PetscErrorCode NEPSolve_Interpol(NEP nep) { PetscErrorCode ierr; NEP_INTERPOL *ctx = (NEP_INTERPOL*)nep->data; Mat *A; /*T=nep->function,Tp=nep->jacobian;*/ PetscScalar *x,*fx,t; PetscReal *cs,a,b,s; PetscInt i,j,k,deg=ctx->deg; PetscFunctionBegin; ierr = PetscMalloc4(deg+1,&A,(deg+1)*(deg+1),&cs,deg+1,&x,(deg+1)*nep->nt,&fx);CHKERRQ(ierr); ierr = RGIntervalGetEndpoints(nep->rg,&a,&b,NULL,NULL);CHKERRQ(ierr); ierr = ChebyshevNodes(deg,a,b,x,cs);CHKERRQ(ierr); for (j=0;j<nep->nt;j++) { for (i=0;i<=deg;i++) { ierr = FNEvaluateFunction(nep->f[j],x[i],&fx[i+j*(deg+1)]);CHKERRQ(ierr); } } /* Polynomial coefficients */ for (k=0;k<=deg;k++) { ierr = MatDuplicate(nep->A[0],MAT_COPY_VALUES,&A[k]);CHKERRQ(ierr); t = 0.0; for (i=0;i<deg+1;i++) t += fx[i]*cs[i*(deg+1)+k]; t *= 2.0/(deg+1); if (k==0) t /= 2.0; ierr = MatScale(A[k],t);CHKERRQ(ierr); for (j=1;j<nep->nt;j++) { t = 0.0; for (i=0;i<deg+1;i++) t += fx[i+j*(deg+1)]*cs[i*(deg+1)+k]; t *= 2.0/(deg+1); if (k==0) t /= 2.0; ierr = MatAXPY(A[k],t,nep->A[j],SUBSET_NONZERO_PATTERN);CHKERRQ(ierr); } } ierr = PEPSetOperators(ctx->pep,deg+1,A);CHKERRQ(ierr); for (k=0;k<=deg;k++) { ierr = MatDestroy(&A[k]);CHKERRQ(ierr); } ierr = PetscFree4(A,cs,x,fx);CHKERRQ(ierr); /* Solve polynomial eigenproblem */ ierr = PEPSolve(ctx->pep);CHKERRQ(ierr); ierr = PEPGetConverged(ctx->pep,&nep->nconv);CHKERRQ(ierr); ierr = PEPGetIterationNumber(ctx->pep,&nep->its);CHKERRQ(ierr); ierr = PEPGetConvergedReason(ctx->pep,(PEPConvergedReason*)&nep->reason);CHKERRQ(ierr); s = 2.0/(b-a); for (i=0;i<nep->nconv;i++) { ierr = PEPGetEigenpair(ctx->pep,i,&nep->eigr[i],&nep->eigi[i],NULL,NULL);CHKERRQ(ierr); nep->eigr[i] /= s; nep->eigr[i] += (a+b)/2.0; nep->eigi[i] /= s; } nep->state = NEP_STATE_EIGENVECTORS; PetscFunctionReturn(0); }
int main(int argc,char **argv) { Mat A[NMAT]; /* problem matrices */ PEP pep; /* polynomial eigenproblem solver context */ PetscInt m=15,n,II,Istart,Iend,i,j,k; PetscReal h,xi,xj,c[7] = { 2, .3, -2, .2, -2, -.3, -PETSC_PI/2 }; PetscScalar alpha,beta,gamma; PetscBool flg; PetscErrorCode ierr; SlepcInitialize(&argc,&argv,(char*)0,help); #if !defined(PETSC_USE_COMPLEX) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP, "This example requires complex scalars"); #endif ierr = PetscOptionsGetInt(NULL,"-m",&m,NULL);CHKERRQ(ierr); n = m*m; h = PETSC_PI/(m+1); gamma = PetscExpScalar(PETSC_i*c[6]); gamma = gamma/PetscAbsScalar(gamma); k = 7; ierr = PetscOptionsGetRealArray(NULL,"-c",c,&k,&flg);CHKERRQ(ierr); if (flg && k!=7) SETERRQ1(PETSC_COMM_WORLD,1,"The number of parameters -c should be 7, you provided %D",k); ierr = PetscPrintf(PETSC_COMM_WORLD,"\nPDDE stability, n=%D (m=%D)\n\n",n,m);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Compute the polynomial matrices - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* initialize matrices */ for (i=0;i<NMAT;i++) { ierr = MatCreate(PETSC_COMM_WORLD,&A[i]);CHKERRQ(ierr); ierr = MatSetSizes(A[i],PETSC_DECIDE,PETSC_DECIDE,n,n);CHKERRQ(ierr); ierr = MatSetFromOptions(A[i]);CHKERRQ(ierr); ierr = MatSetUp(A[i]);CHKERRQ(ierr); } ierr = MatGetOwnershipRange(A[0],&Istart,&Iend);CHKERRQ(ierr); /* A[1] has a pattern similar to the 2D Laplacian */ for (II=Istart;II<Iend;II++) { i = II/m; j = II-i*m; xi = (i+1)*h; xj = (j+1)*h; alpha = c[0]+c[1]*PetscSinReal(xi)+gamma*(c[2]+c[3]*xi*(1.0-PetscExpReal(xi-PETSC_PI))); beta = c[0]+c[1]*PetscSinReal(xj)-gamma*(c[2]+c[3]*xj*(1.0-PetscExpReal(xj-PETSC_PI))); ierr = MatSetValue(A[1],II,II,alpha+beta-4.0/(h*h),INSERT_VALUES);CHKERRQ(ierr); if (j>0) { ierr = MatSetValue(A[1],II,II-1,1.0/(h*h),INSERT_VALUES);CHKERRQ(ierr); } if (j<m-1) { ierr = MatSetValue(A[1],II,II+1,1.0/(h*h),INSERT_VALUES);CHKERRQ(ierr); } if (i>0) { ierr = MatSetValue(A[1],II,II-m,1.0/(h*h),INSERT_VALUES);CHKERRQ(ierr); } if (i<m-1) { ierr = MatSetValue(A[1],II,II+m,1.0/(h*h),INSERT_VALUES);CHKERRQ(ierr); } } /* A[0] and A[2] are diagonal */ for (II=Istart;II<Iend;II++) { i = II/m; j = II-i*m; xi = (i+1)*h; xj = (j+1)*h; alpha = c[4]+c[5]*xi*(PETSC_PI-xi); beta = c[4]+c[5]*xj*(PETSC_PI-xj); ierr = MatSetValue(A[0],II,II,alpha,INSERT_VALUES);CHKERRQ(ierr); ierr = MatSetValue(A[2],II,II,beta,INSERT_VALUES);CHKERRQ(ierr); } /* assemble matrices */ for (i=0;i<NMAT;i++) { ierr = MatAssemblyBegin(A[i],MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); } for (i=0;i<NMAT;i++) { ierr = MatAssemblyEnd(A[i],MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create the eigensolver and solve the problem - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PEPCreate(PETSC_COMM_WORLD,&pep);CHKERRQ(ierr); ierr = PEPSetOperators(pep,NMAT,A);CHKERRQ(ierr); ierr = PEPSetFromOptions(pep);CHKERRQ(ierr); ierr = PEPSolve(pep);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Display solution and clean up - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PEPPrintSolution(pep,NULL);CHKERRQ(ierr); ierr = PEPDestroy(&pep);CHKERRQ(ierr); for (i=0;i<NMAT;i++) { ierr = MatDestroy(&A[i]);CHKERRQ(ierr); } ierr = SlepcFinalize();CHKERRQ(ierr); return 0; }
int main(int argc,char **argv) { Mat M,C,K,A[3]; /* problem matrices */ PEP pep; /* polynomial eigenproblem solver context */ PetscInt m=6,n,II,Istart,Iend,i,j; PetscScalar z=1.0; PetscReal h; char str[50]; PetscErrorCode ierr; SlepcInitialize(&argc,&argv,(char*)0,help); ierr = PetscOptionsGetInt(NULL,"-m",&m,NULL);CHKERRQ(ierr); if (m<2) SETERRQ(PETSC_COMM_SELF,1,"m must be at least 2"); ierr = PetscOptionsGetScalar(NULL,"-z",&z,NULL);CHKERRQ(ierr); h = 1.0/m; n = m*(m-1); ierr = SlepcSNPrintfScalar(str,50,z,PETSC_FALSE);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"\nAcoustic wave 2-D, n=%D (m=%D), z=%s\n\n",n,m,str);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* K has a pattern similar to the 2D Laplacian */ ierr = MatCreate(PETSC_COMM_WORLD,&K);CHKERRQ(ierr); ierr = MatSetSizes(K,PETSC_DECIDE,PETSC_DECIDE,n,n);CHKERRQ(ierr); ierr = MatSetFromOptions(K);CHKERRQ(ierr); ierr = MatSetUp(K);CHKERRQ(ierr); ierr = MatGetOwnershipRange(K,&Istart,&Iend);CHKERRQ(ierr); for (II=Istart;II<Iend;II++) { i = II/m; j = II-i*m; if (i>0) { ierr = MatSetValue(K,II,II-m,(j==m-1)?-0.5:-1.0,INSERT_VALUES);CHKERRQ(ierr); } if (i<m-2) { ierr = MatSetValue(K,II,II+m,(j==m-1)?-0.5:-1.0,INSERT_VALUES);CHKERRQ(ierr); } if (j>0) { ierr = MatSetValue(K,II,II-1,-1.0,INSERT_VALUES);CHKERRQ(ierr); } if (j<m-1) { ierr = MatSetValue(K,II,II+1,-1.0,INSERT_VALUES);CHKERRQ(ierr); } ierr = MatSetValue(K,II,II,(j==m-1)?2.0:4.0,INSERT_VALUES);CHKERRQ(ierr); } ierr = MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); /* C is the zero matrix except for a few nonzero elements on the diagonal */ ierr = MatCreate(PETSC_COMM_WORLD,&C);CHKERRQ(ierr); ierr = MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,n,n);CHKERRQ(ierr); ierr = MatSetFromOptions(C);CHKERRQ(ierr); ierr = MatSetUp(C);CHKERRQ(ierr); ierr = MatGetOwnershipRange(C,&Istart,&Iend);CHKERRQ(ierr); for (i=Istart;i<Iend;i++) { if (i%m==m-1) { ierr = MatSetValue(C,i,i,-2*PETSC_PI*h/z,INSERT_VALUES);CHKERRQ(ierr); } } ierr = MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); /* M is a diagonal matrix */ ierr = MatCreate(PETSC_COMM_WORLD,&M);CHKERRQ(ierr); ierr = MatSetSizes(M,PETSC_DECIDE,PETSC_DECIDE,n,n);CHKERRQ(ierr); ierr = MatSetFromOptions(M);CHKERRQ(ierr); ierr = MatSetUp(M);CHKERRQ(ierr); ierr = MatGetOwnershipRange(M,&Istart,&Iend);CHKERRQ(ierr); for (i=Istart;i<Iend;i++) { if (i%m==m-1) { ierr = MatSetValue(M,i,i,2*PETSC_PI*PETSC_PI*h*h,INSERT_VALUES);CHKERRQ(ierr); } else { ierr = MatSetValue(M,i,i,4*PETSC_PI*PETSC_PI*h*h,INSERT_VALUES);CHKERRQ(ierr); } } ierr = MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create the eigensolver and solve the problem - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PEPCreate(PETSC_COMM_WORLD,&pep);CHKERRQ(ierr); A[0] = K; A[1] = C; A[2] = M; ierr = PEPSetOperators(pep,3,A);CHKERRQ(ierr); ierr = PEPSetFromOptions(pep);CHKERRQ(ierr); ierr = PEPSolve(pep);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Display solution and clean up - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PEPPrintSolution(pep,NULL);CHKERRQ(ierr); ierr = PEPDestroy(&pep);CHKERRQ(ierr); ierr = MatDestroy(&M);CHKERRQ(ierr); ierr = MatDestroy(&C);CHKERRQ(ierr); ierr = MatDestroy(&K);CHKERRQ(ierr); ierr = SlepcFinalize();CHKERRQ(ierr); return 0; }
int main(int argc,char **argv) { Mat A[NMAT]; /* problem matrices */ PEP pep; /* polynomial eigenproblem solver context */ PetscInt n,m=8,k,II,Istart,Iend,i,j; PetscReal c[10] = { 0.6, 1.3, 1.3, 0.1, 0.1, 1.2, 1.0, 1.0, 1.2, 1.0 }; PetscBool flg; PetscErrorCode ierr; SlepcInitialize(&argc,&argv,(char*)0,help); ierr = PetscOptionsGetInt(NULL,"-m",&m,NULL);CHKERRQ(ierr); n = m*m; k = 10; ierr = PetscOptionsGetRealArray(NULL,"-c",c,&k,&flg);CHKERRQ(ierr); if (flg && k!=10) SETERRQ1(PETSC_COMM_WORLD,1,"The number of parameters -c should be 10, you provided %D",k); ierr = PetscPrintf(PETSC_COMM_WORLD,"\nButterfly problem, n=%D (m=%D)\n\n",n,m);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Compute the polynomial matrices - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* initialize matrices */ for (i=0;i<NMAT;i++) { ierr = MatCreate(PETSC_COMM_WORLD,&A[i]);CHKERRQ(ierr); ierr = MatSetSizes(A[i],PETSC_DECIDE,PETSC_DECIDE,n,n);CHKERRQ(ierr); ierr = MatSetFromOptions(A[i]);CHKERRQ(ierr); ierr = MatSetUp(A[i]);CHKERRQ(ierr); } ierr = MatGetOwnershipRange(A[0],&Istart,&Iend);CHKERRQ(ierr); /* A0 */ for (II=Istart;II<Iend;II++) { i = II/m; j = II-i*m; ierr = MatSetValue(A[0],II,II,4.0*c[0]/6.0+4.0*c[1]/6.0,INSERT_VALUES);CHKERRQ(ierr); if (j>0) { ierr = MatSetValue(A[0],II,II-1,c[0]/6.0,INSERT_VALUES);CHKERRQ(ierr); } if (j<m-1) { ierr = MatSetValue(A[0],II,II+1,c[0]/6.0,INSERT_VALUES);CHKERRQ(ierr); } if (i>0) { ierr = MatSetValue(A[0],II,II-m,c[1]/6.0,INSERT_VALUES);CHKERRQ(ierr); } if (i<m-1) { ierr = MatSetValue(A[0],II,II+m,c[1]/6.0,INSERT_VALUES);CHKERRQ(ierr); } } /* A1 */ for (II=Istart;II<Iend;II++) { i = II/m; j = II-i*m; if (j>0) { ierr = MatSetValue(A[1],II,II-1,c[2],INSERT_VALUES);CHKERRQ(ierr); } if (j<m-1) { ierr = MatSetValue(A[1],II,II+1,-c[2],INSERT_VALUES);CHKERRQ(ierr); } if (i>0) { ierr = MatSetValue(A[1],II,II-m,c[3],INSERT_VALUES);CHKERRQ(ierr); } if (i<m-1) { ierr = MatSetValue(A[1],II,II+m,-c[3],INSERT_VALUES);CHKERRQ(ierr); } } /* A2 */ for (II=Istart;II<Iend;II++) { i = II/m; j = II-i*m; ierr = MatSetValue(A[2],II,II,-2.0*c[4]-2.0*c[5],INSERT_VALUES);CHKERRQ(ierr); if (j>0) { ierr = MatSetValue(A[2],II,II-1,c[4],INSERT_VALUES);CHKERRQ(ierr); } if (j<m-1) { ierr = MatSetValue(A[2],II,II+1,c[4],INSERT_VALUES);CHKERRQ(ierr); } if (i>0) { ierr = MatSetValue(A[2],II,II-m,c[5],INSERT_VALUES);CHKERRQ(ierr); } if (i<m-1) { ierr = MatSetValue(A[2],II,II+m,c[5],INSERT_VALUES);CHKERRQ(ierr); } } /* A3 */ for (II=Istart;II<Iend;II++) { i = II/m; j = II-i*m; if (j>0) { ierr = MatSetValue(A[3],II,II-1,c[6],INSERT_VALUES);CHKERRQ(ierr); } if (j<m-1) { ierr = MatSetValue(A[3],II,II+1,-c[6],INSERT_VALUES);CHKERRQ(ierr); } if (i>0) { ierr = MatSetValue(A[3],II,II-m,c[7],INSERT_VALUES);CHKERRQ(ierr); } if (i<m-1) { ierr = MatSetValue(A[3],II,II+m,-c[7],INSERT_VALUES);CHKERRQ(ierr); } } /* A4 */ for (II=Istart;II<Iend;II++) { i = II/m; j = II-i*m; ierr = MatSetValue(A[4],II,II,2.0*c[8]+2.0*c[9],INSERT_VALUES);CHKERRQ(ierr); if (j>0) { ierr = MatSetValue(A[4],II,II-1,-c[8],INSERT_VALUES);CHKERRQ(ierr); } if (j<m-1) { ierr = MatSetValue(A[4],II,II+1,-c[8],INSERT_VALUES);CHKERRQ(ierr); } if (i>0) { ierr = MatSetValue(A[4],II,II-m,-c[9],INSERT_VALUES);CHKERRQ(ierr); } if (i<m-1) { ierr = MatSetValue(A[4],II,II+m,-c[9],INSERT_VALUES);CHKERRQ(ierr); } } /* assemble matrices */ for (i=0;i<NMAT;i++) { ierr = MatAssemblyBegin(A[i],MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); } for (i=0;i<NMAT;i++) { ierr = MatAssemblyEnd(A[i],MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create the eigensolver and solve the problem - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PEPCreate(PETSC_COMM_WORLD,&pep);CHKERRQ(ierr); ierr = PEPSetOperators(pep,NMAT,A);CHKERRQ(ierr); ierr = PEPSetFromOptions(pep);CHKERRQ(ierr); ierr = PEPSolve(pep);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Display solution and clean up - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PEPPrintSolution(pep,NULL);CHKERRQ(ierr); ierr = PEPDestroy(&pep);CHKERRQ(ierr); for (i=0;i<NMAT;i++) { ierr = MatDestroy(&A[i]);CHKERRQ(ierr); } ierr = SlepcFinalize();CHKERRQ(ierr); return 0; }
int main(int argc,char **argv) { Mat M,C,K,A[3]; /* problem matrices */ PEP pep; /* polynomial eigenproblem solver context */ PetscInt n=5,Istart,Iend,i; PetscReal mu=1,tau=10,kappa=5; PetscBool terse; PetscErrorCode ierr; PetscLogDouble time1,time2; SlepcInitialize(&argc,&argv,(char*)0,help); ierr = PetscOptionsGetInt(NULL,"-n",&n,NULL);CHKERRQ(ierr); ierr = PetscOptionsGetReal(NULL,"-mu",&mu,NULL);CHKERRQ(ierr); ierr = PetscOptionsGetReal(NULL,"-tau",&tau,NULL);CHKERRQ(ierr); ierr = PetscOptionsGetReal(NULL,"-kappa",&kappa,NULL);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"\nDamped mass-spring system, n=%D mu=%g tau=%g kappa=%g\n\n",n,(double)mu,(double)tau,(double)kappa);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* K is a tridiagonal */ ierr = MatCreate(PETSC_COMM_WORLD,&K);CHKERRQ(ierr); ierr = MatSetSizes(K,PETSC_DECIDE,PETSC_DECIDE,n,n);CHKERRQ(ierr); ierr = MatSetFromOptions(K);CHKERRQ(ierr); ierr = MatSetUp(K);CHKERRQ(ierr); ierr = MatGetOwnershipRange(K,&Istart,&Iend);CHKERRQ(ierr); for (i=Istart;i<Iend;i++) { if (i>0) { ierr = MatSetValue(K,i,i-1,-kappa,INSERT_VALUES);CHKERRQ(ierr); } ierr = MatSetValue(K,i,i,kappa*3.0,INSERT_VALUES);CHKERRQ(ierr); if (i<n-1) { ierr = MatSetValue(K,i,i+1,-kappa,INSERT_VALUES);CHKERRQ(ierr); } } ierr = MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); /* C is a tridiagonal */ ierr = MatCreate(PETSC_COMM_WORLD,&C);CHKERRQ(ierr); ierr = MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,n,n);CHKERRQ(ierr); ierr = MatSetFromOptions(C);CHKERRQ(ierr); ierr = MatSetUp(C);CHKERRQ(ierr); ierr = MatGetOwnershipRange(C,&Istart,&Iend);CHKERRQ(ierr); for (i=Istart;i<Iend;i++) { if (i>0) { ierr = MatSetValue(C,i,i-1,-tau,INSERT_VALUES);CHKERRQ(ierr); } ierr = MatSetValue(C,i,i,tau*3.0,INSERT_VALUES);CHKERRQ(ierr); if (i<n-1) { ierr = MatSetValue(C,i,i+1,-tau,INSERT_VALUES);CHKERRQ(ierr); } } ierr = MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); /* M is a diagonal matrix */ ierr = MatCreate(PETSC_COMM_WORLD,&M);CHKERRQ(ierr); ierr = MatSetSizes(M,PETSC_DECIDE,PETSC_DECIDE,n,n);CHKERRQ(ierr); ierr = MatSetFromOptions(M);CHKERRQ(ierr); ierr = MatSetUp(M);CHKERRQ(ierr); ierr = MatGetOwnershipRange(M,&Istart,&Iend);CHKERRQ(ierr); for (i=Istart;i<Iend;i++) { ierr = MatSetValue(M,i,i,mu,INSERT_VALUES);CHKERRQ(ierr); } ierr = MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create the eigensolver and solve the problem - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PEPCreate(PETSC_COMM_WORLD,&pep);CHKERRQ(ierr); A[0] = K; A[1] = C; A[2] = M; ierr = PEPSetOperators(pep,3,A);CHKERRQ(ierr); ierr = PEPSetFromOptions(pep);CHKERRQ(ierr); ierr = PetscTime(&time1); CHKERRQ(ierr); ierr = PEPSolve(pep);CHKERRQ(ierr); ierr = PetscTime(&time2); CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Display solution and clean up - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* show detailed info unless -terse option is given by user */ ierr = PetscOptionsHasName(NULL,"-terse",&terse);CHKERRQ(ierr); if (terse) { ierr = PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL);CHKERRQ(ierr); } else { ierr = PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL);CHKERRQ(ierr); ierr = PEPReasonView(pep,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); ierr = PEPErrorView(pep,PEP_ERROR_BACKWARD,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); ierr = PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); } ierr = PetscPrintf(PETSC_COMM_WORLD,"Time: %g\n\n\n",time2-time1);CHKERRQ(ierr); ierr = PEPDestroy(&pep);CHKERRQ(ierr); ierr = MatDestroy(&M);CHKERRQ(ierr); ierr = MatDestroy(&C);CHKERRQ(ierr); ierr = MatDestroy(&K);CHKERRQ(ierr); ierr = SlepcFinalize();CHKERRQ(ierr); return 0; }
PETSC_EXTERN void PETSC_STDCALL pepsetoperators_(PEP *pep,PetscInt *nmat,Mat A[], int *__ierr ){ *__ierr = PEPSetOperators(*pep,*nmat,A); }
int main(int argc,char **argv) { Mat M,Mo,C,K,Ko,A[3]; /* problem matrices */ PEP pep; /* polynomial eigenproblem solver context */ IS isf,isbc,is; PetscInt n=200,nele,Istart,Iend,i,j,mloc,nloc,bc[2]; PetscReal width=0.05,height=0.005,glength=1.0,dlen,EI,area,rho; PetscScalar K1[4],K2[4],K2t[4],K3[4],M1[4],M2[4],M2t[4],M3[4],damp=5.0; PetscBool terse; PetscErrorCode ierr; PetscLogDouble time1,time2; SlepcInitialize(&argc,&argv,(char*)0,help); ierr = PetscOptionsGetInt(NULL,"-n",&n,NULL);CHKERRQ(ierr); nele = n/2; n = 2*nele; ierr = PetscPrintf(PETSC_COMM_WORLD,"\nSimply supported beam damped in the middle, n=%D (nele=%D)\n\n",n,nele);CHKERRQ(ierr); dlen = glength/nele; EI = 7e10*width*height*height*height/12.0; area = width*height; rho = 0.674/(area*glength); K1[0] = 12; K1[1] = 6*dlen; K1[2] = 6*dlen; K1[3] = 4*dlen*dlen; K2[0] = -12; K2[1] = 6*dlen; K2[2] = -6*dlen; K2[3] = 2*dlen*dlen; K2t[0] = -12; K2t[1] = -6*dlen; K2t[2] = 6*dlen; K2t[3] = 2*dlen*dlen; K3[0] = 12; K3[1] = -6*dlen; K3[2] = -6*dlen; K3[3] = 4*dlen*dlen; M1[0] = 156; M1[1] = 22*dlen; M1[2] = 22*dlen; M1[3] = 4*dlen*dlen; M2[0] = 54; M2[1] = -13*dlen; M2[2] = 13*dlen; M2[3] = -3*dlen*dlen; M2t[0] = 54; M2t[1] = 13*dlen; M2t[2] = -13*dlen; M2t[3] = -3*dlen*dlen; M3[0] = 156; M3[1] = -22*dlen; M3[2] = -22*dlen; M3[3] = 4*dlen*dlen; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* K is block-tridiagonal */ ierr = MatCreate(PETSC_COMM_WORLD,&Ko);CHKERRQ(ierr); ierr = MatSetSizes(Ko,PETSC_DECIDE,PETSC_DECIDE,n+2,n+2);CHKERRQ(ierr); ierr = MatSetBlockSize(Ko,2);CHKERRQ(ierr); ierr = MatSetFromOptions(Ko);CHKERRQ(ierr); ierr = MatSetUp(Ko);CHKERRQ(ierr); ierr = MatGetOwnershipRange(Ko,&Istart,&Iend);CHKERRQ(ierr); for (i=Istart/2;i<Iend/2;i++) { if (i>0) { j = i-1; ierr = MatSetValuesBlocked(Ko,1,&i,1,&j,K2t,ADD_VALUES);CHKERRQ(ierr); ierr = MatSetValuesBlocked(Ko,1,&i,1,&i,K3,ADD_VALUES);CHKERRQ(ierr); } if (i<nele) { j = i+1; ierr = MatSetValuesBlocked(Ko,1,&i,1,&j,K2,ADD_VALUES);CHKERRQ(ierr); ierr = MatSetValuesBlocked(Ko,1,&i,1,&i,K1,ADD_VALUES);CHKERRQ(ierr); } } ierr = MatAssemblyBegin(Ko,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(Ko,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatScale(Ko,EI/(dlen*dlen*dlen));CHKERRQ(ierr); /* M is block-tridiagonal */ ierr = MatCreate(PETSC_COMM_WORLD,&Mo);CHKERRQ(ierr); ierr = MatSetSizes(Mo,PETSC_DECIDE,PETSC_DECIDE,n+2,n+2);CHKERRQ(ierr); ierr = MatSetBlockSize(Mo,2);CHKERRQ(ierr); ierr = MatSetFromOptions(Mo);CHKERRQ(ierr); ierr = MatSetUp(Mo);CHKERRQ(ierr); ierr = MatGetOwnershipRange(Mo,&Istart,&Iend);CHKERRQ(ierr); for (i=Istart/2;i<Iend/2;i++) { if (i>0) { j = i-1; ierr = MatSetValuesBlocked(Mo,1,&i,1,&j,M2t,ADD_VALUES);CHKERRQ(ierr); ierr = MatSetValuesBlocked(Mo,1,&i,1,&i,M3,ADD_VALUES);CHKERRQ(ierr); } if (i<nele) { j = i+1; ierr = MatSetValuesBlocked(Mo,1,&i,1,&j,M2,ADD_VALUES);CHKERRQ(ierr); ierr = MatSetValuesBlocked(Mo,1,&i,1,&i,M1,ADD_VALUES);CHKERRQ(ierr); } } ierr = MatAssemblyBegin(Mo,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(Mo,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatScale(Mo,rho*area*dlen/420);CHKERRQ(ierr); /* remove rows/columns from K and M corresponding to boundary conditions */ ierr = ISCreateStride(PETSC_COMM_WORLD,Iend-Istart,Istart,1,&isf);CHKERRQ(ierr); bc[0] = 0; bc[1] = n; ierr = ISCreateGeneral(PETSC_COMM_SELF,2,bc,PETSC_USE_POINTER,&isbc);CHKERRQ(ierr); ierr = ISDifference(isf,isbc,&is);CHKERRQ(ierr); ierr = MatGetSubMatrix(Ko,is,is,MAT_INITIAL_MATRIX,&K);CHKERRQ(ierr); ierr = MatGetSubMatrix(Mo,is,is,MAT_INITIAL_MATRIX,&M);CHKERRQ(ierr); ierr = MatGetLocalSize(M,&mloc,&nloc);CHKERRQ(ierr); /* C is zero except for the (nele,nele)-entry */ ierr = MatCreate(PETSC_COMM_WORLD,&C);CHKERRQ(ierr); ierr = MatSetSizes(C,mloc,nloc,PETSC_DECIDE,PETSC_DECIDE);CHKERRQ(ierr); ierr = MatSetFromOptions(C);CHKERRQ(ierr); ierr = MatSetUp(C);CHKERRQ(ierr); ierr = MatGetOwnershipRange(C,&Istart,&Iend);CHKERRQ(ierr); if (nele-1>=Istart && nele-1<Iend) { ierr = MatSetValue(C,nele-1,nele-1,damp,INSERT_VALUES);CHKERRQ(ierr); } ierr = MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create the eigensolver and solve the problem - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PEPCreate(PETSC_COMM_WORLD,&pep);CHKERRQ(ierr); A[0] = K; A[1] = C; A[2] = M; ierr = PEPSetOperators(pep,3,A);CHKERRQ(ierr); ierr = PEPSetFromOptions(pep);CHKERRQ(ierr); ierr = PetscTime(&time1); CHKERRQ(ierr); ierr = PEPSolve(pep);CHKERRQ(ierr); ierr = PetscTime(&time2); CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Display solution and clean up - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* show detailed info unless -terse option is given by user */ ierr = PetscOptionsHasName(NULL,"-terse",&terse);CHKERRQ(ierr); if (terse) { ierr = PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL);CHKERRQ(ierr); } else { ierr = PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL);CHKERRQ(ierr); ierr = PEPReasonView(pep,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); ierr = PEPErrorView(pep,PEP_ERROR_BACKWARD,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); ierr = PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); } ierr = PetscPrintf(PETSC_COMM_WORLD,"Time: %g\n\n\n",time2-time1);CHKERRQ(ierr); ierr = PEPDestroy(&pep);CHKERRQ(ierr); ierr = ISDestroy(&isf);CHKERRQ(ierr); ierr = ISDestroy(&isbc);CHKERRQ(ierr); ierr = ISDestroy(&is);CHKERRQ(ierr); ierr = MatDestroy(&M);CHKERRQ(ierr); ierr = MatDestroy(&C);CHKERRQ(ierr); ierr = MatDestroy(&K);CHKERRQ(ierr); ierr = MatDestroy(&Ko);CHKERRQ(ierr); ierr = MatDestroy(&Mo);CHKERRQ(ierr); ierr = SlepcFinalize();CHKERRQ(ierr); return 0; }
int main(int argc,char **argv) { Mat M,C,K,A[3]; /* problem matrices */ PEP pep; /* polynomial eigenproblem solver context */ PetscInt n=10,Istart,Iend,i; PetscScalar z=1.0; char str[50]; PetscErrorCode ierr; SlepcInitialize(&argc,&argv,(char*)0,help); ierr = PetscOptionsGetInt(NULL,"-n",&n,NULL);CHKERRQ(ierr); ierr = PetscOptionsGetScalar(NULL,"-z",&z,NULL);CHKERRQ(ierr); ierr = SlepcSNPrintfScalar(str,50,z,PETSC_FALSE);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"\nAcoustic wave 1-D, n=%D z=%s\n\n",n,str);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* K is a tridiagonal */ ierr = MatCreate(PETSC_COMM_WORLD,&K);CHKERRQ(ierr); ierr = MatSetSizes(K,PETSC_DECIDE,PETSC_DECIDE,n,n);CHKERRQ(ierr); ierr = MatSetFromOptions(K);CHKERRQ(ierr); ierr = MatSetUp(K);CHKERRQ(ierr); ierr = MatGetOwnershipRange(K,&Istart,&Iend);CHKERRQ(ierr); for (i=Istart;i<Iend;i++) { if (i>0) { ierr = MatSetValue(K,i,i-1,-1.0*n,INSERT_VALUES);CHKERRQ(ierr); } if (i<n-1) { ierr = MatSetValue(K,i,i,2.0*n,INSERT_VALUES);CHKERRQ(ierr); ierr = MatSetValue(K,i,i+1,-1.0*n,INSERT_VALUES);CHKERRQ(ierr); } else { ierr = MatSetValue(K,i,i,1.0*n,INSERT_VALUES);CHKERRQ(ierr); } } ierr = MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); /* C is the zero matrix but one element*/ ierr = MatCreate(PETSC_COMM_WORLD,&C);CHKERRQ(ierr); ierr = MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,n,n);CHKERRQ(ierr); ierr = MatSetFromOptions(C);CHKERRQ(ierr); ierr = MatSetUp(C);CHKERRQ(ierr); ierr = MatGetOwnershipRange(C,&Istart,&Iend);CHKERRQ(ierr); if (n-1>=Istart && n-1<Iend) { ierr = MatSetValue(C,n-1,n-1,-2*PETSC_PI/z,INSERT_VALUES);CHKERRQ(ierr); } ierr = MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); /* M is a diagonal matrix */ ierr = MatCreate(PETSC_COMM_WORLD,&M);CHKERRQ(ierr); ierr = MatSetSizes(M,PETSC_DECIDE,PETSC_DECIDE,n,n);CHKERRQ(ierr); ierr = MatSetFromOptions(M);CHKERRQ(ierr); ierr = MatSetUp(M);CHKERRQ(ierr); ierr = MatGetOwnershipRange(M,&Istart,&Iend);CHKERRQ(ierr); for (i=Istart;i<Iend;i++) { if (i<n-1) { ierr = MatSetValue(M,i,i,4*PETSC_PI*PETSC_PI/n,INSERT_VALUES);CHKERRQ(ierr); } else { ierr = MatSetValue(M,i,i,2*PETSC_PI*PETSC_PI/n,INSERT_VALUES);CHKERRQ(ierr); } } ierr = MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create the eigensolver and solve the problem - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PEPCreate(PETSC_COMM_WORLD,&pep);CHKERRQ(ierr); A[0] = K; A[1] = C; A[2] = M; ierr = PEPSetOperators(pep,3,A);CHKERRQ(ierr); ierr = PEPSetFromOptions(pep);CHKERRQ(ierr); ierr = PEPSolve(pep);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Display solution and clean up - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PEPPrintSolution(pep,NULL);CHKERRQ(ierr); ierr = PEPDestroy(&pep);CHKERRQ(ierr); ierr = MatDestroy(&M);CHKERRQ(ierr); ierr = MatDestroy(&C);CHKERRQ(ierr); ierr = MatDestroy(&K);CHKERRQ(ierr); ierr = SlepcFinalize();CHKERRQ(ierr); return 0; }
int main(int argc,char **argv) { Mat A[NMAT]; /* problem matrices */ PEP pep; /* polynomial eigenproblem solver context */ PetscInt n=128,nlocal,k,Istart,Iend,i,j,start_ct,end_ct; PetscReal w=9.92918,a=0.0,b=2.0,h,deltasq; PetscReal nref[NL],K2[NL],q[NL],*md,*supd,*subd; PetscScalar v,alpha; PetscBool terse; PetscErrorCode ierr; PetscLogDouble time1,time2; SlepcInitialize(&argc,&argv,(char*)0,help); ierr = PetscOptionsGetInt(NULL,"-n",&n,NULL);CHKERRQ(ierr); n = (n/4)*4; ierr = PetscPrintf(PETSC_COMM_WORLD,"\nPlanar waveguide, n=%D\n\n",n+1);CHKERRQ(ierr); h = (b-a)/n; nlocal = (n/4)-1; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set waveguide parameters used in construction of matrices - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* refractive indices in each layer */ nref[0] = 1.5; nref[1] = 1.66; nref[2] = 1.6; nref[3] = 1.53; nref[4] = 1.66; nref[5] = 1.0; for (i=0;i<NL;i++) K2[i] = w*w*nref[i]*nref[i]; deltasq = K2[0] - K2[NL-1]; for (i=0;i<NL;i++) q[i] = K2[i] - (K2[0] + K2[NL-1])/2; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Compute the polynomial matrices - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* initialize matrices */ for (i=0;i<NMAT;i++) { ierr = MatCreate(PETSC_COMM_WORLD,&A[i]);CHKERRQ(ierr); ierr = MatSetSizes(A[i],PETSC_DECIDE,PETSC_DECIDE,n+1,n+1);CHKERRQ(ierr); ierr = MatSetFromOptions(A[i]);CHKERRQ(ierr); ierr = MatSetUp(A[i]);CHKERRQ(ierr); } ierr = MatGetOwnershipRange(A[0],&Istart,&Iend);CHKERRQ(ierr); /* A0 */ alpha = (h/6)*(deltasq*deltasq/16); for (i=Istart;i<Iend;i++) { v = 4.0; if (i==0 || i==n) v = 2.0; ierr = MatSetValue(A[0],i,i,v*alpha,INSERT_VALUES);CHKERRQ(ierr); if (i>0) { ierr = MatSetValue(A[0],i,i-1,alpha,INSERT_VALUES);CHKERRQ(ierr); } if (i<n) { ierr = MatSetValue(A[0],i,i+1,alpha,INSERT_VALUES);CHKERRQ(ierr); } } /* A1 */ if (Istart==0) { ierr = MatSetValue(A[1],0,0,-deltasq/4,INSERT_VALUES);CHKERRQ(ierr); } if (Iend==n+1) { ierr = MatSetValue(A[1],n,n,deltasq/4,INSERT_VALUES);CHKERRQ(ierr); } /* A2 */ alpha = 1.0/h; for (i=Istart;i<Iend;i++) { v = 2.0; if (i==0 || i==n) v = 1.0; ierr = MatSetValue(A[2],i,i,v*alpha,ADD_VALUES);CHKERRQ(ierr); if (i>0) { ierr = MatSetValue(A[2],i,i-1,-alpha,ADD_VALUES);CHKERRQ(ierr); } if (i<n) { ierr = MatSetValue(A[2],i,i+1,-alpha,ADD_VALUES);CHKERRQ(ierr); } } ierr = PetscMalloc3(n+1,&md,n+1,&supd,n+1,&subd);CHKERRQ(ierr); md[0] = 2.0*q[1]; supd[1] = q[1]; subd[0] = q[1]; for (k=1;k<=NL-2;k++) { end_ct = k*(nlocal+1); start_ct = end_ct-nlocal; for (j=start_ct;j<end_ct;j++) { md[j] = 4*q[k]; supd[j+1] = q[k]; subd[j] = q[k]; } if (k < 4) { /* interface points */ md[end_ct] = 4*(q[k] + q[k+1])/2.0; supd[end_ct+1] = q[k+1]; subd[end_ct] = q[k+1]; } } md[n] = 2*q[NL-2]; supd[n] = q[NL-2]; subd[n] = q[NL-2]; alpha = -h/6.0; for (i=Istart;i<Iend;i++) { ierr = MatSetValue(A[2],i,i,md[i]*alpha,ADD_VALUES);CHKERRQ(ierr); if (i>0) { ierr = MatSetValue(A[2],i,i-1,subd[i-1]*alpha,ADD_VALUES);CHKERRQ(ierr); } if (i<n) { ierr = MatSetValue(A[2],i,i+1,supd[i+1]*alpha,ADD_VALUES);CHKERRQ(ierr); } } ierr = PetscFree3(md,supd,subd);CHKERRQ(ierr); /* A3 */ if (Istart==0) { ierr = MatSetValue(A[3],0,0,1.0,INSERT_VALUES);CHKERRQ(ierr); } if (Iend==n+1) { ierr = MatSetValue(A[3],n,n,1.0,INSERT_VALUES);CHKERRQ(ierr); } /* A4 */ alpha = (h/6); for (i=Istart;i<Iend;i++) { v = 4.0; if (i==0 || i==n) v = 2.0; ierr = MatSetValue(A[4],i,i,v*alpha,INSERT_VALUES);CHKERRQ(ierr); if (i>0) { ierr = MatSetValue(A[4],i,i-1,alpha,INSERT_VALUES);CHKERRQ(ierr); } if (i<n) { ierr = MatSetValue(A[4],i,i+1,alpha,INSERT_VALUES);CHKERRQ(ierr); } } /* assemble matrices */ for (i=0;i<NMAT;i++) { ierr = MatAssemblyBegin(A[i],MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); } for (i=0;i<NMAT;i++) { ierr = MatAssemblyEnd(A[i],MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create the eigensolver and solve the problem - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PEPCreate(PETSC_COMM_WORLD,&pep);CHKERRQ(ierr); ierr = PEPSetOperators(pep,NMAT,A);CHKERRQ(ierr); ierr = PEPSetFromOptions(pep);CHKERRQ(ierr); ierr = PetscTime(&time1); CHKERRQ(ierr); ierr = PEPSolve(pep);CHKERRQ(ierr); ierr = PetscTime(&time2); CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Display solution and clean up - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* show detailed info unless -terse option is given by user */ ierr = PetscOptionsHasName(NULL,"-terse",&terse);CHKERRQ(ierr); if (terse) { ierr = PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL);CHKERRQ(ierr); } else { ierr = PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL);CHKERRQ(ierr); ierr = PEPReasonView(pep,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); ierr = PEPErrorView(pep,PEP_ERROR_BACKWARD,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); ierr = PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); } ierr = PetscPrintf(PETSC_COMM_WORLD,"Time: %g\n\n\n",time2-time1);CHKERRQ(ierr); ierr = PEPDestroy(&pep);CHKERRQ(ierr); for (i=0;i<NMAT;i++) { ierr = MatDestroy(&A[i]);CHKERRQ(ierr); } ierr = SlepcFinalize();CHKERRQ(ierr); return 0; }