void FragCatalogEntry::setDescription(const FragCatParams *params) { PRECONDITION(params, ""); INT_INT_VECT_MAP::const_iterator fMapIt; for (fMapIt = d_aToFmap.begin(); fMapIt != d_aToFmap.end(); fMapIt++) { int atIdx = fMapIt->first; INT_VECT fGroups = fMapIt->second; std::string label = "", temp; INT_VECT::const_iterator fGroupIdx = fGroups.begin(); const ROMol *fGroup; for (unsigned int i = 0; i < fGroups.size() - 1; i++) { fGroup = params->getFuncGroup(*fGroupIdx); fGroup->getProp(common_properties::_Name, temp); label += "(<" + temp + ">)"; fGroupIdx++; } fGroup = params->getFuncGroup(*fGroupIdx); fGroup->getProp(common_properties::_Name, temp); label += "<" + temp + ">"; dp_mol->getAtomWithIdx(atIdx) ->setProp(common_properties::_supplementalSmilesLabel, label); } std::string smi = MolToSmiles(*dp_mol); // std::cerr << "----" << smi << "----" << std::endl; d_descrip = smi; };
//************************************************************************************* // // Adds 2D coordinates to a molecule using the Depict.dll // // ARGUMENTS: // mol: the molecule to be altered // tempFilename: (OPTIONAL) the name of the temporary file // // RETURNS: // 1 on success, 0 otherwise // // Here's the process by which this works (it's kind of contorted): // 1) convert the mol to SMILES // 2) use the DLL to convert the SMILES to a mol file (on disk) // 3) parse the mol file into a temporary molecule // 4) do a substructure match from the old molecule to the // temp one (which may have a different atom numbering or additional // atoms added). // 5) Update the positions of the atoms on the old molecule. // 6) Free the temp molecule. // // NOTES: // - *FIX:* at the moment we're not doing anything to clear up the // temp file created in this process. It'll always have the same // name unless the user explicitly asks that we do something different. // - To use the DLL, it's essential that the COMBICHEM_ROOT and COMBICHEM_RELEASE // environment variables be set. If this isn't done, this whole process // will fail. // - See the notes above about failures when opening the DLL. // //************************************************************************************* int Add2DCoordsToMolDLL(ROMol &mol,std::string tempFilename){ std::string smi=MolToSmiles(mol,true); int tmp = SmilesToMolFileDLL(smi,tempFilename); int res = -1; if(tmp){ // build another mol from that mol file: RWMol *tmpMol = MolFileToMol(tempFilename,false); // match it up with the starting mol: // (We need to do this because the depict.dll conversion // to a mol file may have added Hs) MatchVectType matchVect; bool hasMatch=SubstructMatch(tmpMol,&mol,matchVect); if(hasMatch){ const Conformer &conf = tmpMol->getCoformer(0); Coformer *nconf = new Coformer(mol.getNumAtoms()); for(MatchVectType::const_iterator mvi=matchVect.begin(); mvi!=matchVect.end();mvi++){ nconf->setAtomPos(conf.getAtomPos(mvi->first)); } confId = (int)mol.addConformer(nconf, true); } delete tmpMol; } return res; }
std::vector<std::vector<std::string> > EnumerateLibraryBase::nextSmiles() { std::vector<std::vector<std::string> > result; std::vector<MOL_SPTR_VECT> mols = next(); const bool doisomeric = true; result.resize(mols.size()); for (size_t i = 0; i < mols.size(); ++i) { result[i].resize(mols[i].size()); for (size_t j = 0; j < mols[i].size(); ++j) { if (mols[i][j].get()) result[i][j] = MolToSmiles(*mols[i][j], doisomeric); } } return result; }
ROMol *LargestFragmentChooser::choose(const ROMol &mol) { BOOST_LOG(rdInfoLog) << "Running LargestFragmentChooser\n"; std::vector<boost::shared_ptr<ROMol>> frags = MolOps::getMolFrags(mol); LargestFragmentChooser::Largest l; for (const auto &frag : frags) { std::string smiles = MolToSmiles(*frag); BOOST_LOG(rdInfoLog) << "Fragment: " << smiles << "\n"; bool organic = isOrganic(*frag); if (this->PREFER_ORGANIC) { // Skip this fragment if not organic and we already have an organic // fragment as the largest so far if (l.Fragment != nullptr && l.Organic && !organic) continue; // Reset largest if it wasn't organic and this fragment is organic // if largest and organic and not largest['organic']: if (l.Fragment != nullptr && organic && !l.Organic) { l.Fragment = nullptr; } } unsigned int numatoms = 0; for (const auto at : frag->atoms()) { numatoms += 1 + at->getTotalNumHs(); } // Skip this fragment if fewer atoms than the largest if (l.Fragment != nullptr && (numatoms < l.NumAtoms)) continue; // Skip this fragment if equal number of atoms but weight is lower double weight = Descriptors::calcExactMW(*frag); if (l.Fragment != nullptr && (numatoms == l.NumAtoms) && (weight < l.Weight)) continue; // Skip this fragment if equal number of atoms and equal weight but smiles // comes last alphabetically if (l.Fragment != nullptr && (numatoms == l.NumAtoms) && (weight == l.Weight) && (smiles > l.Smiles)) continue; BOOST_LOG(rdInfoLog) << "New largest fragment: " << smiles << " (" << numatoms << ")\n"; // Otherwise this is the largest so far l.Smiles = smiles; l.Fragment = frag; l.NumAtoms = numatoms; l.Weight = weight; l.Organic = organic; } return new ROMol(*(l.Fragment)); }
python::list GetRGroupsAsRows(bool asSmiles=false) { const RGroupRows &groups = decomp->getRGroupsAsRows(); python::list result; for (RGroupRows::const_iterator it = groups.begin(); it != groups.end(); ++it) { python::dict dict; const RGroupRow &side_chains = *(it); for (RGroupRow::const_iterator sit = side_chains.begin(); sit != side_chains.end(); ++sit) { if (asSmiles) { dict[sit->first] = MolToSmiles(*sit->second, true); } else { dict[sit->first] = sit->second; } } result.append(dict); } return result; }
python::dict GetRGroupsAsColumn(bool asSmiles=false) { python::dict result; RGroupColumns groups = decomp->getRGroupsAsColumns(); for (RGroupColumns::const_iterator it = groups.begin(); it != groups.end(); ++it) { python::list col; for (RGroupColumn::const_iterator cit = it->second.begin(); cit != it->second.end(); ++cit) { if (asSmiles) { col.append(MolToSmiles(**cit,true)); } else { col.append(*cit); } } result[it->first] = col; } return result; }
void TDTWriter::write(const ROMol &mol, int confId) { CHECK_INVARIANT(dp_ostream,"no output stream"); //start by writing a "|" line unless this is the first line if (d_molid > 0) { (*dp_ostream) << "|\n"; } // write the molecule (*dp_ostream) << "$SMI<" << MolToSmiles(mol) << ">\n"; if(df_writeNames && mol.hasProp("_Name")){ std::string name; mol.getProp("_Name",name); (*dp_ostream) << "NAME<" << name << ">\n"; } // do we need to write coordinates? if(mol.getNumConformers()){ // get the ordering of the atoms in the output SMILES: std::vector<unsigned int> atomOrdering; mol.getProp("_smilesAtomOutputOrder",atomOrdering); const Conformer &conf = mol.getConformer(confId); if(df_write2D){ (*dp_ostream) << "2D<"; } else { (*dp_ostream) << "3D<"; } const RDGeom::POINT3D_VECT &coords=conf.getPositions(); int nAts=atomOrdering.size(); for(int i=0;i<nAts;i++){ (*dp_ostream) << std::setprecision(d_numDigits) << coords[atomOrdering[i]].x << ","; (*dp_ostream) << std::setprecision(d_numDigits) << coords[atomOrdering[i]].y; if(!df_write2D){ (*dp_ostream) << "," << std::setprecision(d_numDigits) << coords[atomOrdering[i]].z; } if(i!=nAts-1) (*dp_ostream) << ","; } (*dp_ostream) << ";>\n"; } // now write the properties STR_VECT_CI pi; if (d_props.size() > 0) { // check if we have any properties the user specified to write out // in which loop over them and write them out for (pi = d_props.begin(); pi != d_props.end(); pi++) { if (mol.hasProp(*pi)) { writeProperty(mol, (*pi)); } } } else { // if use did not specify any properties, write all non computed properties // out to the file STR_VECT properties = mol.getPropList(); STR_VECT compLst; if (mol.hasProp(detail::computedPropName)) { mol.getProp(detail::computedPropName, compLst); } STR_VECT_CI pi; for (pi = properties.begin(); pi != properties.end(); pi++) { // ignore any of the following properties if ( ((*pi) == detail::computedPropName) || ((*pi) == "_Name") || ((*pi) == "_MolFileInfo") || ((*pi) == "_MolFileComments") || ((*pi) == "_MolFileChiralFlag")) { continue; } // check if this property is not computed if (std::find(compLst.begin(), compLst.end(), (*pi)) == compLst.end()) { writeProperty(mol, (*pi)); } } } d_molid++; }
static void addResult(std::vector<std::pair<ROMOL_SPTR, ROMOL_SPTR> >& res, // const SignatureVector& resSignature, const ROMol& mol, const BondVector_t& bonds_selected, size_t maxCuts) { #ifdef _DEBUG std::cout << res.size() + 1 << ": "; #endif RWMol em(mol); // loop through the bonds to delete. == deleteBonds() unsigned isotope = 0; std::map<unsigned, unsigned> isotope_track; for (size_t i = 0; i < bonds_selected.size(); i++) { #ifdef _DEBUG { std::string symbol = em.getAtomWithIdx(bonds_selected[i].first)->getSymbol(); int label = 0; em.getAtomWithIdx(bonds_selected[i].first) ->getPropIfPresent(common_properties::molAtomMapNumber, label); char a1[32]; if (0 == label) sprintf(a1, "\'%s\'", symbol.c_str(), label); else sprintf(a1, "\'%s:%u\'", symbol.c_str(), label); symbol = em.getAtomWithIdx(bonds_selected[i].second)->getSymbol(); label = 0; em.getAtomWithIdx(bonds_selected[i].second) ->getPropIfPresent(common_properties::molAtomMapNumber, label); char a2[32]; if (0 == label) sprintf(a2, "\'%s\'", symbol.c_str(), label); else sprintf(a2, "\'%s:%u\'", symbol.c_str(), label); std::cout << "(" << bonds_selected[i].first << a1 << "," << bonds_selected[i].second << a2 << ") "; } #endif isotope += 1; // remove the bond em.removeBond(bonds_selected[i].first, bonds_selected[i].second); // now add attachement points and set attachment point lables Atom* a = new Atom(0); a->setProp(common_properties::molAtomMapNumber, (int)isotope); unsigned newAtomA = em.addAtom(a, true, true); em.addBond(bonds_selected[i].first, newAtomA, Bond::SINGLE); a = new Atom(0); a->setProp(common_properties::molAtomMapNumber, (int)isotope); unsigned newAtomB = em.addAtom(a, true, true); em.addBond(bonds_selected[i].second, newAtomB, Bond::SINGLE); // keep track of where to put isotopes isotope_track[newAtomA] = isotope; isotope_track[newAtomB] = isotope; } #ifdef _DEBUG std::cout << "\n"; #endif RWMOL_SPTR core, side_chains; // core & side_chains output molecules if (isotope == 1) { side_chains = RWMOL_SPTR(new RWMol(em)); // output = '%s,%s,,%s.%s' // DEBUG PRINT #ifdef _DEBUG // OK: std::cout<<res.size()+1<<" isotope="<< isotope <<","<< // MolToSmiles(*side_chains, true) <<"\n"; #endif } else if (isotope >= 2) { std::vector<std::vector<int> > frags; unsigned int nFrags = MolOps::getMolFrags(em, frags); //#check if its a valid triple or bigger cut. matchObj = re.search( //'\*.*\*.*\*', f) // check if exists a fragment with maxCut connection points (*.. *.. *) if (isotope >= 3) { bool valid = false; for (size_t i = 0; i < nFrags; i++) { unsigned nLabels = 0; for (size_t ai = 0; ai < frags[i].size(); ai++) { if (isotope_track.end() != isotope_track.find(frags[i][ai])) // new added atom ++nLabels; // found connection point } if (nLabels >= maxCuts) { // looks like it should be selected as core ! ?????? valid = true; break; } } if (!valid) { #ifdef _DEBUG std::cout << "isotope>=3: invalid fragments. fragment with maxCut " "connection points not found" << "\n"; #endif return; } } size_t iCore = std::numeric_limits<size_t>::max(); side_chains = RWMOL_SPTR(new RWMol); std::map<unsigned, unsigned> visitedBonds; // key is bond index in source molecule unsigned maxAttachments = 0; for (size_t i = 0; i < frags.size(); i++) { unsigned nAttachments = 0; for (size_t ai = 0; ai < frags[i].size(); ai++) { if (isotope_track.end() != isotope_track.find( frags[i][ai])) // == if(a->hasProp("molAtomMapNumber")) ++nAttachments; } if (maxAttachments < nAttachments) maxAttachments = nAttachments; if (1 == nAttachments) { // build side-chain set of molecules from // selected fragment std::map<unsigned, unsigned> newAtomMap; // key is atom index in source molecule for (size_t ai = 0; ai < frags[i].size(); ai++) { Atom* a = em.getAtomWithIdx(frags[i][ai]); newAtomMap[frags[i][ai]] = side_chains->addAtom(a->copy(), true, true); } // add all bonds from this fragment for (size_t ai = 0; ai < frags[i].size(); ai++) { Atom* a = em.getAtomWithIdx(frags[i][ai]); ROMol::OEDGE_ITER beg, end; for (boost::tie(beg, end) = em.getAtomBonds(a); beg != end; ++beg) { const BOND_SPTR bond = em[*beg]; if (newAtomMap.end() == newAtomMap.find(bond->getBeginAtomIdx()) || newAtomMap.end() == newAtomMap.find(bond->getEndAtomIdx()) || visitedBonds.end() != visitedBonds.find(bond->getIdx())) continue; unsigned ai1 = newAtomMap[bond->getBeginAtomIdx()]; unsigned ai2 = newAtomMap[bond->getEndAtomIdx()]; unsigned bi = side_chains->addBond(ai1, ai2, bond->getBondType()); visitedBonds[bond->getIdx()] = bi; } } } else { // select the core fragment // DEBUG PRINT #ifdef _DEBUG if (iCore != -1) std::cout << "Next CORE found. iCore=" << iCore << " New i=" << i << " nAttachments=" << nAttachments << "\n"; #endif if (nAttachments >= maxAttachments) // Choose a fragment with maximal // number of connection points as a // core iCore = i; } } // build core molecule from selected fragment if (iCore != std::numeric_limits<size_t>::max()) { core = RWMOL_SPTR(new RWMol); visitedBonds.clear(); std::map<unsigned, unsigned> newAtomMap; // key is atom index in source molecule for (size_t i = 0; i < frags[iCore].size(); i++) { unsigned ai = frags[iCore][i]; Atom* a = em.getAtomWithIdx(ai); newAtomMap[ai] = core->addAtom(a->copy(), true, true); } // add all bonds from this fragment for (size_t ai = 0; ai < frags[iCore].size(); ai++) { Atom* a = em.getAtomWithIdx(frags[iCore][ai]); ROMol::OEDGE_ITER beg, end; for (boost::tie(beg, end) = em.getAtomBonds(a); beg != end; ++beg) { const BOND_SPTR bond = em[*beg]; if (newAtomMap.end() == newAtomMap.find(bond->getBeginAtomIdx()) || newAtomMap.end() == newAtomMap.find(bond->getEndAtomIdx()) || visitedBonds.end() != visitedBonds.find(bond->getIdx())) continue; unsigned ai1 = newAtomMap[bond->getBeginAtomIdx()]; unsigned ai2 = newAtomMap[bond->getEndAtomIdx()]; unsigned bi = core->addBond(ai1, ai2, bond->getBondType()); visitedBonds[bond->getIdx()] = bi; } } // DEBUG PRINT #ifdef _DEBUG // std::cout<<res.size()+1<<" isotope="<< isotope <<" "<< MolToSmiles(*core, // true)<<", "<<MolToSmiles(*side_chains, true)<<"\n"; #endif } // iCore != -1 } // check for duplicates: bool resFound = false; size_t ri = 0; for (ri = 0; ri < res.size(); ri++) { const std::pair<ROMOL_SPTR, ROMOL_SPTR>& r = res[ri]; if (side_chains->getNumAtoms() == r.second->getNumAtoms() && side_chains->getNumBonds() == r.second->getNumBonds() && ((NULL == core.get() && NULL == r.first.get()) || (NULL != core.get() && NULL != r.first.get() && core->getNumAtoms() == r.first->getNumAtoms() && core->getNumBonds() == r.first->getNumBonds()))) { // ToDo accurate check: // 1. compare hash code if (computeMorganCodeHash(*side_chains) == computeMorganCodeHash(*r.second) && (NULL == core || computeMorganCodeHash(*core) == computeMorganCodeHash(*r.first))) { // 2. final check to exclude hash collisions // We decided that it does not neccessary to implement resFound = true; break; } } } if (!resFound) { //std::cerr << "**********************" << std::endl; // From rfrag.py // now change the labels on sidechains and core // to get the new labels, cansmi the dot-disconnected side chains // the first fragment in the side chains has attachment label 1, 2nd: 2, 3rd: 3 // then change the labels accordingly in the core std::map<unsigned int, int> canonicalAtomMaps; if( side_chains.get() ) { RWMol tmp_side_chain(*(side_chains.get())); std::vector<int> oldMaps(tmp_side_chain.getNumAtoms(), 0); // clear atom labels (they are used in canonicalization) // and move them to dummy storage for (ROMol::AtomIterator at = tmp_side_chain.beginAtoms(); at != tmp_side_chain.endAtoms(); ++at) { int label = 0; if ((*at)->getPropIfPresent(common_properties::molAtomMapNumber, label) ) { (*at)->clearProp(common_properties::molAtomMapNumber); oldMaps[(*at)->getIdx()] = label; } } const bool doIsomericSmiles = true; // should this be false??? std::string smiles = MolToSmiles(tmp_side_chain, doIsomericSmiles); //std::cerr << "smiles: " << smiles << std::endl; // Get the canonical output order and use it to remap // the atom maps int the side chains // these will get reapplied to the core (if there is a core) const std::vector<unsigned int> &ranks = tmp_side_chain.getProp< std::vector<unsigned int> >( common_properties::_smilesAtomOutputOrder); std::vector<std::pair<unsigned int, int> > rankedAtoms; for(size_t idx=0;idx<ranks.size();++idx) { unsigned int atom_idx = ranks[idx]; if(oldMaps[atom_idx] >0) { const int label = oldMaps[atom_idx]; //std::cerr << "atom_idx: " << atom_idx << " rank: " << ranks[atom_idx] << // " molAtomMapNumber: " << label << std::endl; rankedAtoms.push_back(std::make_pair(idx, label)); } } std::sort(rankedAtoms.begin(), rankedAtoms.end()); int nextMap = 0; for(size_t i=0;i<rankedAtoms.size();++i) { if(canonicalAtomMaps.find(rankedAtoms[i].second) == canonicalAtomMaps.end()) { //std::cerr << "Remapping: " << rankedAtoms[i].second << " " << " to " << (i+1) << // std::endl; canonicalAtomMaps[rankedAtoms[i].second] = ++nextMap; } } } //std::cerr << "======== Remap core " << std::endl; if( core.get() ) { // remap core if it exists for (ROMol::AtomIterator at = core->beginAtoms(); at != core->endAtoms(); ++at) { int label = 0; if ((*at)->getPropIfPresent(common_properties::molAtomMapNumber, label) ) { //std::cerr << "remapping core: " << label << " :" << canonicalAtomMaps[label] << // std::endl; (*at)->setProp(common_properties::molAtomMapNumber, canonicalAtomMaps[label]); } } } //std::cerr << "======== Remap side-chain " << std::endl; for (ROMol::AtomIterator at = side_chains->beginAtoms(); at != side_chains->endAtoms(); ++at) { int label = 0; if ((*at)->getPropIfPresent(common_properties::molAtomMapNumber, label) ) { //std::cerr << "remapping side chain: " << label << " :" << // canonicalAtomMaps[label] << std::endl; (*at)->setProp(common_properties::molAtomMapNumber, canonicalAtomMaps[label]); } } res.push_back(std::pair<ROMOL_SPTR, ROMOL_SPTR>(core, side_chains)); // } #ifdef _DEBUG else std::cout << res.size() + 1 << " --- DUPLICATE Result FOUND --- ri=" << ri << "\n"; #endif }