot
VOID
MemNBeforeDQSTrainingON (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  MemTBeginTraining (NBPtr->TechPtr);

  MemNSetBitFieldNb (NBPtr, BFDisAutoRefresh, 1);
  MemNSetBitFieldNb (NBPtr, BFZqcsInterval, 0);
  MemNSetBitFieldNb (NBPtr, BFRxMaxDurDllNoLock, 0);
  MemNSetBitFieldNb (NBPtr, BFTxMaxDurDllNoLock, 0);
  MemNSetBitFieldNb (NBPtr, BFEnRxPadStandby, 0);
  MemNSetBitFieldNb (NBPtr, BFPrefCpuDis, 1);
  MemNSetBitFieldNb (NBPtr, BFDctWrLimit, 0x1F);
  MemNSetBitFieldNb (NBPtr, BFEnCpuSerRdBehindNpIoWr, 1);
  MemNSetBitFieldNb (NBPtr, BFDbeGskMemClkAlignMode, 0);
  MemNSetBitFieldNb (NBPtr, BFMaxLatency, 0x12);
  MemNSetBitFieldNb (NBPtr, BFTraceModeEn, 0);

  // Enable cut through mode for NB P0
  MemNSetBitFieldNb (NBPtr, BFDisCutThroughMode, 0);

  MemTEndTraining (NBPtr->TechPtr);
}
コード例 #3
0
ファイル: mttoptsrc.c プロジェクト: AdriDlu/coreboot
/**
 *
 *      This function executes receiver enable training for a specific die
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]  Pass - Pass of the receiver training
 *
 *     @return          TRUE -  No fatal error occurs.
 *     @return          FALSE - Fatal error occurs.
 */
BOOLEAN
STATIC
MemTDqsTrainOptRcvrEnSw (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Pass
  )
{
  _16BYTE_ALIGN  UINT8  PatternBuffer[6 * 64];
  UINT8  TestBuffer[256];
  UINT8  *PatternBufPtr[6];
  UINT8  *TempPtr;
  UINT32 TestAddrRJ16[4];
  UINT32 TempAddrRJ16;
  UINT32 RealAddr;
  UINT16 CurTest[4];
  UINT8 Dct;
  UINT8 Receiver;
  UINT8 i;
  UINT8 TimesFail;
  UINT8 TimesRetrain;
  UINT16 RcvrEnDly;
  UINT16 MaxRcvrEnDly;
  UINT16 RcvrEnDlyLimit;
  UINT16 MaxDelayCha;
  BOOLEAN IsDualRank;
  BOOLEAN S0En;
  BOOLEAN S1En;


  MEM_DATA_STRUCT *MemPtr;
  DIE_STRUCT *MCTPtr;
  DCT_STRUCT *DCTPtr;
  MEM_NB_BLOCK  *NBPtr;

  NBPtr = TechPtr->NBPtr;
  MemPtr = NBPtr->MemPtr;
  MCTPtr = NBPtr->MCTPtr;
  TechPtr->TrainingType = TRN_RCVR_ENABLE;


  TempAddrRJ16 = 0;
  TempPtr = NULL;
  MaxDelayCha = 0;
  TimesRetrain = DEFAULT_TRAINING_TIMES;
  IDS_OPTION_HOOK (IDS_MEM_RETRAIN_TIMES, &TimesRetrain, &MemPtr->StdHeader);

  IDS_HDT_CONSOLE (MEM_STATUS, "\nStart Optimized SW RxEn training\n");
  // Set environment settings before training
  MemTBeginTraining (TechPtr);

  PatternBufPtr[0] = PatternBufPtr[2] = PatternBuffer;
  // These two patterns used for first Test Address
  MemUFillTrainPattern (TestPattern0, PatternBufPtr[0], 64);
  // Second Cacheline used for Dummy Read is the inverse of
  //  the first so that is is not mistaken for the real read
  MemUFillTrainPattern (TestPattern1, PatternBufPtr[0] + 64, 64);
  PatternBufPtr[1] = PatternBufPtr[3] = PatternBufPtr[0] + 128;
  // These two patterns used for second Test Address
  MemUFillTrainPattern (TestPattern1, PatternBufPtr[1], 64);
  // Second Cacheline used for Dummy Read is the inverse of
  //  the first so that is is not mistaken for the real read
  MemUFillTrainPattern (TestPattern0, PatternBufPtr[1] + 64, 64);

  // Fill pattern for flush after every sweep
  PatternBufPtr[4] = PatternBufPtr[0] + 256;
  MemUFillTrainPattern (TestPattern3, PatternBufPtr[4], 64);

  // Fill pattern for initial dummy read
  PatternBufPtr[5] = PatternBufPtr[0] + 320;
  MemUFillTrainPattern (TestPattern4, PatternBufPtr[5], 64);


  // Begin receiver enable training
  AGESA_TESTPOINT (TpProcMemReceiverEnableTraining, &(MemPtr->StdHeader));
  for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
    IDS_HDT_CONSOLE (MEM_STATUS, "\tDct %d\n", Dct);
    NBPtr->SwitchDCT (NBPtr, Dct);
    DCTPtr = NBPtr->DCTPtr;

    // Set training bit
    NBPtr->SetBitField (NBPtr, BFDqsRcvEnTrain, 1);

    // Relax Max Latency before training
    NBPtr->SetMaxLatency (NBPtr, 0xFFFF);

    if (Pass == FIRST_PASS) {
      TechPtr->InitDQSPos4RcvrEn (TechPtr);
    }

    // there are four receiver pairs, loosely associated with chipselects.
    Receiver = DCTPtr->Timings.CsEnabled ? 0 : 8;
    for (; Receiver < 8; Receiver += 2) {
      S0En = NBPtr->GetSysAddr (NBPtr, Receiver, &TestAddrRJ16[0]);
      S1En = NBPtr->GetSysAddr (NBPtr, Receiver + 1, &TestAddrRJ16[2]);
      if (S0En) {
        TestAddrRJ16[1] = TestAddrRJ16[0] + BIGPAGE_X8_RJ16;
      }
      if (S1En) {
        TestAddrRJ16[3] = TestAddrRJ16[2] + BIGPAGE_X8_RJ16;
      }
      if (S0En && S1En) {
        IsDualRank = TRUE;
      } else {
        IsDualRank = FALSE;
      }
      if (S0En || S1En) {
        IDS_HDT_CONSOLE (MEM_STATUS, "\t\tCS %d\n", Receiver);

        RcvrEnDlyLimit = 0x1FF;      // @attention - limit depends on proc type
        TechPtr->DqsRcvEnSaved = 0;
        RcvrEnDly = RcvrEnDlyLimit;
        RealAddr = 0;

        TechPtr->GetFirstPassVal = FALSE;
        TechPtr->DqsRcvEnFirstPassVal = 0;
        TechPtr->RevertPassVal = FALSE;
        TechPtr->InitializeVariablesOpt (TechPtr);

        // Write the test patterns
        AGESA_TESTPOINT (TpProcMemRcvrWritePattern, &(MemPtr->StdHeader));
        IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tWrite to addresses: ");
        for (i = (S0En ? 0 : 2); i < (S1En ? 4 : 2); i++) {
          RealAddr = MemUSetUpperFSbase (TestAddrRJ16[i], MemPtr);
          // One cacheline of data to be tested and one of dummy data
          MemUWriteCachelines (RealAddr, PatternBufPtr[i], 2);
          // This is dummy data with a different pattern used for the first dummy read.
          MemUWriteCachelines (RealAddr + 128, PatternBufPtr[5], 1);
          IDS_HDT_CONSOLE (MEM_FLOW, " %04x0000 ", TestAddrRJ16[i]);
        }
        IDS_HDT_CONSOLE (MEM_FLOW, "\n");

        // Sweep receiver enable delays
        AGESA_TESTPOINT (TpProcMemRcvrStartSweep, &(MemPtr->StdHeader));
        TimesFail = 0;
        ERROR_HANDLE_RETRAIN_BEGIN (TimesFail, TimesRetrain)
        {
          TechPtr->LoadInitialRcvrEnDlyOpt (TechPtr, Receiver);
          while (!TechPtr->CheckRcvrEnDlyLimitOpt (TechPtr)) {
            AGESA_TESTPOINT (TpProcMemRcvrSetDelay, &(MemPtr->StdHeader));
            TechPtr->SetRcvrEnDlyOpt (TechPtr, Receiver, RcvrEnDly);
            // Read and compare the first beat of data
            for (i = (S0En ? 0 : 2); i < (S1En ? 4 : 2); i++) {
              AGESA_TESTPOINT (TpProcMemRcvrReadPattern, &(MemPtr->StdHeader));
              RealAddr = MemUSetUpperFSbase (TestAddrRJ16[i], MemPtr);
              //
              // Issue dummy cacheline reads
              //
              MemUReadCachelines (TestBuffer + 128, RealAddr + 128, 1);
              MemUReadCachelines (TestBuffer, RealAddr, 1);
              MemUProcIOClFlush (TestAddrRJ16[i], 2, MemPtr);
              //
              // Perform actual read which will be compared
              //
              MemUReadCachelines (TestBuffer + 64, RealAddr + 64, 1);
              AGESA_TESTPOINT (TpProcMemRcvrTestPattern, &(MemPtr->StdHeader));
              CurTest[i] = TechPtr->Compare1ClPatternOpt (TechPtr, TestBuffer + 64 , PatternBufPtr[i] + 64, i, Receiver, S1En);
              // Due to speculative execution during MemUReadCachelines, we must
              //  flush one more cache line than we read.
              MemUProcIOClFlush (TestAddrRJ16[i], 4, MemPtr);
              TechPtr->ResetDCTWrPtr (TechPtr, Receiver);

              //
              // Swap the test pointers such that even and odd steps alternate.
              //
              if ((i % 2) == 0) {
                TempPtr = PatternBufPtr[i];
                PatternBufPtr[i] = PatternBufPtr[i + 1];

                TempAddrRJ16 = TestAddrRJ16[i];
                TestAddrRJ16[i] = TestAddrRJ16[i + 1];
              } else {
                PatternBufPtr[i] = TempPtr;
                TestAddrRJ16[i] = TempAddrRJ16;
              }
            }
          }   // End of delay sweep
          ERROR_HANDLE_RETRAIN_END (!TechPtr->SetSweepErrorOpt (TechPtr, Receiver, Dct, TRUE), TimesFail)
        }

        if (!TechPtr->SetSweepErrorOpt (TechPtr, Receiver, Dct, FALSE)) {
          return FALSE;
        }

        TechPtr->LoadRcvrEnDlyOpt (TechPtr, Receiver);     // set final delays
        //
        // Flush AA and 55 patterns by reading a dummy pattern to fill in FIFO
        //
        // Aquire a new FSBase, based on the last test address that we stored.
        RealAddr = MemUSetUpperFSbase (TempAddrRJ16, MemPtr);
        ASSERT (RealAddr != 0);
        MemUWriteCachelines (RealAddr, PatternBufPtr[4], 1);
        MemUWriteCachelines (RealAddr + 64, PatternBufPtr[4], 1);
        MemUReadCachelines (TestBuffer, RealAddr, 2);
        // Due to speculative execution during MemUReadCachelines, we must
        //  flush one more cache line than we read.
        MemUProcIOClFlush (TempAddrRJ16, 3, MemPtr);
      }
    }   // End while Receiver < 8
コード例 #4
0
ファイル: mttEdgeDetect.c プロジェクト: Jason-Lam/coreboot
BOOLEAN
STATIC
MemTTrainDQSRdWrEdgeDetect (
  IN OUT   MEM_TECH_BLOCK *TechPtr
  )
{
  MEM_DATA_STRUCT *MemPtr;
  MEM_NB_BLOCK  *NBPtr;
  UINT8 WrDqDelay;
  UINT8 Dct;
  UINT8 CSPerChannel;
  UINT8 CsPerDelay;
  UINT8 ChipSel;
  UINT8 i;
  BOOLEAN Status;
  UINT8 TimesFail;
  UINT8 TimesRetrain;

  NBPtr = TechPtr->NBPtr;
  MemPtr = NBPtr->MemPtr;
  TimesRetrain = DEFAULT_TRAINING_TIMES;
  IDS_OPTION_HOOK (IDS_MEM_RETRAIN_TIMES, &TimesRetrain, &MemPtr->StdHeader);
  //
  // Set environment settings before training
  //
  IDS_HDT_CONSOLE (MEM_STATUS, "\nStart Read/Write Data Eye Edge Detection.\n");
  MemTBeginTraining (TechPtr);
  //
  // Do Rd DQS /Wr Data Position training for all Dcts/Chipselects
  //
  for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
    IDS_HDT_CONSOLE (MEM_STATUS, "\tDct %d\n", Dct);
    NBPtr->SwitchDCT (NBPtr, Dct);
    //
    // Chip Select Loop
    //
    CSPerChannel = NBPtr->CSPerChannel (NBPtr);
    CsPerDelay = NBPtr->CSPerDelay (NBPtr);
    for (ChipSel = 0; ChipSel < CSPerChannel; ChipSel = ChipSel + CsPerDelay ) {
      //
      // Init Bit Error Masks
      //
      LibAmdMemFill (&NBPtr->ChannelPtr->FailingBitMask[ (ChipSel * MAX_BYTELANES_PER_CHANNEL) ],
        0xFF,
        (MAX_BYTELANES_PER_CHANNEL * CsPerDelay),
        &MemPtr->StdHeader);
      if ((NBPtr->DCTPtr->Timings.CsEnabled & ((UINT16) 1 << ChipSel)) != 0) {
        TechPtr->ChipSel = ChipSel;
        IDS_HDT_CONSOLE (MEM_STATUS, "\t\tCS %d\n", ChipSel);
        IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tIncrease WrDat, Train RdDqs:\n");

        TechPtr->DqsRdWrPosSaved = 0;
        //
        // Use a list of Approximate Write Data delay values and train Read DQS Position for
        // each until a valid Data eye is found.
        //
        Status = FALSE;
        TimesFail = 0;
        ERROR_HANDLE_RETRAIN_BEGIN (TimesFail, TimesRetrain) {
          i = 0;
          while (NBPtr->GetApproximateWriteDatDelay (NBPtr, i, &WrDqDelay)) {
            TechPtr->SmallDqsPosWindow = FALSE;
            //
            // Set Write Delay approximation
            //
            TechPtr->Direction = DQS_WRITE_DIR;
            IDS_HDT_CONSOLE (MEM_FLOW, "\n\t\t\tWrite Delay: %02x", WrDqDelay);
            MemTSetDQSDelayAllCSR (TechPtr, WrDqDelay);
            //
            // Attempt Read Training
            //
            TechPtr->Direction = DQS_READ_DIR;
            if (MemTTrainDQSEdgeDetect (TechPtr)) {
              //
              // If Read DQS Training was successful, Train Write Data (DQ) Position
              //
              TechPtr->DqsRdWrPosSaved = 0;
              IDS_HDT_CONSOLE (MEM_FLOW, "\n\t\t\tTrain WrDat:\n\n");
              TechPtr->Direction = DQS_WRITE_DIR;
              Status = MemTTrainDQSEdgeDetect (TechPtr);
              break;
            }
            i++;
          }
        ERROR_HANDLE_RETRAIN_END ((Status == FALSE), TimesFail)
        }
        //
        // If we went through the table, Fail.
        //
        if (Status == FALSE) {
          // On training failure, check and record whether training fails due to small window or no window
          if (TechPtr->SmallDqsPosWindow) {
            NBPtr->MCTPtr->ErrStatus[EsbSmallDqs] = TRUE;
          } else {
            NBPtr->MCTPtr->ErrStatus[EsbNoDqsPos] = TRUE;
          }

          SetMemError (AGESA_ERROR, NBPtr->MCTPtr);
          if (TechPtr->Direction == DQS_READ_DIR) {
            PutEventLog (AGESA_ERROR, MEM_ERROR_NO_DQS_POS_RD_WINDOW, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader);
          } else {
            PutEventLog (AGESA_ERROR, MEM_ERROR_NO_DQS_POS_WR_WINDOW, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader);
          }
          NBPtr->DCTPtr->Timings.CsTrainFail |= (UINT16)1 << ChipSel;
          // If the even chip select failed training always fail the odd, if present.
          if ((ChipSel & 0x01) == 0) {
            if (NBPtr->DCTPtr->Timings.CsPresent & ((UINT16)1 << (ChipSel + 1))) {
              NBPtr->DCTPtr->Timings.CsTrainFail |= (UINT16)1 << (ChipSel + 1);
            }
          }
          NBPtr->MemPtr->ErrorHandling (NBPtr->MCTPtr, NBPtr->Dct, NBPtr->DCTPtr->Timings.CsTrainFail, &NBPtr->MemPtr->StdHeader);
        }
      } else {
コード例 #5
0
ファイル: mttsrc.c プロジェクト: AdriDlu/coreboot
/**
 *
 *      This function executes receiver enable training for a specific die
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]  Pass - Pass of the receiver training
 *
 *     @return          TRUE -  No fatal error occurs.
 *     @return          FALSE - Fatal error occurs.
 */
BOOLEAN
STATIC
MemTDqsTrainRcvrEnSw (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Pass
  )
{
  _16BYTE_ALIGN  UINT8  PatternBuffer[3 * 64];
  UINT8  TestBuffer[120];
  UINT8  *PatternBufPtr[4];
  UINT8  *TempPtr;
  UINT32 TestAddrRJ16[4];
  UINT32 TempAddrRJ16;
  UINT32 RealAddr;
  UINT16 CurTest[4];
  UINT8 Dct;
  UINT8 Receiver;
  UINT8 i;
  UINT8 TimesFail;
  UINT8 TimesRetrain;
  UINT16 RcvrEnDly;
  UINT16 MaxRcvrEnDly;
  UINT16 RcvrEnDlyLimit;
  UINT16 MaxDelayCha;
  BOOLEAN IsDualRank;
  BOOLEAN S0En;
  BOOLEAN S1En;
  UINT8 MaxFilterDly;

  MEM_DATA_STRUCT *MemPtr;
  DIE_STRUCT *MCTPtr;
  DCT_STRUCT *DCTPtr;
  MEM_NB_BLOCK  *NBPtr;

  NBPtr = TechPtr->NBPtr;
  MemPtr = NBPtr->MemPtr;
  MCTPtr = NBPtr->MCTPtr;

  TempAddrRJ16 = 0;
  TempPtr = NULL;
  MaxDelayCha = 0;
  MaxFilterDly = TechPtr->MaxFilterDly;
  RcvrEnDlyLimit = NBPtr->RcvrEnDlyLimit;
  TimesRetrain = DEFAULT_TRAINING_TIMES;
  IDS_OPTION_HOOK (IDS_MEM_RETRAIN_TIMES, &TimesRetrain, &MemPtr->StdHeader);

  IDS_HDT_CONSOLE ("!\nStart SW RxEn training\n");
  // Set environment settings before training
  MemTBeginTraining (TechPtr);

  PatternBufPtr[0] = PatternBufPtr[2] = PatternBuffer;
  MemUFillTrainPattern (TestPattern0, PatternBufPtr[0], 64);
  PatternBufPtr[1] = PatternBufPtr[3] = PatternBufPtr[0] + 128;
  MemUFillTrainPattern (TestPattern1, PatternBufPtr[1], 64);

  // Begin receiver enable training
  AGESA_TESTPOINT (TpProcMemReceiverEnableTraining, &(MemPtr->StdHeader));
  MaxRcvrEnDly = 0;
  for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
    IDS_HDT_CONSOLE ("!\tDct %d\n", Dct);
    NBPtr->SwitchDCT (NBPtr, Dct);
    DCTPtr = NBPtr->DCTPtr;

    // Set training bit
    NBPtr->SetBitField (NBPtr, BFDqsRcvEnTrain, 1);

    // Relax Max Latency before training
    NBPtr->SetMaxLatency (NBPtr, 0xFFFF);

    if (Pass == FIRST_PASS) {
      TechPtr->InitDQSPos4RcvrEn (TechPtr);
    }

    // there are four receiver pairs, loosely associated with chipselects.
    Receiver = DCTPtr->Timings.CsEnabled ? 0 : 8;
    for (; Receiver < 8; Receiver += 2) {
      TechPtr->DqsRcvEnSaved = 0;
      RcvrEnDly = RcvrEnDlyLimit;
      S0En = NBPtr->GetSysAddr (NBPtr, Receiver, &TestAddrRJ16[0]);
      S1En = NBPtr->GetSysAddr (NBPtr, Receiver + 1, &TestAddrRJ16[2]);
      if (S0En) {
        TestAddrRJ16[1] = TestAddrRJ16[0] + BIGPAGE_X8_RJ16;
      }
      if (S1En) {
        TestAddrRJ16[3] = TestAddrRJ16[2] + BIGPAGE_X8_RJ16;
      }
      if (S0En && S1En) {
        IsDualRank = TRUE;
      } else {
        IsDualRank = FALSE;
      }

      if (S0En || S1En) {
        IDS_HDT_CONSOLE ("!\t\tCS %d\n", Receiver);

        // Write the test patterns
        AGESA_TESTPOINT (TpProcMemRcvrWritePattern, &(MemPtr->StdHeader));
        IDS_HDT_CONSOLE ("\t\t\tWrite to addresses: ");
        for (i = (S0En ? 0 : 2); i < (S1En ? 4 : 2); i++) {
          RealAddr = MemUSetUpperFSbase (TestAddrRJ16[i], MemPtr);
          MemUWriteCachelines (RealAddr, PatternBufPtr[i], 1);
          IDS_HDT_CONSOLE (" %04lx0000 ", TestAddrRJ16[i]);
        }
        IDS_HDT_CONSOLE ("\n");

        // Initialize RcvrEnDly value and other DCT stored values
        //                MCTPtr->DqsRcvEnPass = Pass ? 0xFF : 0;

        // Sweep receiver enable delays
        AGESA_TESTPOINT (TpProcMemRcvrStartSweep, &(MemPtr->StdHeader));
        TimesFail = 0;
        ERROR_HANDLE_RETRAIN_BEGIN (TimesFail, TimesRetrain)
        {
          for (RcvrEnDly = 0; RcvrEnDly < RcvrEnDlyLimit; RcvrEnDly++) {
            AGESA_TESTPOINT (TpProcMemRcvrSetDelay, &(MemPtr->StdHeader));
            TechPtr->SetRcvrEnDly (TechPtr, Receiver, RcvrEnDly);
            IDS_HDT_CONSOLE ("\t\t\tDly %3x", RcvrEnDly);

            // Read and compare the first beat of data
            for (i = (S0En ? 0 : 2); i < (S1En ? 4 : 2); i++) {
              AGESA_TESTPOINT (TpProcMemRcvrReadPattern, &(MemPtr->StdHeader));
              RealAddr = MemUSetUpperFSbase (TestAddrRJ16[i], MemPtr);
              MemUReadCachelines (TestBuffer, RealAddr, 1);
              AGESA_TESTPOINT (TpProcMemRcvrTestPattern, &(MemPtr->StdHeader));
              CurTest[i] = TechPtr->Compare1ClPattern (TechPtr, TestBuffer, PatternBufPtr[i]);
              // Due to speculative execution during MemUReadCachelines, we must
              //  flush one more cache line than we read.
              MemUProcIOClFlush (TestAddrRJ16[i], 2, MemPtr);
              TechPtr->ResetDCTWrPtr (TechPtr, Receiver);

              //
              // Swap the test pointers such that even and odd steps alternate.
              //
              if ((i % 2) == 0) {
                TempPtr = PatternBufPtr[i];
                PatternBufPtr[i] = PatternBufPtr[i + 1];

                TempAddrRJ16 = TestAddrRJ16[i];
                TestAddrRJ16[i] = TestAddrRJ16[i + 1];
              } else {
                PatternBufPtr[i] = TempPtr;
                TestAddrRJ16[i] = TempAddrRJ16;
              }
            }

            if (TechPtr->SaveRcvrEnDly (TechPtr, Receiver, RcvrEnDly, S0En ? (CurTest[0] & CurTest[1]) : 0xFFFF, S1En ? (CurTest[2] & CurTest[3]) : 0xFFFF)) {
              // if all bytelanes pass
              if (MaxRcvrEnDly < (RcvrEnDly - MaxFilterDly)) {
                MaxRcvrEnDly = RcvrEnDly - MaxFilterDly;
              }
              break;
            }
          } // End of delay sweep
          ERROR_HANDLE_RETRAIN_END ((RcvrEnDly > (RcvrEnDlyLimit - 1)), TimesFail)
        }

        if (RcvrEnDly == RcvrEnDlyLimit) {
          // no passing window
          PutEventLog (AGESA_ERROR, MEM_ERROR_RCVR_EN_NO_PASSING_WINDOW_EQUAL_LIMIT, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader);
          SetMemError (AGESA_ERROR, MCTPtr);
        }

        if (RcvrEnDly > (RcvrEnDlyLimit - 1)) {
        // passing window too narrow, too far delayed
          PutEventLog (AGESA_ERROR, MEM_ERROR_RCVR_EN_VALUE_TOO_LARGE_LIMIT_LESS_ONE, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader);
          SetMemError (AGESA_ERROR, MCTPtr);
          DCTPtr->Timings.CsTrainFail |= DCTPtr->Timings.CsPresent & (UINT16) (3 << Receiver);
          MCTPtr->ChannelTrainFail |= (UINT32)1 << Dct;
          if (!NBPtr->MemPtr->ErrorHandling (MCTPtr, NBPtr->Dct, DCTPtr->Timings.CsTrainFail, &NBPtr->MemPtr->StdHeader)) {
            return FALSE;
          }
        }
      }

      TechPtr->LoadRcvrEnDly (TechPtr, Receiver);     // set final delays
    }   // End while Receiver < 8

    // Clear training bit when done
    NBPtr->SetBitField (NBPtr, BFDqsRcvEnTrain, 0);

    // Set Max Latency for both channels
    MaxRcvrEnDly += 0x20;  // @attention -
    IDS_HDT_CONSOLE ("\t\tMaxRcvrEnDly: %03x\n", MaxRcvrEnDly);
    if (MCTPtr->GangedMode) {
      if (Dct == 0) {
        MaxDelayCha = MaxRcvrEnDly;
      } else if (MaxRcvrEnDly > MaxDelayCha) {
        NBPtr->SwitchDCT (NBPtr, 0);
        NBPtr->SetMaxLatency (NBPtr, MaxRcvrEnDly);
      }
    } else {
      NBPtr->SetMaxLatency (NBPtr, MaxRcvrEnDly);
    }
    TechPtr->ResetDCTWrPtr (TechPtr, 6);
  }
コード例 #6
0
ファイル: mttml.c プロジェクト: andy737/firebrickRemote
BOOLEAN
MemTTrainMaxLatency (
  IN OUT   MEM_TECH_BLOCK *TechPtr
  )
{
  UINT32 TestAddrRJ16;
  UINT8 Dct;
  UINT8 ChipSel;
  UINT8  *PatternBufPtr;
  UINT8  *TestBufferPtr;
  UINT8  CurrentNbPstate;
  UINT16 CalcMaxLatDly;
  UINT16 MaxLatDly;
  UINT16 MaxLatLimit;
  UINT16 Margin;
  UINT16 CurTest;
  UINT16 _CL_;
  UINT8 TimesFail;
  UINT8 TimesRetrain;
  UINT16 i;

  MEM_DATA_STRUCT *MemPtr;
  DIE_STRUCT *MCTPtr;
  MEM_NB_BLOCK  *NBPtr;

  NBPtr = TechPtr->NBPtr;
  MCTPtr = NBPtr->MCTPtr;
  MemPtr = NBPtr->MemPtr;
  TechPtr->TrainingType = TRN_MAX_READ_LATENCY;
  TimesRetrain = DEFAULT_TRAINING_TIMES;
  IDS_OPTION_HOOK (IDS_MEM_RETRAIN_TIMES, &TimesRetrain, &MemPtr->StdHeader);

  IDS_HDT_CONSOLE (MEM_STATUS, "\nStart MaxRdLat training\n");
  // Set environment settings before training
  AGESA_TESTPOINT (TpProcMemMaxRdLatencyTraining, &(MemPtr->StdHeader));
  MemTBeginTraining (TechPtr);
  //
  // Initialize the Training Pattern
  //
  if (AGESA_SUCCESS != NBPtr->TrainingPatternInit (NBPtr)) {
    return (BOOLEAN) (MCTPtr->ErrCode < AGESA_FATAL);
  }
  TechPtr->PatternLength = (MCTPtr->Status[Sb128bitmode]) ? 6 : 3;
  //
  // Setup hardware training engine (if applicable)
  //
  NBPtr->FamilySpecificHook[SetupHwTrainingEngine] (NBPtr, &TechPtr->TrainingType);

  MaxLatDly = 0;
  _CL_ = TechPtr->PatternLength;
  PatternBufPtr = TechPtr->PatternBufPtr;
  TestBufferPtr = TechPtr->TestBufPtr;
  //
  // Begin max latency training
  //
  for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
    if (MCTPtr->Status[Sb128bitmode] && (Dct != 0)) {
      break;
    }

    IDS_HDT_CONSOLE (MEM_STATUS, "\tDct %d\n", Dct);
    NBPtr->SwitchDCT (NBPtr, Dct);

    if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
      if (TechPtr->FindMaxDlyForMaxRdLat (TechPtr, &ChipSel)) {
        TechPtr->ChipSel = ChipSel;
        if (NBPtr->GetSysAddr (NBPtr, ChipSel, &TestAddrRJ16)) {
          IDS_HDT_CONSOLE (MEM_STATUS, "\t\tCS %d\n", ChipSel);
          IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tWrite to address: %04x0000\n", TestAddrRJ16);

          // Write the test patterns
          AGESA_TESTPOINT (TpProcMemMaxRdLatWritePattern, &(MemPtr->StdHeader));
          NBPtr->WritePattern (NBPtr, TestAddrRJ16, PatternBufPtr, _CL_);

          // Sweep max latency delays
          NBPtr->getMaxLatParams (NBPtr, TechPtr->MaxDlyForMaxRdLat, &CalcMaxLatDly, &MaxLatLimit, &Margin);
          AGESA_TESTPOINT (TpProcMemMaxRdLatStartSweep, &(MemPtr->StdHeader));

          TimesFail = 0;
          ERROR_HANDLE_RETRAIN_BEGIN (TimesFail, TimesRetrain)
          {
            MaxLatDly = CalcMaxLatDly;
            for (i = 0; i < (MaxLatLimit - CalcMaxLatDly); i++) {
              NBPtr->SetBitField (NBPtr, BFMaxLatency, MaxLatDly);
              IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tDly %3x", MaxLatDly);
              TechPtr->ResetDCTWrPtr (TechPtr, 6);

              AGESA_TESTPOINT (TpProcMemMaxRdLatReadPattern, &(MemPtr->StdHeader));
              NBPtr->ReadPattern (NBPtr, TestBufferPtr, TestAddrRJ16, _CL_);
              AGESA_TESTPOINT (TpProcMemMaxRdLatTestPattern, &(MemPtr->StdHeader));
              CurTest = NBPtr->CompareTestPattern (NBPtr, TestBufferPtr, PatternBufPtr, _CL_ * 64);
              NBPtr->FlushPattern (NBPtr, TestAddrRJ16, _CL_);

              if (NBPtr->IsSupported[ReverseMaxRdLatTrain]) {
                // Reverse training decrements MaxLatDly whenever the test passes
                // and uses the last passing MaxLatDly as left edge
                if (CurTest == 0xFFFF) {
                  IDS_HDT_CONSOLE (MEM_FLOW, "  P");
                  if (MaxLatDly == 0) {
                    break;
                  } else {
                    MaxLatDly--;
                  }
                }
              } else {
                // Traditional training increments MaxLatDly until the test passes
                // and uses it as left edge
                if (CurTest == 0xFFFF) {
                  IDS_HDT_CONSOLE (MEM_FLOW, "  P");
                  break;
                } else {
                  MaxLatDly++;
                }
              }
              IDS_HDT_CONSOLE (MEM_FLOW, "\n");
            } // End of delay sweep
            ERROR_HANDLE_RETRAIN_END ((MaxLatDly >= MaxLatLimit), TimesFail)
          }

          AGESA_TESTPOINT (TpProcMemMaxRdLatSetDelay, &(MemPtr->StdHeader));

          if (MaxLatDly >= MaxLatLimit) {
            PutEventLog (AGESA_ERROR, MEM_ERROR_MAX_LAT_NO_WINDOW, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader);
            SetMemError (AGESA_ERROR, MCTPtr);
            NBPtr->DCTPtr->Timings.CsTrainFail |= NBPtr->DCTPtr->Timings.CsPresent;
            MCTPtr->ChannelTrainFail |= (UINT32)1 << Dct;
            if (!NBPtr->MemPtr->ErrorHandling (MCTPtr, NBPtr->Dct, EXCLUDE_ALL_CHIPSEL, &NBPtr->MemPtr->StdHeader)) {
              ASSERT (FALSE);
              return FALSE;
            }
          } else {
            NBPtr->FamilySpecificHook[AddlMaxRdLatTrain] (NBPtr, &TestAddrRJ16);

            MaxLatDly = MaxLatDly + Margin;
            if (NBPtr->IsSupported[ReverseMaxRdLatTrain]) {
              MaxLatDly++;  // Add 1 to get back to the last passing value
            }
            // Set final delays
            CurrentNbPstate = (UINT8) MemNGetBitFieldNb (NBPtr, BFCurNbPstate);
            ASSERT (CurrentNbPstate <= 3);
            NBPtr->ChannelPtr->DctMaxRdLat [CurrentNbPstate] = MaxLatDly;
            NBPtr->SetBitField (NBPtr, BFMaxLatency, MaxLatDly);
            IDS_HDT_CONSOLE (MEM_FLOW, "\t\tFinal MaxRdLat: %03x\n", MaxLatDly);

          }
        }
      }